Prevalence of Metabolic Syndrome in Local Population of Patan.

Babu Raja Maharjan1, Shital Bhandary2, Ira Shrestha3, Laxmi Sunuwar3, Sanjit Shrestha4.
1Department of Biochemistry, 2Department of Community Health Sciences, 3Department of Physiology, Patan Academy of Health Sciences, Department of Pathology, Kathmandu Model Hospital.

ABSTRACT

Introduction: The metabolic syndrome (MS) is a cluster of complex interrelated risk factors for diabetes and cardiovascular disease which includes central obesity, glucose intolerance, hypertension, high triglyceride and low HDL-C. The prevalence of MS in Asian Indian is 49.2%. There is evidence of increasing prevalence of MS in the world. Therefore, we intended to find the prevalence of the metabolic syndrome in the local population of Patan, a major urban center in Nepal.

Methods: It was a cross-sectional study which was carried out in one of the urban clusters (or wards) of the Lalitpur Sub-Metropolitan (or Patan) City. Measurements of waist circumference, height, weight; blood parameters like lipid profile, fasting blood sugar (FBS) were done. Measurement of blood pressure was done. The prevalence of MS was obtained by using three different criteria Joint Interim Statement 2009 criteria, International diabetes federation (IDF) 2005 criteria and National cholesterol education program adult treatment Panel (NCEP ATP) III 2001 criteria.

Results: There were 205 participants among which 34.6% were male and 65.4% were female. The prevalence of MS as per the Joint Interim Statement 2009, IDF 2005 and NCEP ATP III 2001 criteria was 61.7%, 52.7% and 43.4% respectively. There was significantly high total cholesterol (TC), triglyceride (TAG), FBS, systolic blood pressure (SBP) and diastolic blood pressure (DBP) and significantly low HDL-C in the individuals with MS compared to the normal individuals. The logistic regression revealed the increasing prevalence of MS with increasing age, BMI and positive family history of diabetes.

Conclusions: There is high prevalence of MS in the study population. Age, BMI and family history of diabetes are found to be the main predictors for metabolic syndrome.

Keywords: lipid profile, metabolic syndrome, prevalence, screening.

INTRODUCTION

The metabolic syndrome (MS) is a cluster of complex interrelated risk factors for diabetes and cardiovascular disease which includes central obesity, glucose intolerance, hypertension, high triglyceride and low high density lipoprotein. People with MS are twice as likely to die from, and three times as likely to have a heart attack or stroke compared with people without the MS. People with MS have a five-fold greater risk of developing type 2 diabetes. In addition MS is associated with all cause of mortality. Unfortunately, the quarter of world’s population have metabolic syndrome. Evidences suggest that it is growing which has made MS as the major public health issues.

Correspondence:
Babu Raja Maharjan
Department of Biochemistry, Patan Academy of Health Sciences.
Kathmandu, Nepal
Email: baburajamaharjan@pahs.edu.np
Phone: +977-9841255663
The prevalence of MS in Asian Indian is 49.2% and it is also increasing in developing countries22,70. Rapid nutritional and lifestyle transition in urbanized areas in various countries in South Asia are identified as a prime reason for increasing prevalence of the metabolic syndrome5,8. This in turn has been associated with a growing burden of type 2 diabetes and cardiovascular disease in this region10-11. Lifestyle modification and exercise have been proven effective for the prevention of these non communicable diseases. We, therefore, have intended to find the prevalence of the metabolic syndrome in the local population of Patan, a major urban center in Nepal so that preventive measures can be taken.

METHODS

It was a cross-sectional study carried out in one of the urban clusters (or wards) of the Lalitpur Sub-Metropolitan (or Patan) City. The study population was obtained from a three day screening camp organized in the month of November 2009.

A pre-tested semi-structured questionnaire was administered. Palpatatory method of blood pressure measurement was used first which was followed by auscultatory method with a properly calibrated and validated instrument. Individuals were allowed to sit quietly for at least 5 minutes in a chair. Systolic Blood Pressure (SBP) was recorded at the point at which the first of 2 or more sounds is heard and Diastolic Blood Pressure (DBP) at the point before the disappearance of sounds12.

Height was measured in centimeter and weight in kilogram and body mass index (BMI) was calculated. Waist circumference (WC) was measured using soft tape in centimeter on the standing subject between the lower rib and iliac crest. Hip circumference was measured over the widest part of the gluteal region with two legs joined.

Fasting blood was collected after an overnight fast for biochemical analysis of blood sugar, total cholesterol (TC), triglycerides (TAG), HDL-C, LDL-C and VLDL-C. Fasting blood sugar (FBS) was estimated by glucose oxidase peroxidase method13, total cholesterol was measured by cholesterol oxidase-peroxidase method14 and triglyceride were measured by glycerol phosphate oxidase method15 and HDL-C was measured by the direct immunoseparation method16. The reagents were from Human, Germany. LDL-C was calculated by Friedwald Formula17. Fully auto analyzer Humstar 600 (Germany) was used for the biochemical analysis of the sample.

The prevalence of MS was obtained by using three different criteria as follows:

Joint Interim Statement 2009 criteria18.

If any three of the following five factors were positive: WC≥90cm (male) and ≥80cm (female), FBS≥100 mg/dl or on medication for diabetes, TAG≥150 mg/dl, HDL<40mg/dl(male) and <50mg/dl(female), SBP≥130 mm of Hg and/or DBP≥85 mm of Hg.

IDF 2005 criteria19.

If WC≥90cm (male) and ≥80cm (female) and any two of the following four factors were positive: FBS≥100 mg/dl or preexisting diabetes, TAG≥150 mg/dl, HDL<40mg/dl(male) and <50mg/dl(female), SBP≥130 mm of Hg and/or DBP≥85 mm of Hg.

NCEP ATP III 2001 criteria20.

If any three of the following five factors were positive: waist circumference ≥102cm (male) and ≥88cm (female), FBS≥110 mg/dl or on medication for diabetes, TAG≥150 mg/dl, HDL<40mg/dl(male) and <50mg/dl(female), SBP≥130 mm of Hg and/or DBP≥85 mm of Hg.

Data was entered, cleaned and analyzed using SPSS software version 16.0 for Windows. Different levels of significance were considered while comparing different parameters between individuals with and without MS. Since MS is a composite index created using five indicators like FBS, TAG, HDL-C, WC and blood pressure, these variables were not considered as independent variables in the logistic regression model.

RESULTS

There were 205 participants with mean age 48.40±12.96 years in metabolic screening program. Among them 34.6% were male and 65.4% were female. The prevalence of MS as per the Joint Interim Statement 2009, IDF 2005 and NCEP ATP III 2001 criteria was 61.7%, 52.7% and 43.4% respectively (Figure 1).

There was significantly high TC, TAG, FBS, SBP and DBP and significantly low HDL in the individuals with MS compared to the normal individuals. The individuals with MS have significantly higher age and there was no significant difference in prevalence of MS between male and female (Table 1).

The chi-square test based on likelihood ratio is found to be 213.83 with a change (decrease) of 59.49 from the constant only model and is significant. This indicates that logistic regression model is fit statistically. Further, it revealed that included independent variables explained 34.2% of the variation in the dependent variable. The model suggests that age, BMI and family history of
diabetes are the main predictors for being metabolic syndrome in our study population. The logistic regression revealed that one unit (year) increase in age will increase the chance of MS by 4.1% whereas one unit increase in BMI increases the risk by 27.6%. Most importantly, the risk of MS for subject with family history of diabetes was 2.6 times higher than without the history (Table 2).

Figure 1. Prevalence of MS by using three different criteria

Table 1. Comparison of different parameters between individual with or without MS

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Metabolic Syndrome</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender % (M/F)</td>
<td>Yes 68/58</td>
<td>No 32/42<sup>NS</sup></td>
<td></td>
</tr>
<tr>
<td>Parametric: Independent Sample T Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characteristics</td>
<td>Number</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Age of Patient</td>
<td>126</td>
<td>51</td>
<td>12</td>
</tr>
<tr>
<td>Systolic Blood Pressure</td>
<td>126</td>
<td>139</td>
<td>19</td>
</tr>
<tr>
<td>Diastolic Blood Pressure</td>
<td>126</td>
<td>92</td>
<td>10</td>
</tr>
<tr>
<td>FBS</td>
<td>126</td>
<td>127</td>
<td>51</td>
</tr>
<tr>
<td>TC</td>
<td>126</td>
<td>187</td>
<td>38</td>
</tr>
<tr>
<td>TAG</td>
<td>126</td>
<td>172</td>
<td>123</td>
</tr>
<tr>
<td>LDL</td>
<td>120</td>
<td>115</td>
<td>31</td>
</tr>
<tr>
<td>HDL</td>
<td>126</td>
<td>39</td>
<td>8</td>
</tr>
<tr>
<td>Non-Parametric: Mann-Whitney Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characteristics</td>
<td>Number</td>
<td>Median</td>
<td>IQR</td>
</tr>
<tr>
<td>BMI</td>
<td>120</td>
<td>26.1</td>
<td>4.5</td>
</tr>
<tr>
<td>WC</td>
<td>120</td>
<td>89</td>
<td>11</td>
</tr>
</tbody>
</table>

NS = not Significant^a=p-value<0.001, ^b= p-value<0.01, ^c=p-value<0.05

Table 2. Logistic Regression for the factors associated with metabolic syndrome

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>Df</th>
<th>Sig.</th>
<th>Exp(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.04</td>
<td>0.014</td>
<td>7.992</td>
<td>1</td>
<td>0.005</td>
<td>1.041</td>
</tr>
<tr>
<td>Gender</td>
<td>0.222</td>
<td>0.426</td>
<td>0.271</td>
<td>1</td>
<td>0.603</td>
<td>1.248</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>0.004</td>
<td>0.004</td>
<td>0.732</td>
<td>1</td>
<td>0.392</td>
<td>1.004</td>
</tr>
<tr>
<td>BMI</td>
<td>0.243</td>
<td>0.051</td>
<td>22.763</td>
<td>1</td>
<td>0.000</td>
<td>1.276</td>
</tr>
<tr>
<td>Alcohol</td>
<td>-0.278</td>
<td>0.386</td>
<td>0.517</td>
<td>1</td>
<td>0.472</td>
<td>0.757</td>
</tr>
<tr>
<td>Family history of diabetes</td>
<td>0.955</td>
<td>0.418</td>
<td>5.221</td>
<td>1</td>
<td>0.022</td>
<td>2.600</td>
</tr>
<tr>
<td>Family history of hypertension</td>
<td>0.617</td>
<td>0.391</td>
<td>2.496</td>
<td>1</td>
<td>0.114</td>
<td>0.539</td>
</tr>
<tr>
<td>Smoking</td>
<td>0.713</td>
<td>0.595</td>
<td>1.434</td>
<td>1</td>
<td>0.231</td>
<td>2.040</td>
</tr>
<tr>
<td>Constant</td>
<td>-8.232</td>
<td>1.64</td>
<td>25.21</td>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

DISCUSSION

In our study, we found a higher prevalence of MS according to IDF criteria compared to NCEP ATP III criteria which was similar to the results shown by the study done in Eastern Nepal⁶, South India²¹, South Australia²² and United States²³. There is significant difference in the prevalence of MS in different criteria for defining MS. Joint Interim Statement 2009 criteria shows higher prevalence of MS compared to IDF and NCEP ATP III criteria in the study population. The higher prevalence also indicates the higher sensitivity of Joint Interim Statement 2009 criteria in identifying MS in the individual. This in turn will be an indication of taking necessary preventive measures so that the risk of developing diabetes and cardiovascular disease can be lowered.

The prevalence of MS in this study population (52.7%) is very high compared to the Eastern Nepal (22.5%)⁶, South India (25.8%)¹⁰, South Australia (22.8%)²² and United States (39%)²³ according to IDF criteria. This higher prevalence, in this study, could be because of behavioral tendency of the study population to participate in the screening program when they have some problem. Therefore, it may not represent true prevalence of the population, however, this high prevalence does indicate MS is a public health problem in this population.

The logistic regression model used for the risk factor analysis showed independent significant association of age, BMI and family history of diabetes with MS which is similar to the study done by Chan et al in
Chinese population.24 Ramachandran et al have shown the association of age, BMI and prior family history of diabetes with impaired glucose tolerance.25 Therefore it is highly probable that increasing age, BMI and positive family history of diabetes in this study population predicts for impaired glucose tolerance which is a component of metabolic syndrome and hence leading to the risk of developing diabetes.

There is high prevalence of MS in the study population and therefore increasing the risk of developing diabetes and cardiovascular disease. Prevalence of MS could be similar in other urban areas of Nepal. Therefore, it is required to devise and implement the appropriate behavioral change and promotion program for lifestyle modification along with the necessary medical intervention to prevent the progression of disease in the urban areas of the country.

CONCLUSIONS

There is high prevalence of MS in the study population. Age, BMI and family history of diabetes are found to be the main predictors for metabolic syndrome in our study population.

REFERENCES

16. Matthias Nauck, Winfried Ma¨ rz and Heinrich Wieland. New immunoseparation-based homogeneous assay for HDL-cholesterol compared

