Bacterial Pathogen Responsible For Urinary Tract Infection.

Raina Chaudhary1, Chet Raj Ojha1, Khagendra Sijapati1, Sunil Kumar Singh1.
1Microbiologist, Department of Pathology, Shree Birendra Hospital.

ABSTRACT

Introduction: Urinary Tract Infection (UTI) is one of the common medical conditions which seek the help of clinician and prompt intervention with suitable antibiotics to prevent morbid conditions. Therefore, identification of causative agent with their antibiotic sensitivity pattern is always mandatory for successful treatment of the cases.

The main objective of the study was to identify the common bacterial pathogen responsible for causing Urinary Tract Infection with determination of sensitivity pattern of commonly used antibiotics.

Methods: A total of 8270 urine samples were collected from the patient attending Outpatient Department and admitted as Inpatient in ward during the period of January 2011 to December 2011 in Shree Birendra Hospital. The samples were subjected to culture for identification of pathogen with their antibiotic sensitivity pattern following standard methodology.

Results: Out of total, only1654 (20%) showed growth of pathogenic organisms. Among them positivity was highest in patient attending Outpatient Department. Eight different species of bacteria was isolated as causative agent. Among them Escherichia coli (67%) was predominantly higher in number followed by Proteus spp (22.24%), Klebsiellaspp (4.07%), Pseudomonas aeruginosa (2.7%) and Citriobacterfreundii (2.3%). Among these organisms sensitivity was highest towards Amikacin (86%) & Gentamycin (69%) followed by Nitrofurantion (60.5%).

Conclusions: Causative agent of Urinary Tract Infection may vary in different situation. Definite identification of pathogen with their antibiotic sensitivity pattern is always key point for success of treatment.

Keywords: antibiotic sensitivity, E. coli, UTI

INTRODUCTION

Urinary tract infections (UTI) could be defined as the persistent presence of actively multiplying microorganisms within the urinary tract. UTI implies both microbial colonization of the urine and invasion of the lower or upper urinary tract by microorganisms1. According to Kass2 presence of 100 000 or more colony forming units (CFU) of bacteria per ml of urine implies UTI. But this criteria has been questioned and bacterial counts of 10^2 or more organism per ml particularly when accompanied by pyuria (>10 wbc/mm^3) provide impressive evidence of urinary tract infection in symptomatic young women3. Therefore, the Infectious Disease Society of America (IDSA) gave a slightly more relaxed consensus definition requiring 10^3 organisms per ml to diagnose cystitis and 10^4 per ml for pyelonephritis4.

It is among the most common bacterial infections encountered by clinicians in developing countries with an estimated annual global incidence of at least 250 million. It has been estimated that symptomatic UTIs result in

Correspondence:
Maj. Dr. Raina Chaudhary
Microbiologist, Department of Pathology, Shree Birendra Hospital.
Kathmandu, Nepal
Email: raina_chaudhary@yahoo.co.in
Phone: +977-9841334004
as many as 7 million visits to outpatient’s clinics and 1 million visits to emergency department and 100,000 hospitalizations annually. UTIs have become the most common hospital-acquired infection, accounting for as many as 35% of nosocomial infections and they are the second most common cause of bacteremia in hospitalized patients. But fortunately it is rapidly responsive to modern antibiotic therapy. Therefore, study of the causative agent with their antibiotic sensitivity pattern is necessary tools for treatment and it also gives guideline for empirical therapy where there is laboratory facilities lacking. With all these views the present study was carried out to know the common bacterial isolates involve in Urinary Tract Infection among the patients attending Shree Birendra Hospital, Chauni with their sensitivity pattern.

METHODS

This study was conducted retrospectively from January 2011 to December 2011. Clinically suspected cases of Urinary Tract Infection were included in this study. Of total 8270 urine samples were collected during the period. All the samples were processed according to standard methodology guided by CLSI (Clinical Laboratory Standard Institute) and antibiotic sensitivity pattern were determined by Modified Kirby’s Bauer method.

RESULTS

Among 8270 urine sample processed, only 1654 showed significant growth. It constitutes 20% of positivity as shown in the figure 1.

Table 1. Pattern of Bacterial Isolates (n=1654)

<table>
<thead>
<tr>
<th>Organisms</th>
<th>Total Numbers</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>1111</td>
<td>67.2</td>
</tr>
<tr>
<td>Proteus spp</td>
<td>366</td>
<td>22.12</td>
</tr>
<tr>
<td>Klebsiellaspp</td>
<td>67</td>
<td>4.05</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>46</td>
<td>2.78</td>
</tr>
<tr>
<td>Citrobacterfreundii</td>
<td>38</td>
<td>2.29</td>
</tr>
<tr>
<td>Morganellamorganii</td>
<td>18</td>
<td>1.08</td>
</tr>
<tr>
<td>Providenciaspp</td>
<td>6</td>
<td>0.36</td>
</tr>
<tr>
<td>Acinetobacterspp</td>
<td>2</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Figure 1. Pattern of Growth positivity (n=8270)

Table 2. Sensitivity Pattern for different Antibiotic.

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>E.coli n=1111</th>
<th>Proteus spp n=366</th>
<th>Klebsiellaspp n=67</th>
<th>Paeruginosa n=46</th>
<th>C.freundii n=38</th>
<th>M.morganii n=18</th>
<th>Providenciaspp n=6</th>
<th>Acinetobacterspp n=2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxicillin</td>
<td>118</td>
<td>73</td>
<td>ND</td>
<td>ND</td>
<td>14</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Amikacin</td>
<td>920</td>
<td>343</td>
<td>65</td>
<td>42</td>
<td>32</td>
<td>15</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Cephalexin</td>
<td>119</td>
<td>125</td>
<td>ND</td>
<td>ND</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>37</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>1</td>
</tr>
<tr>
<td>Co-trimoxazole</td>
<td>355</td>
<td>112</td>
<td>20</td>
<td>ND</td>
<td>13</td>
<td>12</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>187</td>
<td>250</td>
<td>7</td>
<td>ND</td>
<td>30</td>
<td>12</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>816</td>
<td>250</td>
<td>43</td>
<td>ND</td>
<td>24</td>
<td>16</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>344</td>
<td>141</td>
<td>29</td>
<td>22</td>
<td>19</td>
<td>8</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>716</td>
<td>184</td>
<td>18</td>
<td>41</td>
<td>20</td>
<td>17</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>409</td>
<td>193</td>
<td>34</td>
<td>30</td>
<td>18</td>
<td>16</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Piperacillin</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>35</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND-Not Done
DISCUSSION

Bacterial infection of the urinary tract is one of the common causes for seeking medical attention in the community. Effective management of patients suffering from bacterial UTIs commonly relays on the identification of causative organism and the selection of proper antibiotic.

Escherichia coli is the most frequently isolated bacteria in both community acquired as well as hospitalized patients. Therefore, this study is also no more exception and isolated E.coli (67.2%) as predominant organism. This was followed by Proteus spp (22.12%) and Klebsiella spp (4.05%). Various studies showed Enterococcus fecalis, Klebsiella pneumoniae, Staphylococcus aureus, as second commonest organisms. But this study was contrary to other studies. Most interestingly among this study Proteus spp was found to be the second commonest organism.

The reasons behind this may be the isolates were from the patients admitted in the hospital.

However, the study was unable to focus on other bacterial causes like Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium.

According to this study E.coli showed effective sensitivity towards Amikacin (82.8%), Gentamycin (73.44%) and Nitrofurantoin (64.4%). This result was similar to the study done by H.P. Kattel Amikacin (81.5%), Gentamycin (65%) and Nitrofurantoin (79.2%), A Acharya18; Amikacin (77.92%), Gentamycin (73.1%) and Nitrofurantoin (71.2%) from Nepal. But the study showed commonly used antibiotic like Amoxicillin (89.4%) as highest resistance, the result was similar with the study result by A. Acharya18; Amikacin (91%), Nitrofurantoin (89.1%) and Ceftazidime (80.43%). The sensitivity pattern of Amikacin and Nitrofurantoin is similar with study done by A Behrooozi20 et.al: Amikacin (87%) and Nitrofurantoin (74%).

The study showed that treatment option is being narrowed down due to emergence of multi drug resistance organisms. Therefore, the mechanism of resistance pattern has to be studied in detail in near future with best alternative choice of drug.

CONCLUSIONS

Constant survey of antimicrobial sensitivity pattern plays a very important role in empirical treatment of UTIs. In health care setting, a very little extra venture on antimicrobial sensitivity pattern survey can facilitate to accrue extremely practical information of resistance pattern as well as successful treatment.

ACKNOWLEDGEMENT

Author is grateful to all the laboratory staffs members of Microbiology Unit, Department of Pathology, Shree Birendra Hospital for their generous support for conducting this study.

REFERENCES


