ON THE $3{ }^{\text {rd }}$ ORDER LINEAR DIFFERENTIAL EQUATION

${ }^{1}$ B. L. Moreno-Ley, ${ }^{1}$ J. López-Bonilla*, ${ }^{2}$ B. Man Tuladhar
${ }^{1}$ ESIME-Zacatenco-ICE, Instituto Politécnico Nacional, CP 07738 México DF
${ }^{2}$ Kathmandu University, Dhulikhel, Kavre, Nepal,
*Corresponding address: jlopezb@ipn.mx
Received 01 June, 2012; Revised 21 September, 2012

Abstract

If for an arbitrary 3th order linear differential equation, non-homogeneous, we know two solutions of its associated homogeneous equation (HE), then we show how to determine the third solution of HE and the particular solution of the original equation.

Keywords: Wronskian, Linear differential equations, Method of variation of parameters

INTRODUCTION

If for the linear differential equation of third order:

$$
\begin{equation*}
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=\Phi(x) \tag{1}
\end{equation*}
$$

we know the solution y_{1} of the corresponding homogeneous equation (HE):

$$
\begin{equation*}
p y^{\prime \prime}+q y^{\prime}+r y=0, \tag{2}
\end{equation*}
$$

then it is possible to obtain the solution y_{2} of (2) and the particular solution y_{p} of (1) [1-5]:
$y_{2}(x)=y_{1}(x) \int^{x} \frac{\tilde{w}}{y_{1}^{2}} d \eta, \quad y_{p}(x)=y_{2}(x) \int^{x} \frac{y_{1} \phi}{p \tilde{w}} d \eta-y_{1}(x) \int^{x} \frac{y_{2} \phi}{p \tilde{w}} d \eta$,
where \widetilde{W} is the Wronskian of the two independent solutions of (2), with the Abel Liouville - Ostrogradski identity:

$$
\begin{equation*}
\widetilde{W} \equiv y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=\exp \left(-\int^{x} \frac{q}{p} d \xi\right) \tag{4}
\end{equation*}
$$

The expression (3) for y_{p} can be constructed via method of variation of parameters of Euler (1741) - Lagrange (1777), or employing the technique of adjoint-exact linear differential operator $[4,5]$.

Here we consider the differential equation of third order:

$$
\begin{equation*}
u(x) y^{\prime \prime \prime}+p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=\phi(x) \tag{5}
\end{equation*}
$$

and we accept the knowledge of the solutions $y_{1} \& y_{2}$ of its HE:

$$
\begin{equation*}
u y^{\prime \prime \prime}+p y^{\prime \prime}+q y^{\prime}+r y=0 \tag{6}
\end{equation*}
$$

with the aim to find expressions for the particular solution of (5) and the solution y_{3} of (6).

THIRD ORDER LINEAR DIFFERENTIAL EQUATION

In this case, the HE (6) has three solutions:

$$
\begin{equation*}
u y_{j}^{\prime \prime \prime}+p y_{j}^{\prime \prime}+q y_{j}^{\prime}+r y_{j}=0, \quad j=1,2,3 \tag{7}
\end{equation*}
$$

whose linear independence implies a non-null Wronskian :

$$
\mathrm{W} \equiv\left|\begin{array}{lll}
y_{1} & y_{2} & y_{3} \tag{8}\\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right| .
$$

The derivative of (8) gives:

$$
\begin{equation*}
\frac{d W}{d x}=y_{1}^{\prime \prime \prime} W_{23}+y_{2}^{\prime \prime \prime} W_{31}+y_{3}^{\prime \prime \prime} W_{12} \tag{9}
\end{equation*}
$$

with the notation:

$$
\begin{equation*}
W_{i j}=-W_{j i}=y_{i} y_{j}^{\prime}-y_{j} y_{i}^{\prime}, \quad i \neq j \tag{10}
\end{equation*}
$$

If (9) is multiplied by $u(x)$ and we use (7), then:

$$
u \frac{d W}{d x}=-p W \quad \therefore \quad W=k \exp \left(-\int^{x} \frac{p}{u} d \xi\right)
$$

but, without loss of generality, we may take $\mathrm{k}=1$ because we can multiply the y_{j} by an adequate scale factor (they are solutions of a HE), therefore:

$$
\begin{equation*}
W=\exp \left(-\int^{x} \frac{p}{u} d \xi\right) \tag{11}
\end{equation*}
$$

is the Abel - Liouville - Ostrogradski identity for (5).

The expansion of the determinant (8), via the third column, implies:

$$
\begin{equation*}
W_{12} y_{3}^{\prime \prime}-W_{12}^{\prime} y_{3}^{\prime}+\left(y_{1}^{\prime} y_{2}^{\prime \prime}-y_{2}^{\prime} y_{1}^{\prime \prime}\right) y_{3}=W, \tag{12}
\end{equation*}
$$

where, in accordance with (10):
$W_{12}=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}, \quad W_{12}^{\prime}=\frac{d}{d x} W_{12}=y_{1} y_{2}^{\prime \prime}-y_{2} y_{1}^{\prime \prime}$.

It is interesting to see that y_{3} satisfies the HE (6) of $3^{\text {th }}$ order, and besides it is a particular solution of the non-homogeneous equation (12) of $2^{\text {th }}$ order. It is simple to verify that $y_{1} \&$ y_{2} are solutions of the HE of (12):
$W_{12} y_{c}^{\prime \prime}-W_{12}^{\prime} y_{c}^{\prime}+\left(y_{1}^{\prime} y_{2}^{\prime \prime}-y_{2}^{\prime} y_{1}^{\prime \prime}\right) y_{c}=0, \quad c=1,2$,
then the method of variation of parameters gives the particular solution for (12):

$$
\begin{equation*}
y_{3}(x)=y_{2}(x) \int^{x} \frac{y_{1} W}{\left(W_{12}\right)^{2}} d \eta-y_{1}(x) \int^{x} \frac{y_{2} W}{\left(W_{12}\right)^{2}} d \eta \tag{15}
\end{equation*}
$$

thus y_{3} is determined employing $y_{1} \& y_{2}$.

With (8) and (10) it is easy to prove the identities:

$$
\begin{align*}
& y_{1} W_{23}+y_{2} W_{31}+y_{3} W_{12}=0, \\
& y_{1}^{\prime} W_{23}+y_{2}^{\prime} W_{31}+y_{3}^{\prime} W_{12}=0, \tag{16}\\
& y_{1}^{\prime \prime} W_{23}+y_{2}^{\prime \prime} W_{31}+y_{3}^{\prime \prime} W_{12}=W
\end{align*}
$$

which permit to construct the particular solution of (5):

$$
\begin{equation*}
y_{p}(x)=y_{1}(x) \int^{x} \frac{W_{2 \mathrm{~s}}}{W} \frac{\phi}{u} d \eta+y_{2}(x) \int^{x} \frac{W_{31}}{W} \frac{\phi}{u} d \eta+y_{3}(x) \int^{x} \frac{W_{12}}{W} \frac{\phi}{u} d \eta \tag{17}
\end{equation*}
$$

with W given by (11).
The relations (15) and (17) are the generalizations of (3) for the $3^{\text {th }}$ order case, and they are not explicitly given in the literature.

REFERENCES

[1] Spiegel M R, Applied differential equations, Prentice-Hall, Mexico (1983) ISBN 968-880-053-8.
[2] Ahsan Z, Differential equations and their applications, Prentice-Hall, New Delhi (2004) ISBN 812-032-523-0.
[3] Clegg J, A new factorization of a general second order differential equation, Int. J. Math. Educ. Sci. Tech. 37, No. 1 (2006)51.
[4] López-Bonilla J, Zaldivar - Sandoval A \& Montiel J Y, 2th order linear differential operator in its exact form, J. Vect. Rel. 5, No. 1 (2010)139.
[5] López-Bonilla J, Zaldivar - Sandoval A \& Montiel J Y, Integrating factor for an arbitrary 2th order linear differential equation, Bol. Soc. Cub. Mat. Comp. 8, No. 1 (2010) 35.

