SOME MATRIX TRANSFORMATIONS AND ALMOST CONVERGENCE

Neyaz Ahmad Sheikh, Ab. Hamid Ganie
Department of Mathematics, National Institute of Technology Srinagar - 190006.
Corresponding address: neyaznit@yahoo.co.in
Received 16 May, 2012; Revised 9 August, 2012

Abstract

The sequence space $b v(u, p)$ has been defined and the classes $\left(b v(u, p): l_{\infty}\right),(b v(u, p): c)$ and $\left(b v(u, p): c_{0}\right)$ of infinite matrices have been characterized by Başar, Altay and Mursaleen (see, [2]). The main purposes of the present paper is to characterize the classes $\left(b v(u, p): f_{\infty}\right),(b v(u, p): f) \operatorname{and}\left(b v(u, p): f_{0}\right)$, where f_{∞}, f and f_{0} denotes the spaces of almost bounded sequences, almost convergent sequences and almost convergent null sequences, respectively, with real or complex terms.

2010 AMS Mathematical Subject Classification: 46A45; 46B45; 40 C05.
Keywords and Phrases: Sequence space of non-absolute type, almost bounded sequences, β-duals and Matrix mappings.

1. INTRODUCTION, BACKGROUND AND PRELIMINARIES

A sequence space is defined to be a linear space with real or complex sequences. Throughout the paper \mathbb{N}, \mathbb{R} and \mathbb{C} denotes the set of non-negative integers, the set of real numbers and the set of complex numbers, respectively. Let ℓ_{∞}, c and c_{0} respectively be Banach spaces of bounded, convergent and null sequences $x=\left\{x_{n}\right\}_{n=0}^{\infty}$ normed by $\|x\|=\sup _{n \geq 0}|x(n)|$; also, by $c s$ we denote the sequence of all convergent series(see, [7]).

Let X and Y be two non-empty subsets of the space ω of real or complex sequences. Let $A=\left(a_{n k}\right),(n, k \in \mathbb{N})$, be an infinite matrix of real or complex numbers. We write $(A x)_{n}=$ $A_{n}(x)=\sum_{k} a_{n k} x_{k}$. Then $A x=\left\{A_{n}(x)\right\}$ is called the A-transform of x, whenever $A_{n}(x)=$ $\sum_{k} a_{n k} x_{k}$ converges for each $n \in \mathbb{N}$. We write $\lim _{n} A x=\lim _{n} A_{n}(x)$. If $x \in X$ implies $A x \in Y$, we say that A defines a (matrix) transformation from X into Y and we denote it by $A: X \rightarrow Y$. By $(X: Y)$, we mean the class of all matrices A such that $A: X \rightarrow Y$.

Let D denote the shift operator on ω, that is, $D x=\{x(n)\}_{n=1}^{\infty}, D^{2} x=\{x(n)\}_{n=2}^{\infty}$ and so on. Obviously, D is a bounded linear operator on l_{∞} onto itself. A Banach limit L is a non-negative linear functional on l_{∞} such that L is invariant under the shift operator that is, $L(S x)=L(x)$ and that $L(e)=1$, where $e=\{1,1, \ldots\}$ (see, [1]). A sequence space is said to be almost convergent (see, [3]) to the generalized limit α if all Banach limits of x are α. We denote the set of almost convergent sequences by f. It was proved by Lorentz (see, [3]) that

$$
f=\left\{x \in l_{\infty}: \lim _{m} \tau_{m n}(x)=\alpha, \text { uniformly in } n\right\},
$$

where, $\quad \tau_{m n}(x)=\frac{1}{m+1} \sum_{j=0}^{m} x_{j+n}, \tau_{-1, n}=0$ and $\alpha=f$-limex.
Nanda [6] has defined a new set of sequences f_{∞} as follows:

$$
f_{\infty}=\left\{x \in l_{\infty}: \lim _{m}\left|\tau_{m n}(x)\right|<\infty\right\} .
$$

We call f_{∞} the set of all almost bounded sequences.
We denote by X^{β}, the β-dual of a sequence space X and mean the set of all these sequences $x=\left(x_{k}\right)$ such that $x y=\left(x_{k} y_{k}\right) \in c s$ for all $y=\left(y_{k}\right) \in X$.

The approach of constructing a new sequence space by means of matrix domain of a particular limitation method has been studied by several authors viz., ($[2,4,5]$).
The sequence space $b v(u, p)$ has been defined and the various classes $\left(b v(u, p): l_{\infty}\right)$ ($b v(u, p): c$) and ($b v(u, p): c_{0}$) have been characterized (see, [2]). In the present paper, we characterize the classes $\left(b v(u, p): f_{\infty}\right),(b v(u, p): f)$ and $\left(b v(u, p): f_{0}\right)$, where $u=\left(u_{k}\right)$ is a sequence such that $u_{k} \neq 0$ for all $k \in \mathbb{N}$.

The space $b v(u, p)$ is defined (see, [2]) as

$$
b v(u, p)=\left\{x=\left(x_{k}\right) \in \omega: \sum_{k}\left|u_{k} \Delta x_{k}\right|^{p_{k}}<\infty\right\}
$$

where, $\Delta x_{k}=x_{k}-\Delta x_{k-1}$.

2. MAIN RESULTS

Define the sequence $y=\left(y_{k}\right)$ which will be used as the A^{u}-transform of a sequence $x=$ $\left(x_{k}\right)$, i.e.,

$$
\begin{equation*}
y_{k}=u_{k} \Delta x_{k} ; k \in \mathbb{N} . \tag{2.1}
\end{equation*}
$$

For brevity in notation, we write
where,

$$
t_{m n}(x)=\frac{1}{m+1} \sum_{j=0}^{m} A_{n+j}(x)=\sum_{k} a(n, k, m) x_{k},
$$

Also,

$$
a(n, k, m)=\frac{1}{m+1} \sum_{j=0}^{m} a_{n+j, k} ;(n, k, m \in \mathbb{N})
$$

$a(n, k, m)=\left[\frac{u_{k}}{u_{k}}\right],(n, k, m \in \mathbb{N})$
Now, we give the following lemmas which will be needed in proving the main Theorems.

Lemma 2.1 [2]: Define the sets $D_{1}(p)$ and $D_{2}(p)$ as follows:

$$
\begin{aligned}
& D_{1}(p)=\left\{a=\left(a_{k}\right) \in \omega: \sup _{n} \sum_{k}\left|\sum_{j=k}^{n} \frac{a_{j}}{u_{k}}\right|^{p_{k}}<\infty\right\}, \\
& D_{2}(p)=\cup_{B>1}\left\{a=\left(a_{k}\right) \in \omega: \sup _{n} \sum_{k=0}^{n}\left|\sum_{j=k}^{n} \frac{a_{j}}{u_{k}} B^{-1}\right|^{p_{k}^{\prime}}<\infty\right\} .
\end{aligned}
$$

Then ,

$$
[b v(u, p)]^{\beta}=D_{1}(p) \cap c s ;\left(0<p_{k} \leq 1\right)
$$

and

$$
[b v(u, p)]^{\beta}=D_{2}(p) \cap c s ;\left(1<p_{k}<\infty\right) .
$$

Lemma 2.2 [6]: $f \subset f_{\infty}$.
We consider only the case $1<p_{k} \leq M<\infty$ and the case $0<p_{k} \leq 1$ may be proved in a similar fashion.

Theorem 2.3: (a) Let $1<p_{k} \leq M<\infty$ for every $k \in \mathbb{N}$. Then $A \in\left(b v(u, p): f_{\infty}\right)$ if and only if
and

$$
\begin{align*}
& \sup _{n, m} \sum_{k}\left|\bar{a}(n, k, m) B^{-1}\right|^{p_{k}^{\prime}}<\infty \tag{2.2}\\
& \left\{a_{n k}\right\} \in D_{2}(p) \cap c s . \tag{2.3}
\end{align*}
$$

(b) Let $0<p_{k} \leq 1$ for every $k \in \mathbb{N}$. Then $A \in\left(b v(u, p): f_{\infty}\right)$ if and only if

$$
\begin{equation*}
\sup _{n, m} \sum_{k}|\bar{a}(n, k, m)|^{p_{k}}<\infty \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } \quad\left\{a_{n k}\right\} \in D_{1}(p) \cap c s \tag{2.5}
\end{equation*}
$$

Proof : Sufficiency: Suppose the conditions holds and $x \in b v(u, p)$.Using the inequality which holds for any $C>0$ and any two complex numbers a, b

$$
|a b| \leq C\left\{\left|a C^{-1}\right|^{q}+b^{p}\right\}
$$

where, $p>1$ and $p^{-1}+q^{-1}=1$ (see, [3]), we have

$$
\begin{aligned}
\left|t_{m n}(A x)\right| & =\left|\sum_{k} a(n, k, m) x_{k}\right|=\left|\sum_{k} \bar{a}(n, k, m) y_{k}\right| \\
& \leq \sum_{k} B\left[\left|\bar{a}(n, k, m) B^{-1}\right|^{p_{k}^{\prime}}+\left|y_{k}\right|^{p_{k}}\right]
\end{aligned}
$$

Now, taking sup over m, n on both sides to the above inequality, we get $A x \in f_{\infty}$ for every $x \in b v(u, p)$, i.e., $A \in\left(b v(u, p): f_{\infty}\right)$.

Necessity: Suppose that $A \in\left(b v(u, p): f_{\infty}\right)$. Then $A x$ exists for every $x \in b v(u, p)$, and this implies that $\left\{a_{n, k}\right\}_{k \in \mathbb{N}} \in[b v(u, p)]^{\beta}$ for every $n \in \mathbb{N}$, the necessity of (2.3) is immediate.

Now, $\sum_{k} a(n, k, m) x_{k}$ exists for each m, n and $x \in b v(u, p)$, the sequences $\{a(n, k, m)\}_{k \in \mathbb{N}}$ define the continuous linear functionals $\varphi_{m n}(x)$ on $b v(u, p)$ by $\varphi_{m n}(x)=\sum_{k} a(n, k, m) x_{k}$; $n, k, m \in \mathbb{N}$. Since $b v(u, p)$ is complete and $\sup _{m, n}\left|\sum_{k} \bar{a}(n, k, m) x_{k}\right|<\infty$, so by uniform bounded principle, there exists $M>0$ such that

$$
\begin{aligned}
\sup _{m, n}\left|\varphi_{m n}(x)\right| & =\sup _{m, n}\left|\sum_{k} a(n, k, m) x_{k}\right| \\
& =\sup _{m, n}\left|\sum_{k} \bar{a}(n, k, m) x_{k}\right| \leq M<\infty .
\end{aligned}
$$

This implies that $\sup _{m, n} \sum_{k}\left|\bar{a}(n, k, m) x_{k}\right|^{p_{k}}<\infty$, which shows the necessity of the condition (2.2) and the proof of (i) is complete.

Theorem 2.4: (a) Let $1<p_{k} \leq M<\infty$ for every $k \in \mathbb{N}$. Then $A \in\left(b v(u, p): f_{\infty}\right)$ if and only if (i) the condition (2.2)-(2.5) of Theorem 2.3 holds
(ii) there is a sequence $\left(\beta_{k}\right)$ of scalars such that $\lim _{m} \bar{a}(n, k, m)=\beta_{k}$, uniformly in n.

Proof: Sufficiency: Suppose that the conditions (2.2)-(2.6) hold and $x \in b v(u, p)$. Then $A x$ exists and we have by (2.6) that $\left|\bar{a}(n, k, m) B^{-1}\right|^{p_{k}^{\prime}} \rightarrow\left|\beta_{k} B^{-1}\right|^{p_{k}}$ as $m \rightarrow \infty$ uniformly in n for each $k \in \mathbb{N}$, which leads us with (2.2) that

$$
\begin{aligned}
\sum_{j=0}^{k}\left|\beta_{j} B^{-1}\right|^{p_{k}^{\prime}} & =\sum_{j=0}^{k}\left|\bar{a}(n, j, m) B^{-1}\right|^{p_{k}^{\prime}} \\
& \leq \sup _{m, n} \sum_{j}\left|\bar{a}(n, j, m) B^{-1}\right|^{p_{k}^{\prime}}<\infty
\end{aligned}
$$

holding for every $k \in \mathbb{N}$. Consequently reasoning as in the proof of the sufficiency of Theorem 2.3, the series $\sum_{k} a(n, k, m) x_{k}$ and $\sum_{k} \beta_{k} x_{k}$ converges for every n, m and for every $x \in$ $b v(u, p)$. Now, for given $\varepsilon>0$ and $x \in b v(u, p)$, choose a fixed $k_{0} \in \mathbb{N}$ such that
$\left[\sum_{k=k_{0}+1}^{\infty}\left|x_{k}\right|^{p_{k}}\right]^{\frac{1}{H}}<\varepsilon$, where $H=\sup _{k} p_{k}$. Then, there is some $m_{0} \in \mathbb{N}$, by condition (ii) such that $\left|\sum_{k=1}^{k_{0}}\left[a(n, k, m)-\beta_{k}\right]\right|<\varepsilon$, for every $m \geq m_{0}$ and uniformly in n.

Now, since $\sum_{k} a(n, k, m) x_{k}$ and $\sum_{k} \beta_{k} x_{k}$ converges (absolutely) uniformly in n, m and for $x \in b v(u, p)$, we have that $\sum_{k_{0}+1}^{\infty}\left[a(n, k, m)-\beta_{k}\right] x_{k}<\frac{\varepsilon}{2}$, converges uniformly in n, m and $x \in b v(u, p)$. Hence by conditions (i) and (ii) we have $\sum_{k_{0}+1}^{\infty}\left[a(n, k, m)-\beta_{k}\right]<\frac{\varepsilon}{2}$ for all ($m \geq m_{0}$), uniformly in n. Therefore, $\left|\sum_{k_{0}+1}^{\infty}\left[a(n, k, m)-\beta_{k}\right]\right| \rightarrow 0(m \rightarrow \infty)$ uniformly in i.e.,

$$
\begin{equation*}
\lim _{m} \sum_{k} a(n, k, m) x_{k}=\sum_{k} \beta_{k} x_{k} \text { uniformly in } n . \tag{2.7}
\end{equation*}
$$

Hence, $A x \in f$, which proves sufficiency.
Necessity: Suppose that $A \in(b v(u, p): f)$. Then, since $f \subset f_{\infty}($ by Lemma 2.1), the necessities of condition (i) is immediately obtained from Theorem 2.1. To prove the necessity of (ii) i.e., (2.6), consider the sequence $e_{k}=\left(0,0, \ldots, 1^{k t h-p l a c e}, 0,0, \ldots\right) \in b v(u, p)$, condition (ii) follows immediately by (2.7) and the proof is complete.

Collary 2.5: $A \in\left(b v(u, p): f_{0}\right)$ if and only if condition (i) and (ii) of above Theorem holds along with $\beta_{k}=0$ for each $k \in \mathbb{N}$.

Proof: The proof follows from theorem 2.4 by taking $\beta_{k}=0$ for each $k \in \mathbb{N}$.

REFERENCES

[1] Banach, S, Theòries des operations linéaries, Warszawa, 1932.
[2] Başar, F, Altay, B \& Mursaleen, M , Some generalizations of the space bv p_{p} of p-bounded variation sequences, Nonlinear Anal., 68 (2)(2008), 273-287.
[3] Lorentz, G G, A contribution to the theory of divergent series, Acta Math., (80) (1948), 167-190.
[4] Mursaleen, M, Infinite matrices and almost convergent sequences, Southeast Asian Bulletin of Math., 19(1) (1995), 45-48.
[5] Mursaleen, M, Jarrah, A. M. \& Mohiuddine, S. A., Almost convergence through the generalized de la Vallee-Pousin mean, Iranian J. Sci. Tech. Trans. A, 33(A2) (2009), 169-177.
[6] Nanda, S, Matrix transformations and almost boundedness, Glasnik Mat., 14(34) (1979), 99-107.
[7] Yasida, K, Functional Analysis, Springer-Verlag, Berlin Heidelberg, New York, 1966.

