SOME MATRIX TRANSFORMATIONS AND ALMOST CONVERGENCE

Neyaz Ahmad Sheikh, Ab. Hamid Ganie

Department of Mathematics, National Institute of Technology Srinagar - 190006.

Corresponding address: neyaznit@yahoo.co.in Received 16 May, 2012; Revised 9 August, 2012

ABSTRACT

The sequence space bv(u, p) has been defined and the classes $(bv(u, p): l_{\infty})$, (bv(u, p): c) and $(bv(u, p): c_0)$ of infinite matrices have been characterized by Başar, Altay and Mursaleen (see, [2]). The main purposes of the present paper is to characterize the classes $(bv(u, p): f_{\infty})$, (bv(u, p): f) and $(bv(u, p): f_0)$, where f_{∞} , f and f_0 denotes the spaces of almost bounded sequences, almost convergent sequences and almost convergent null sequences, respectively, with real or complex terms.

2010 AMS Mathematical Subject Classification: 46A45; 46B45; 40C05.

Keywords and Phrases: Sequence space of non-absolute type, almost bounded sequences, β -duals and Matrix mappings.

1. INTRODUCTION, BACKGROUND AND PRELIMINARIES

A sequence space is defined to be a linear space with real or complex sequences. Throughout the paper N, \mathbb{R} and \mathbb{C} denotes the set of non-negative integers, the set of real numbers and the set of complex numbers, respectively. Let ℓ_{∞} , *c* and c_0 respectively be Banach spaces of bounded, convergent and null sequences $x = \{x_n\}_{n=0}^{\infty}$ normed by $||x|| = sup_{n\geq 0}|x(n)|$; also, by *cs* we denote the sequence of all convergent series(see, [7]).

Let *X* and *Y* be two non-empty subsets of the space ω of real or complex sequences. Let $A = (a_{nk}), (n, k \in \mathbb{N})$, be an infinite matrix of real or complex numbers. We write $(Ax)_n = A_n(x) = \sum_k a_{nk} x_k$. Then $Ax = \{A_n(x)\}$ is called the *A*-transform of *x*, whenever $A_n(x) = \sum_k a_{nk} x_k$ converges for each $n \in \mathbb{N}$. We write $\lim_n Ax = \lim_n A_n(x)$. If $x \in X$ implies $Ax \in Y$, we say that *A* defines a (matrix) transformation from *X* into *Y* and we denote it by $A: X \to Y$. By (X:Y), we mean the class of all matrices *A* such that $A: X \to Y$.

Let *D* denote the shift operator on ω , that is, $Dx = \{x(n)\}_{n=1}^{\infty}$, $D^2x = \{x(n)\}_{n=2}^{\infty}$ and so on. Obviously, *D* is a bounded linear operator on l_{∞} onto itself. A Banach limit *L* is a non-negative linear functional on l_{∞} such that *L* is invariant under the shift operator that is, L(Sx) = L(x) and that L(e) = 1, where $e = \{1, 1, ...\}$ (see, [1]). A sequence space is said to be almost convergent (see, [3]) to the generalized limit α if all Banach limits of *x* are α . We denote the set of almost convergent sequences by *f*. It was proved by Lorentz (see, [3]) that

$$f = \{x \in l_{\infty} : \lim_{m} \tau_{mn}(x) = \alpha \text{, uniformly in } n\},\$$

where,
$$\tau_{mn}(x) = \frac{1}{m+1} \sum_{j=0}^{m} x_{j+n}, \ \tau_{-1,n} = 0 \text{ and } \alpha = f \text{-lim} \mathbb{R}^{n}.\$$

Nanda [6] has defined a new set of sequences f_{∞} as follows:
$$f_{\infty} = \{x \in l_{\infty} : \lim_{m} |\tau_{mn}(x)| < \infty\}.$$

We call f_{∞} the set of all almost bounded sequences.

We denote by X^{β} , the β -dual of a sequence space X and mean the set of all these sequences $x = (x_k)$ such that $xy = (x_k y_k) \in cs$ for all $y = (y_k) \in X$.

The approach of constructing a new sequence space by means of matrix domain of a particular limitation method has been studied by several authors viz., ([2, 4, 5]).

The sequence space bv(u,p) has been defined and the various classes $(bv(u,p): l_{\infty})$ (bv(u,p):c) and $(bv(u,p):c_0)$ have been characterized (see, [2]). In the present paper, we characterize the classes $(bv(u, p): f_{\infty})$, (bv(u, p): f) and $(bv(u, p): f_0)$, where $u = (u_k)$ is a sequence such that $u_k \neq 0$ for all $k \in \mathbb{N}$.

The space bv(u, p) is defined (see, [2]) as $bv(u,p) = \{ x = (x_k) \in \omega : \sum_k |u_k \Delta x_k|^{p_k} < \infty \},\$ where, $\Delta x_k = x_k - \Delta x_{k-1}$.

2. MAIN RESULTS

Define the sequence $y = (y_k)$ which will be used as the A^u-transform of a sequence x = $(x_k), i.e.,$

$$y_k = u_k \Delta x_k \; ; \; k \in \mathbb{N}. \tag{2.1}$$

For brevity in notation, we write

where,

$$t_{mn}(x) = \frac{1}{m+1} \sum_{j=0}^{m} A_{n+j}(x) = \sum_{k} a(n, k, m) x_{k},$$

$$a(n, k, m) = \frac{1}{m+1} \sum_{j=0}^{m} a_{n+j,k} \quad ; (n, k, m \in \mathbb{N})$$
Also,

$$\overline{a}(n, k, m) = \left[\frac{a(n, k, m)}{m}\right] \quad ; (n, k, m \in \mathbb{N}).$$

A

Now, we give the following lemmas which will be needed in proving the main Theorems.

Lemma 2.1 [2] : Define the sets $D_1(p)$ and $D_2(p)$ as follows: $D_1(p) = \left\{ a = (a_k) \in \omega : \sup_n \sum_k \left| \sum_{j=k}^n \frac{a_j}{u_k} \right|^{p_k} < \infty \right\},\$ $D_{2}(p) = \bigcup_{B>1} \bigg\{ a = (a_{k}) \in \omega : \sup_{n} \sum_{k=0}^{n} \left| \sum_{j=k}^{n} \frac{a_{j}}{u_{k}} B^{-1} \right|^{p_{k}} < \infty \bigg\}.$ $[bv(u,p)]^{\beta} = D_1(p) \cap cs; (0 < p_k \le 1)$ Then, $[bv(u, p)]^{\beta} = D_2(p) \cap cs; (1 < p_k < \infty).$ and

Lemma 2.2 [6]: $f \subset f_{\infty}$.

We consider only the case $1 < p_k \le M < \infty$ and the case $0 < p_k \le 1$ may be proved in a similar fashion.

Theorem 2.3: (a) Let $1 < p_k \le M < \infty$ for every $k \in \mathbb{N}$. Then $A \in (bv(u, p): f_{\infty})$ if and only if

$$\sup_{\substack{n,m \\ \{a_{nk}\} \in D_2(p) \cap cs.}} \sum_{k} |\bar{a}(n,k,m)B^{-1}|^{p'_k} < \infty$$
(2.2)
(2.3)

and

(2.3)

(b) Let
$$0 < p_k \le 1$$
 for every $k \in \mathbb{N}$. Then $A \in (bv(u, p): f_{\infty})$ if and only if

$$\sup_{n,m} \sum_k |\bar{a}(n, k, m)|^{p_k} < \infty$$
(2.4)
and $\{a_{nk}\} \in D_1(p) \cap cs.$ (2.5)

Proof : Sufficiency: Suppose the conditions holds and $x \in bv(u, p)$. Using the inequality which holds for any C > 0 and any two complex numbers a, b

 $|ab| \le C\{|aC^{-1}|^q + b^p\},\$ where, p > 1 and $p^{-1} + q^{-1} = 1$ (see, [3]), we have

$$\begin{aligned} |t_{mn}(Ax)| &= |\sum_{k} a(n,k,m)x_{k}| = |\sum_{k} \bar{a}(n,k,m)y_{k}| \\ &\leq \sum_{k} B \left[|\bar{a}(n,k,m)B^{-1}|^{p'_{k}} + |y_{k}|^{p_{k}} \right] \end{aligned}$$

Now, taking *sup* over *m*, *n* on both sides to the above inequality, we get $Ax \in f_{\infty}$ for every $x \in bv(u, p)$, *i.e.*, $A \in (bv(u, p): f_{\infty})$.

Necessity: Suppose that $A \in (bv(u, p): f_{\infty})$. Then Ax exists for every $x \in bv(u, p)$, and this implies that $\{a_{n,k}\}_{k \in \mathbb{N}} \in [bv(u, p)]^{\beta}$ for every $n \in \mathbb{N}$, the necessity of (2.3) is immediate.

Now, $\sum_k a(n,k,m)x_k$ exists for each m, n and $x \in bv(u,p)$, the sequences $\{a(n,k,m)\}_{k\in\mathbb{N}}$ define the continuous linear functionals $\varphi_{mn}(x)$ on bv(u,p) by $\varphi_{mn}(x) = \sum_k a(n,k,m)x_k$; $n,k,m \in \mathbb{N}$. Since bv(u,p) is complete and $\sup_{m,n} |\sum_k \overline{a}(n,k,m)x_k| < \infty$, so by uniform bounded principle, there exists M > 0 such that

$$sup_{m,n}|\varphi_{mn}(x)| = sup_{m,n}|\sum_{k} a(n,k,m)x_{k}|$$

= $sup_{m,n}|\sum_{k} \overline{a}(n,k,m)x_{k}| \le M < \infty.$

This implies that $\sup_{m,n} \sum_{k} |\bar{a}(n,k,m)x_{k}|^{p'_{k}} < \infty$, which shows the necessity of the condition (2.2) and the proof of (i) is complete.

Theorem 2.4 : (a) Let $1 < p_k \le M < \infty$ for every $k \in \mathbb{N}$. Then $A \in (bv(u, p): f_{\infty})$ if and only if (i) the condition (2.2)-(2.5) of Theorem 2.3 holds

(ii) there is a sequence (β_k) of scalars such that $lim_m \bar{a}(n, k, m) = \beta_k$, uniformly in *n*. (2.6)

Proof: Sufficiency: Suppose that the conditions (2.2)-(2.6) hold and $x \in bv(u, p)$. Then Ax exists and we have by (2.6) that $|\bar{a}(n, k, m)B^{-1}|^{p'_k} \to |\beta_k B^{-1}|^{p'_k}$ as $m \to \infty$ uniformly in n for each $k \in \mathbb{N}$, which leads us with (2.2) that

$$\begin{split} \sum_{j=0}^{k} \left| \beta_{j} B^{-1} \right|^{p_{k}} &= \sum_{j=0}^{k} |\bar{a}(n,j,m) B^{-1}|^{p_{k}'} \\ &\leq sup_{m,n} \sum_{j} |\bar{a}(n,j,m) B^{-1}|^{p_{k}'} < \infty, \end{split}$$

holding for every $k \in \mathbb{N}$. Consequently reasoning as in the proof of the sufficiency of Theorem 2.3, the series $\sum_k a(n,k,m)x_k$ and $\sum_k \beta_k x_k$ converges for every n,m and for every $x \in bv(u,p)$. Now, for given $\varepsilon > 0$ and $x \in bv(u,p)$, choose a fixed $k_0 \in \mathbb{N}$ such that

 $\left[\sum_{k=k_0+1}^{\infty} |x_k|^{p_k}\right]^{\frac{1}{H}} < \varepsilon, \text{ where } H = \sup_k p_k. \text{ Then, there is some } m_0 \in \mathbb{N}, \text{ by condition (ii)}$ such that $\left|\sum_{k=1}^{k_0} [a(n,k,m) - \beta_k]\right| < \varepsilon, \text{ for every } m \ge m_0 \text{ and uniformly in } n.$

Now, since $\sum_k a(n,k,m)x_k$ and $\sum_k \beta_k x_k$ converges (absolutely) uniformly in n,m and for $x \in bv(u,p)$, we have that $\sum_{k_0+1}^{\infty} [a(n,k,m) - \beta_k] x_k < \frac{\varepsilon}{2}$, converges uniformly in n,m and $x \in bv(u,p)$. Hence by conditions (i) and (ii) we have $\sum_{k_0+1}^{\infty} [a(n,k,m) - \beta_k] < \frac{\varepsilon}{2}$ for all $(m \ge m_0)$, uniformly in n. Therefore, $\left|\sum_{k_0+1}^{\infty} [a(n,k,m) - \beta_k]\right| \to 0 \ (m \to \infty)$ uniformly in *i.e.*,

$$\lim_{m \to \infty} \sum_{k} a(n, k, m) x_{k} = \sum_{k} \beta_{k} x_{k} \text{ uniformly in } n.$$
(2.7)

Hence, $Ax \in f$, which proves sufficiency.

Necessity: Suppose that $A \in (bv(u, p): f)$. Then, since $f \subset f_{\infty}(by \text{ Lemma 2.1})$, the necessities of condition (i) is immediately obtained from Theorem 2.1. To prove the necessity of (ii) *i.e.*, (2.6), consider the sequence $e_k = (0,0, \dots, 1^{kth-place}, 0,0, \dots) \in bv(u, p)$, condition (ii) follows immediately by (2.7) and the proof is complete.

Collary 2.5: $A \in (bv(u, p): f_0)$ if and only if condition (i) and (ii) of above Theorem holds along with $\beta_k = 0$ for each $k \in \mathbb{N}$.

Proof: The proof follows from theorem 2.4 by taking $\beta_k = 0$ for each $k \in \mathbb{N}$.

REFERENCES

- [1] Banach, S, *Theòries des operations linéaries*, Warszawa, 1932.
- [2] Başar, F, Altay, B & Mursaleen, M , Some generalizations of the space bv_p of p-bounded variation sequences, *Nonlinear Anal.*, 68 (2)(2008), 273-287.
- [3] Lorentz, G G, A contribution to the theory of divergent series, Acta Math., (80) (1948), 167-190.
- [4] Mursaleen, M, Infinite matrices and almost convergent sequences, *Southeast Asian Bulletin of Math.*, 19(1) (1995), 45-48.
- [5] Mursaleen, M, Jarrah, A. M. & Mohiuddine, S. A., Almost convergence through the generalized de la Vallee-Pousin mean, *Iranian J. Sci. Tech. Trans. A*, 33(A2) (2009), 169-177.
- [6] Nanda, S, Matrix transformations and almost boundedness, *Glasnik Mat.*, 14(34) (1979), 99-107.
- [7] Yasida, K, Functional Analysis, Springer-Verlag, Berlin Heidelberg, New York, 1966.