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Abstract: 

In this paper, the Markov chain Monte Carlo (MCMC) method is used 
to estimate the parameters of CEP distribution based on a complete 
sample. A procedure is developed to obtain Bayes estimates of the 
parameters of the CEP distribution using Markov Chain Monte Carlo 
(MCMC) simulation method in OpenBUGS, established software for 
Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods. 
The MCMC methods have been shown to be easier to implement 
computationally, the estimates always exist and are statistically 
consistent, and their probability intervals are convenient to construct. 
The R functions are developed to study the statistical properties, model 
validation and comparison tools of the distribution and the output 
analysis of MCMC samples generated from OpenBUGS. A real data set 
is considered for illustration under uniform and gamma sets of priors.
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Introduction
The exponential power (EP) distribution was firstly introduced as a lifetime 

model by [Smith and Bain (1975)]. This distribution has been discussed by many 
authors [Leemis (1986)], [Rajarshi and Rajarshi(1988)] and [Chen (1999)].

In recent years, new classes of models have been proposed based on modifications 
of the EP model. [Chen (2000)] proposed a new model with two shape parameters. 
His model is appealing since though having only two parameters it can accommodate 
increasing and bathtub shaped hazard functions. Also, it holds some nice properties on 
the classical inferential front. The confidence intervals for the shape parameters and 
their joint confidence regions have closed form. However, it lacks a scale parameter 
that makes it less flexible for analyzing a variety of datasets. To overcome such a 
limitation, [Xie et al.(2002)] proposed a model, known as the Weibull extension model, 
which can be considered as an extension of Chen’s model, with an additional scale 
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parameter. As a result, the model becomes more flexible and persuasive from the point 
of view of practitioners. The Xie model version however accommodates only increasing 
and bathtub shaped hazard functions as its antecessors.

Although the EP distribution and its modifications are commonly used for 
analyzing lifetime data, they do not provide a reasonable parametric fit for some 
practical applications where the underlying hazard functions may be decreasing or 
unimodal shaped.

Recently, [Barriga et al. (2011)] introduced the Complementary Exponential 
Power(CEP) distribution, which is mainly related to the distribution proposed by 
[Smith and Bain (1975)] with an additional shape parameter.

In the survival literature there are several flexible distributions which can 
accommodate increasing, decreasing, unimodal and bathtub shaped hazard functions 
[Mudholkar and Srivastava(1993)], [Mudholkar et al.,(1996)],  [Pham and Lai (2007)] 
and  [Carrasco et al.(2008)]. Some of them are four-parameter distributions, while the 
CEP is a three-parameter one. This is an advantage from a practical point of view, since 
it is important to consider parsimonious models with as few parameters as possible. 
Particularly, with small and moderate sized samples, a usual situation in survival 
analysis, where the parameters may not be accurately estimated [Xie et al. (2002)].

As described by [Marshall and Olkin (2007)], an exponentiated distribution 
can be easily constructed. It is based on the observation that by raising any baseline 
cumulative distribution function (cdf) baselineF (x)  to an arbitrary power 0θ > , a new cdf 

( )baselineF(x)= F (x) θ ; 0θ >  is obtained, but now with the additional parameter θ , which 
can be referred as a resilience parameter and F(x)  is a resilience parameter family. 
Although it is not our case, the term resilience easily emerges if we let θ be an integer. 
In this case F(x)  can be seem as the cdf of a parallel system with θ  independent 
components, which is less likely to fail as the number of components increases, leading 
to a resilient structure. Following this idea, several authors have considered extensions 
from usual survival distributions. For instance, [Mudholkar et al. (1995)] considered 
the exponentiated Weibull distribution as a generalization of the Weibull distribution, 
[Gupta and Kundu (1999)] introduced the exponentiated exponential distribution as a 
generalization of the usual exponential distribution and [Nadarajah and Kotz (2006)] 
proposed exponentiated type distributions extending the Frchet, gamma, Gumbel and 
Weibull distributions.

The cdf of the exponential power (EP) distribution proposed by [Smith and Bain 
(1975)] is given by 

( ){ }( ; , ) 1 exp 1 exp ; , 0 ; 0EPF x x xαα λ λ α λ= − − > >

The cdf of the CEP distribution is defined by raising EPF (x)  to the power of 
θ  namely ( )EPF(x) F (x) θ= . The distribution function of Complementary Exponential 
Power(CEP) distribution with three parameters is given by, [Barriga et al. (2011)]

( ){ }( ; , , ) 1 exp 1 exp ; , , 0 ; 0F x x x
θαα λ θ λ α λ θ = − − > ≥                                                                                    (1.1)

where 0α >  and 0θ >  are shape parameters and 0λ >  is a scale parameter. 
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When 1θ =  the model (1.1) reduces to the EP distribution. The CEP distribution will 
be denoted by ( , , )CEP α λ θ . If 1λ = , we have two-parameter CEP distribution and we 
shall denote it as 2( , )CEP α θ

The rest of the article is organized as follows. The model and its features 
are introduced in Section 2. In Section 3, we have discussed the Bayesian model 
formulation including the priors, posterior, Gibbs sampler and its implementation in 
OpenBUGS. The real data set and its exploratory data analysis, maximum likelihood 
estimation(MLE)  and model validation are described in Section 4. The full Bayesian 
analysis under independent gamma of priors for the data set using Markov chain 
Monte Carlo (MCMC) simulation method in OpenBUGS, an established software, is 
presented in Section 5. The Bayes estimates of the parameters and their probability 
intervals based on posterior samples are presented. The posterior analysis is performed 
and we have also estimated the reliability function.  Conclusions are given in Section 6.

2. Complementary Two Parameter Exponential Power (CEP) dis-
tribution

2.1 Model Analysis
The cumulative distribution function of complementary exponential power(CEP) 

distribution with two parameters is given by

 
{ }( ; , ) 1 exp 1 exp( ) ; , 0F x x

θαα θ α θ = − − >                 (1)
where 0α >  and 0θ >  are the shape parameters. The corresponding probability 

density function is given by

( )
( )

1

1

( ; , ) exp( )exp 1 exp( )

1 exp 1 exp( )

f x x x x

x

α α α

θα

α θ αθ −

−

= −

 − −   .             (2)

Figure 1  The probability density function (left); The hazard function (right) of 2( , )CEP α θ  
distribution for 1θ =  and different values of α .
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The reliability/survival function is

  
{ }( ; , ) 1 1 exp 1 exp( ) ; , 0R x x

θαα θ α θ = − − − >            (3)

The hazard rate function is

  

{ }
{ }

11 exp( )exp 1 exp( ) . 1 exp 1 exp( )
( ; , )

1 1 exp 1 exp( )

x x x x
h x

x

θα α α α

θα

αθ
α θ

−−   − − −    =
 − − −    (4)                                                                                                                

The quantile function is given by

( ){ } 1/
1/ln 1 ln 1 ; 0 1px p p

α
θ = − − < <   .       (5)

The random deviate can be generated from

( , )CEP α θ  by  ( ){ } 1/
1/ln 1 ln 1x u

α
θ = − −  

                              (6)

where u has the ( )0 1U , distribution        
Some of the typical 2( , )CEP α θ  density functions for different values of α  and 

for 1θ =  are depicted in Figure 1 (top). It is evident from the Figure 1 that the density 
function of the CEP distribution can take different shapes. Figure 1(bottom) exhibits 
the different hazard rate functions of 2( , )CEP α θ  distribution.

The CEP distribution accommodates unimodal, bathtub and a broad variety of 
monotone hazard functions depending on the parameter values over the regions of the 
space of the shape parameters 0α >  and 0θ > , separated by the boundary 1, 1θ α= =  
and the curve 1αθ = . Continue to enumerate some properties of the hazard function.

i.  h(0) 0= , if 1α > , and h(0) 1= , if 1α =  and 1θ = ,
ii. If 1α >  and 1θ ≤ , we have h(x)  is increasing,
iii. If 1θ >  and 1αθ ≤ , we have h(x)  is decreasing,
iv. If 1α <  and 1αθ > , we have h(x)  is upside-down bathtub (unimodal),
v. If 1α <  and 1θ ≤  (or 1α >  and 1αθ < ), we have h(x)  is bathtub.
Since the failure rate function in (4) is very complex, some of the properties 

II–V were obtained numerically. The distinct types of hazard shapes are illustrated in 
Figure 1. for some different parameter combinations of the CEP distribution. 

3. Bayesian model formulation 
In this section, we provide the Bayes estimates of the shape parameters assuming 

independent gamma priors for both the parameters α  and θ. For the 2( , )CEP α θ , the 
Bayesian model is constructed by specifying a prior distribution for α  and , and then 
multiplying with the likelihood function to obtain the posterior distribution function. 
Given a set of data 1 ( , , )nx x x=  , the likelihood function is 
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{ }

1
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( , | ) exp (1 exp( )
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  − −∏     .                                                                         (8)

Prior distributions
Denote the prior distribution of α  and θ  as ( , )p α θ . The joint posterior is

 ( , | ) ( , | ) ( , )p x L x pα θ α θ α θ∝  .
We assume the independent gamma priors for ( )~ ,  G a bα  and ( )~ ,  G c dθ  as

1( ) e ; 0, ( , ) 0
( )

a
a bbp a b

a
− − αα = α α > >

Γ

and

1( ) e ; 0, ( , ) 0.
( )

c
c ddp c d

c
− − θθ = θ θ > >

Γ

Posterior distribution
Combining the likelihood function with the prior via Bayes’ theorem yields the 

posterior up to proportionality as

( )
n n

i i
i 1 i 1

nn a 1 n c 1 1
i 1

i 1

p , | x exp b d x (1 exp(x )

x T

α α

= =

+ − + − α−

=

 
α θ ∝ − α − θ+ + −∑ ∑ 

 
 

α θ ∏ 
 

where { } 1
1

1
1 exp 1 exp(

θα −

=

 = − −∏   
n

i
i

T x .

The posterior is obviously complicated and no close form inferences appear 
possible. We, therefore, propose to consider MCMC methods to simulate samples from 
the posterior so that sample-based inferences can be easily drawn. 

The Gibbs sampler is as an important Markov Chain Monte Carlo technique, 
which provides a way for extracting samples from the posteriors.. This sampling scheme 
was first introduced by Geman and Geman(1984), but the applicability to statistical 
modelling for Bayesian computation was demonstrated by Gelfand and Smith (1990).

It generates a sample from an arbitrarily complex multidimensional distribution 
by sampling from each of the univariate full conditional distributions in turn. That is, 
every time a variate value is generated from a full conditional, it is influenced by the 
most recent values of all other conditioning variables and, after each cycle of iteration, 
it is updated by sampling a new value from its full conditional. The entire generating 
scheme is repeated unless the generating chain achieves a systematic pattern of 
convergence. It can be shown that after a large number of iterations the generated 
variates can be regarded as the random samples from the corresponding posteriors. 
Gelman et al. (2004), Albert (2009), Hamada et al.(2008), Ntzoufras (2009) and Hoff 
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(2009) provide the details of the procedure and the related convergence diagnostic 
issues. 

Therefore to obtain the full conditional distribution of α  (or θ ), we need only 
choose the terms in the posterior, which involve parameter α  (or θ ). The full posterior 
conditional distributions for  and θ  are

   

( ) 1 12
1

1 1
1 1

| ,

exp (1 exp( )

nn a
i

i
n n

i i
i i

p x x

b x x T

α

α α

α θ α

α

+ − −

=

= =

 
∝ ∏ 

 
 
− + + −∑ ∑ 
   

and

       ( )12 2 1( | , ) expn ap x b Tθ α θ θ+ −∝ − .
As the complementary exponential power(CEP) distribution is not available in 

OpenBUGS., it requires incorporation of a module in ReliaBUGS, Kumar et al.(2010) 
and Lunn(2010),  subsystem of OpenBUGS for CEP.

A module dcom.expo_T(alpha, theta) is written in Component Pascal for CEP,  
the corresponding computer program can be obtained from authors, to perform full 
Bayesian analysis in OpenBUGS using the method described in Thomas et al(2006), 
Thomas(2010), Kumar et al.(2010) and Lunn et al. (2013). It is important to note that 
this module can be used for any set of suitable priors of the model parameters. Almost 
all aspects of the model in Bayesian framework can be studied using the developed 
module dcom.expo_T(alpha, theta), Kumar(2010).

Gibbs Sampler : Implementation
1. Select an initial value ( )(0) (0) (0) ,δ α θ=  to start the chain.
2. Suppose at the ith-step, ( ) ,δ α θ=  takes the value ( )( ) ( ) ( ) ,i i iδ α θ=  then 

from full conditionals, we generate

 ( 1)iα +  from ( )( )| ,ip xα θ  and

 ( 1)iθ +  from ( )( 1)| ,ip xθ α +
 .  

3. This completes a transition from ( )iδ  to ( 1)iδ + .
4. Repeat Step 2, N times.

MCMC output : Posterior sample 
Monitor the convergence using convergence diagnostics(trace and ergodic mean 

plots). Suppose that convergence have been reached after ‘B’ iterations (the burn-in 
period). Discard the observations ( )(1) (2) ( ), , , Bδ δ δ  and retain the observations

( )( ) ( )( )1 1 1 1 1 2 1B j L ;  B M L  N;  j  , , ,M ;  L  δ + + − + + − ≤ = ≥
 

which are viewed as 
being an independent sample from the stationary distribution of the Markov chain 
that is typically the posterior distribution, where ‘L’ is the lag (or thin interval).

Consider ( )(1) ( ) ( ), , , ,j Mδ δ δ   as the MCMC output (posterior sample) for the 
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posterior analysis

( )( ) ( ) ( ) , ; 1, 2, ,j j j j Mδ α θ= = 
.

Thus MCMC output is referred as the sample after removing the initial iterations 
(produced during the burn-in period) and considering the appropriate lag.

The Bayes estimates of  ( ) ,δ α θ=  using the ergodic theorem are given by
( )

1

1ˆ
M

j

jM
α α

=
= ∑  and ( )

1

1ˆ
M

j

jM
θ θ

=
= ∑ .

An important advantage of sample-based approaches includes the routine 
developments for any linear and/or non-linear functions of the original parameters. 
It is to be noted that once the samples from the posterior is obtained, samples from 
the posterior of any linear and/or non-linear functions can be easily created merely by 
substitution. Some of such functions where reliability practitioners are often interested 
include reliability, hazard rate, mean time to failure, percentiles, etc.

4. Data, Maximum Likelihood Estimation and Model validation
The following real data set is considered for illustration of the proposed 

methodology. The data set is originally considered by Badar and Priest. The data given 
represent the strength measured in GPA for single carbon fibers of 10mmin gauge 
lengths with sample size 63 and they are as follows:

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 
2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 
2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 
3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435,
3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 
4.225, 4.395, 5.020

4.1. Exploratory data analysis (EDA)
EDA is an approach to statistical analysis, heavily graphical in nature that 

attempts to maximize insight into data, Tukey(1977). It allows data to speak for 
themselves, without making assumptions and conducting formal analyses. The 
descriptive statistical methods quantitatively describe the main features of data. 

The main data features are (i) measures of central tendency(e.g. mean and 
median); (ii) measures of variability (e.g., standard deviation) and (iii) measures of 
relative standing (e.g., quantiles). The descriptive statistics for the above data set are 
presented in Table 1. We have plotted the boxplot in Figure 2, which shows that data 
set contains one “outlier”. We have also plotted the histogram of real data set which 
shows positive skewed.
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Figure 2. Histogram (left) and boxplot (right)

Table -1: Summary statistics

Minimum 0.200
First Quartile (Q1) 0.800
Median 1.750
Mean 3.607
Third Quartile (Q3) 4.375
Maximum 24.500
Kurtosis 8.295
Skewness 2.795

The estimation of the parameter of proposed model is obtained by the method of 
maximum likelihood(ML) estimation. 

4.2.	 Maximum	likelihood	estimation	(MLE)	and	asymptotic	confidence	intervals
For completeness purposes, in this section, we briefly discuss the maximum 

likelihood estimators (MLE’s) of the two-parameter CEP distribution and discuss their 
asymptotic properties to obtain approximate confidence intervals based on MLE’s.

Let ( )1 nx x , . . . , x=  be a random sample of size n from ( )CEP ,α θ , then the log-
likelihood function ( ,  )α θ  can be written as;  

( ) ( )
1 1 1

1

, | ln ln 1 ln( ) exp

( 1) ln[1 exp(1 exp( )]

n n n
i i i

i i i
n

i
i

x n n x x n x

x

α α

α

α θ α θ α

θ

= = =

=

 
= + + − + + −∑ ∑ ∑ 

 

+ − − −∑



.  (9)
Therefore, to obtain the MLE’s of α  and θ , we can maximize (9) directly with 

respect to α  and θ  or we can solve the following two non-linear equations using 
iterative method  e.g. Newton-Raphson method 
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Let us denote the parameter vector by ( ),δ α θ=  and the corresponding MLE of 
δ as ( )ˆ ˆˆ ,δ α θ= then the asymptotic normality results in

 
( ) ( )( )( )1

2
ˆ 0,δ δ δ −
− → N I

 (10)
where ( )I δ  is the Fisher’s information matrix given by

 

( )

2 2

2

2 2

2

E E

I

E E

    ∂ ∂
       ∂α∂θ∂α    δ = −  

    ∂ ∂
       ∂θ ∂α ∂θ     

 

 

. (11)
In practice, it is useless that the MLE has asymptotic variance ( )( ) 1I δ −  because 

we do not know δ .  Hence, we approximate the asymptotic variance by “plugging in” 
the estimated value of the parameters.  The common procedure is to use observed 
Fisher information matrix ( )ˆO δ  (as an estimate of the information matrix ( )I δ ) given 
by

( )

( )

( )

2 2

2

2 2

2

δ δ

α θ

α θαδ δ

θ α θ

=

 ∂ ∂
 

∂ ∂∂ = − = − ∂ ∂ 
 ∂ ∂ ∂ 

 

 
ˆ

ˆˆ ,

ˆO H

 (12)
where H is the Hessian matrix,  ( ),δ α θ=  and ( )ˆ ˆˆ ,δ α θ= . The Newton-Raphson 

algorithm to maximize the likelihood produces the observed information matrix. 
Therefore, the variance-covariance matrix is given by

( )( ) ( ) ( )
( ) ( )

1

δ δ

α α θ
δ

θ α θ

−

=

 
 − =
  
 

ˆ

ˆˆ ˆvar cov , 
H

ˆ ˆˆcov , var
. (13)

Hence, from the asymptotic normality of MLEs, approximate 100(1 )%γ−  
confidence intervals for α  and θ  can be constructed as

/2ˆ ˆ( )γα α± z var  and /2
ˆ ˆ( )γθ θ± z var  (14)

 where /2zγ  is the upper percentile of standard normal variate.
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4.3.	 Computation	of	MLE
We have started the iterative procedure by maximizing the log-likelihood 

function given in equation.(9) directly with an initial guess for 0.5α =  and 0.5θ = , 
far away from the solution. We have used optim( ) function in R, R Development Core 
Team (2013) and Rizzo (2008), with option Newton-Raphson method. The iterative 
process stopped only after 26 iterations. We obtain ˆ 1.838α =  and ˆ 1.3297θ =  and the 
corresponding log-likelihood value is ˆˆ( , ) 100.474α θ = − .  We have plotted the contour 
plot of ( , )α θ  in Figure 3, the (+) indicates the MLE. 

Figure 3 Contour.plot of ( , )α β

The 95% confidence interval is computed using (13) and (14). The Table 2 shows 
the ML estimates, standard error(SE) and 95 % Confidence Intervals for the parameters 
alpha and beta.

Table 2. MLE, standard error and 95% confidence interval

Parameter MLE Std. Error 95% CI
alpha 1.8381 0.27185 (1.3053, 2.3709)
Theta 1.3297 0.15382 (1.0282, 1.6312)

The Akaike information criterion (AIC) and Bayesian information criterion 
(BIC) are defined as

ˆAIC 2 ( ) 2δ= − + p  and ( )ˆ2 ( ) p log nδ= − +BIC
where ˆ ˆˆ( , )δ α θ=  is the ML estimate of ( , )δ α β=  and p is the number of parameters 

estimated in the model. The smaller the value of AIC and BIC, the better the model. 
The values of the information measures are AIC= 204.9 and BIC = 208.6, respectively.   

4.4.	 Model	Validation
To check the validity of the model, we compute the Kolmogorov-Smirnov (KS) 

distance between the empirical distribution function and the fitted distribution 
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function when the parameters are obtained by method of maximum likelihood. The 
graphical methods Quantile-Quantile (QQ) and Probability–Probability (PP) plots are 
used for suitability of the model under consideration.

The value of K-S test statistic is 0.0899 and the corresponding p-value is given by 
0.8514. The high p-value clearly indicates that CEP distribution can be used to analyze 
the given data set, and we have also plotted the empirical distribution function and the 
fitted distribution function in Figure 4. It is clear that the estimated CEP distribution 
provides reasonable fit to the given data, Kumar and Ligges (2011).

Figure 4 Probability-Probability(PP) plot (top); Quantile-Quantile(QQ) plot (bottom) using MLEs as 
estimate.

A further support for this finding can be obtained by inspecting the probability-
probability (P–P) and quantile–quantile (Q–Q) plots. The P-P plot shows the empirical 
and theoretical distribution functions. The Q-Q plot shows the estimated versus the 
observed quantiles. As can be seen from the straight line pattern in Figure 5 the CEP 
fits the data well.

5. Bayesian analysis
Script 5.1 : OpenBUGS script for the Bayesian analysis of CEP distribution 
Model {
for( i in 1 : N ) {
 x[i] ~ dCEP2(alpha, theta)    # CEP distribution
 reliability[i] <- R(x[i], x[i])    # to estimate reliability
 f[i] <- density(x[i], x[i])         #  to estimate density
 hrf[i] <- hrf(x[i], x[i])        # to estimate hazard rate
# To predict the data set    
 ep[i] <- (i - 0.5)  / N    
 x.new[i] <- (1.0 / alpha) * log(1.0 - ep[i]), 1.0/theta)) }  
# Prior distributions of the model parameters      alpha ~ dgamma(0.001, 0.001) 
 theta~ dgamma(0.001, 0.001) }
Data 
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list(N=63, x = c(1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 
2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 
2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 
3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 
3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 
3.971, 4.024, 4.027, 4.225, 4.395, 5.020))

Initial values 
 list(alpha=0.1, theta=10.0)    # for Chain1
 list(alpha=1.0, theta=50.0)    #  for Chain 2

We assume the independent uniform priors for ( )~ ,  G a bα  and gamma prior for 
( )~ ,  dG cθ  with hyper parameter values (a 0.001, b 0.001)= =  and (c 0.001, d 0.001)= = . 

We run the model to generate two Markov Chains at the length of 40,000 with different 
starting points of the parameters. We have chosen initial values ( )0.1, 10.0α θ= =  for 
the first chain and ( )1.0, 50.0α θ= =  for the second chain. The convergence is monitored 
using trace and ergodic mean plots, we find that the Markov Chain converge together 
after approximately 2000 observations. Therefore, burnin of 5000 samples is more 
than enough to erase the effect of starting point(initial values). Finally, samples of size 
7000 are formed from the posterior by picking up equally spaced every fifth outcome 
(to minimize the auto correlation among the generated deviates.), i.e. thin=5, starting 
from 5001. 

 Therefore, we have the posterior sample ( )( ) ( )
1 1, ; 1, ,7000j j jα θ =   from chain 1 

and ( )( ) ( )
2 2, ; 1, ,7000j j jα θ =   from chain 2. 

 The chain 1 is considered for analysis as well as for convergence diagnostics 
plots. The visual summary is based on posterior sample obtained from chain 1 whereas 
the numerical summary is presented for both the chains.

5.5.3	 Convergence	diagnostics
Before examining the parameter estimates or performing other inference, it is a 

good idea to look at plots of the sequential (dependent) realizations of the parameter 
estimates and plots thereof.
History(Trace) plot

Fig 5.6    Sequential realization of the parameters α  and θ . 
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We have found that if the Markov chain is not mixing well or is not sampling 
from the stationary distribution, this is usually apparent in sequential plots of one 
or more realizations. The sequential plot of parameters is the plot that most often 
exhibits difficulties in the Markov chain. Figure 5.6 shows the sequential realizations 
of the parameters of the model. In this case Markov chain seems to be mixing well 
enough and is likely to be sampling from the stationary distribution. 

The plot looks like a horizontal band, with no long upward or downward trends, 
then we have evidence that the chain has converged. 

 
Running	Mean	(Ergodic	mean)	Plot

Generate a time series(iteration number) plot of the running mean for each 
parameter in the chain. The running mean is computed as the mean of all sampled 
values up to and including that at a given iteration. The convergence pattern based on 
ergodic averages is shown in Figure 5.7 indicating the convergence of the chain.

Fig. 5.7  The Ergodic mean plots for alpha and theta.

Brooks-Gelman-Rubin(BGR)	diagnostic:
The Brooks, Gelman and Rubin convergence diagnostic is appropriate for the 

analysis of two or more parallel chains, each with different starting values which are 
overdispersed with respect to the target distribution.

OpenBUGS provides the Brooks-Gelman-Rubin statistic for assessing 
convergence. For a given parameter, this statistic assesses the variability within 
parallel chains as compared to variability between parallel chains. The model is judged 
to have convergence if the ratio of between to within variability is close to 1. The green 
line represents the between variability, the blue line represents the within variability, 
and the red line represents the ratio. 

Evidence for convergence comes from the red line being close to 1 on the y-axis 
and from the blue and green lines being stable (horizontal) across the width of the plot. 
From the Figure 5.8, it is clear that convergence is achieved. Thus, we can obtain the 
posterior summary statistics.
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lambda chains 1 : 2

start-iteration

5251 10000 15000 20000

alpha chains 1 : 2

start-iteration

5251 10000 15000 20000

Fig. 5.8 The BGR plots for alpha and theta.

Table 5.2: HPD and Credible intervals

Parameter Credible Interval HPD Credible Interval
alpha (0.4926, 0.5745) (0.4947, 0.5758)
theta (68.229, 158.605) (65.99, 154.6)

5.5.4	 Posterior	Analysis
(a) Numerical Summary 

The numerical summary is presented for ( )( ) ( )
1 1, ; 1, ,7000j j jα θ =   from 

chain 1 and ( )( ) ( )
2 2, ; 1, ,7000j j jα θ =   from chain 2. 

We have considered various quantities of interest and their numerical 
values based on MCMC sample of posterior characteristics for CEP distribution.  
The MCMC results of the posterior mean, mode, standard deviation(SD), five 
point summary statistics (minimum, first quartile, median, third quartile  and 
maximum),  2.5th percentile,  97.5th percentile, skewness, 95% symmetric and 
HPD credible intervals of the parameters α  and θ  are displayed in Table 5.1 
Table 5.1 : Numerical summaries based on MCMC sample of posterior characteristics 

for CEP2 distribution under  gamma priors

Characteristics Chain 1
alpha theta

Mean 0.53472 106.482
Standard  Deviation 0.02092 23.318
Minimum 0.44900 45.460
2.5th Percentile(P2.5) 0.49260 68.229
First Quartile (Q1) 0.52090 89.908
Median 0.53500 104.200
Third Quartile (Q3) 0.54900 120.800
97.5th Percentile(P97.5) 0.57450 158.605
Maximum 0.60420 221.000
Mode 0.53400 96.964
Skewness -0.17014 0.5951
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Highest probability density (HPD): The algorithm described by [Chen and Shao 
(1999)] is used to compute the HPD intervals under the assumption of unimodal 
marginal posterior distribution. Table 5.2 shows the HPD and Credible intervals for 
alpha, and theta parameters.

Visual summary
(b) Visual summary

The visual graphs include the boxplot, density strip plot, histogram, 
marginal posterior density estimate and rug plots for the parameters. We 
have also superimposed the 95% HPD intervals. These graphs provide almost 
complete picture of the posterior uncertainty about the parameters. We have 
used the posterior sample ( )( ) ( )

1 1, ; 1, ,7000j j jα θ =    to draw these graphs.
 The density strip illustrates a univariate distribution as a shaded 

rectangular strip, whose darkness at a point is proportional to the probability 
density, Jackson (2008).   Histograms can provide insights on skewness, behaviour 
in the tails, presence of multi-modal behaviour, and data outliers; histograms 
can be compared to the fundamental shapes associated with standard analytic 
distributions. 

Fig 5.10 Left panel : Histogram, marginal posterior density and 95% HPD interval ; Right panel : 
boxplot and density strip of θ ,  based on posterior sample.

Fig 5.11 Left panel : Histogram, marginal posterior density and 95% HPD interval ; Right panel : 
boxplot and density strip of α ,  based on posterior sample.
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Figure 5.10 represents the histogram, marginal posterior density and 95% HPD 
interval for θ  (left panel) and boxplot and density strip plot (right panel). We have 
plotted the similar graph for α  displayed in Figure 5.11 .  The kernel density estimates 
have been drawn using R with the assumption of Gaussian kernel and properly chosen 
values of the bandwidths. It can be seen that θ  is symmetric whereas α  shows positive 
skewness. 

5.5.5.	 Comparison	with	MLE	
For the comparison with MLE we 

have plotted three graphs. In Figure 
5.13 the density functions ˆˆf(x; , )α θ  
using MLEs and Bayesian estimates, 
computed via MCMC samples under 
gamma priors for α  and θ , are plotted. 
It is evident from the Figure, the MLEs 
and the Bayes estimates are quite close 
and fit the data very well. 

A further support for this finding 
can be obtained by inspecting the Figure 
5.14. In Figure 5.14 we have plotted 
2.5th, 50th and 97.5th quantiles of the 
estimated density, it can be considered 
as evaluation of model fit, based on 
posterior sample, 

 ( )( ) ( )
1 1, ; 1, ,7000j j jα θ = 

. 
We have computed the density 

function at each observed data point for 
7000 posterior samples, using logical 
function density( ) in OpenBUGS

( )( ) ( )
1 1; , ; 1, ,7000 ; 1, ,100j j

if x j iα θ = = 

The density corresponding to MLE 
has been plotted using the “plug-in” 
estimates of the parameters. It shows 
that we have a fairly good model for the 
given data set. 

5.5.6	 Estimation	of	reliability	function
In this section, our main aim is to 

demonstrate the effectiveness of proposed methodology. For this, we have estimated 
the reliability function using posterior samples. Since we have an effective MCMC 
technique, we can estimate any function of the parameters. We have used the Kaplan-

Fig 5.13 The density functions using MLEs and 
Bayesian estimates, computed via MCMC.

Fig 5.14 Density estimates
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Meier estimate of the reliability function 
to make the comparison more meaningful. 
The Figure 5.15, exhibits the estimated 
reliability function (dashed blue line: 2.5th 
and 97.5th quantiles; solid red line: 50th 
quantile) using Bayes estimate based on 
MCMC output and the empirical reliability 
function (black solid line). The Figure 
5.15 shows that reliability estimate based 
on MCMC is very close to the empirical 
reliability estimates. 

5.5.7	 Estimation	 of	 Hazard	 and	 Reliability	 at	
X(30): t = 2.0
The posterior samples may be used 

to completely summarize the posterior uncertainty about the parameters α , and θ  
through a kernel estimate of the posterior distribution. This is also true of any function 
of the parameters e.g. reliability and hazard functions. Suppose we wish to give point 
and interval estimates for reliability and hazard functions at the mission time t=2.0 (at 
the 30th observed data point).

We have computed the hazard and reliability functions at mission time t=2.0  
(at the 30th observed data point) for 7000 posterior samples, using logical function hrf 
( ) and reliability( ), [Kumar et al. (2010)] in OpenBUGS. It can be computed directly 
using hazard and reliability functions given in (5.2.4) and (5.2.3) respectively

( )( ) ( )
1 12.0; , ; 1, ,7000j jh x jα θ= = 

 
and

 

( )( ) ( )
1 12.0; , ; 1, ,7000j jR x jα θ= = 

Alternatively, we can use  R functions hcom.exp.power( )  and scom.exp.power( )   
given in Appendix-A as A.5.2.

Fig 5.15 Visual summary of reliability(left panel) and hazard(right panel) at t=2.0 

Fig 5.15  Reliability function estimate using 
MCMC and Kaplan-Meier estimate 
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The marginal posterior density estimates of the reliability (left panel) and hazard 
functions(right panel) and their histograms based on samples of size 7000 are shown in 
Figure. 5.15 using the Gaussian kernel.

Table 5.3: Posterior summary for Reliability and Hazard functions at t=2.0

Characteristics Reliability Hazard
Mean 0.7043 0.5047
Standard  Deviation 0.0376 0.0669
Minimum 0.5607 0.3041
2.5th Percentile(P2.5) 0.6272 0.3846
First Quartile (Q1) 0.6791 0.4567
Median 0.7054 0.5013
Third Quartile (Q3) 0.7299 0.5484
97.5th Percentile(P97.5) 0.7755 0.6451
Maximum 0.8259 0.8423
Mode 0.7083 0.4893
Skewness -0.1501 0.2992
95% Credible Interval (0.6272, 0.7755) (0.3846, 0.6451)
95% HPD Credible Interval (0.6313, 0.7788) (0.3770, 0.6356)

It is evident from Figure 5.15 the estimates that the marginal distribution of 
reliability is negatively skewed whereas hazard is positively skewed. 

The MCMC results of the posterior mean, mode, standard deviation(SD), 
five point summary statistics (minimum, first quartile, median, third quartile and 
maximum), 2.5th percentile, 97.5th percentile, skewness, 95% symmetric and HPD 
credible intervals of reliability and hazard functions are displayed in Table 4.5. The 
ML estimates of reliability and hazard function at t=2.0 are computed using invariance 
property of the MLE. ML estimates ( )ĥ t 2.0 0.5264= =  and ( )R̂ t = 2.0 0.7097= .

A trace plot is a plot of the iteration number against the value of the draw of 
the parameter at each iteration. Figure 5.16 display 7000 chain values for the hazard 
h(t=2.0) and reliability R(t=2.0) functions, with their sample median and 90% credible 
intervals. 

Fig 5.16 MCMC output of R(t = 2.0) and h(t = 2.0). Dashed line(...) represents the posterior median 
and solid lines(-) represent lower and upper bounds of 90% probability intervals(HPD)
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5.5.8	 Model	compatibility
Posterior Predictive Checks:
 Once we have determined that the algorithm converged to the appropriate 

distribution and mixed well so that we have an adequate sample from the posterior 
distribution, our next step should be to determine whether the model fit the data well 
enough to justify drawing inference about the parameters. At this point, if we have 
estimated several different models, we can also begin to decide which is the best model.

 One of the best and most flexible approaches to examining model fit is the use 
of posterior predictive distributions, [Gelman (2003)] and [Gelman et al. (2004)]. The 
posterior predictive distribution for a model is the distribution of future observations that 
could arise from the model under consideration. The posterior predictive distribution 
takes into account both (1) parametric uncertainty and (2) sampling uncertainty from 
the original model. Parametric uncertainty is captured via the posterior distribution 
for the parameters, a sample of which is the result of simulation using MCMC methods. 
Sampling uncertainty is captured via the specification of the sampling density for the 
data. Thus, we can simulate data from the posterior predictive distribution, compare it 
with the observed data, and, if the simulated data are similar to the observed data, we 
may conclude the model fits well.

Implementation of posterior predictive simulation is relatively simple, given 
an MCMC-generated sample of size 2000 from the posterior distribution for the 
parameters in a model ( , )δ α θ= , and can often be incorporated as part of the MCMC 
algorithm itself. For each value of δ  simulated from the posterior, we generate a new 
observation from the sampling distribution for the data, using that parameter value, 
for every original observation in the sample. Thus, we have

rep
ix ; 1, ,100i =   for each ( )( ) ( )

1 1, ; 1, ,1000j j jα θ = 
   

In fact, we have predicated 
the entire data set and we have 1000 
replications of each . ix ; 1, ,100i =  . We 
view the model-checking as a comparison 
of the data with the replicated data 
given by the model, which includes 
exploratory graphics. In fact statistical 
graphics provides implicit or explicit 
model checks. Figure 5.17 represents 
the Q-Q plot of predicted quantiles 
vs. observed quantiles. We, therefore, 
conclude that the Gompertz extension 
model is compatible with the given data 
set.

To obtain further clarity on 
our conclusion for the study of model 
compatibility, we have considered 

Fig. 5.17  Q-Q plot of predictive quantiles versus 
empirical quantiles
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plotting of density estimates of smallest, 
largest and 30th smallest i.e. (X(1), X(100) 
and X(30) replicated future observations 
from the model with superimposed 
corresponding observed data. For this 
purpose, 2000 samples have been 
drawn from the posterior using MCMC 
procedure and then obtained predictive 
samples from the model under 
consideration using each simulated 
posterior sample. The size of predictive 
samples is same as that of observed 
data.

Fig 5.19  Density estimates of the smallest (X(1)) and largest (X(100)) order future observations, 
vertical lines represent corresponding observed values 

Density estimates based on replicated future data sets are shown in Figures 5.18 
and 5.19. Figure 5.19 represents the estimates corresponding to smallest and largest 
predictive observations, whereas the same for 30th smallest observations is shown in 
Figure 5.18. The corresponding observed values are also shown by means of vertical 
lines. 

As the Figures 5.18 and 5.19 show, the posterior predictive distributions are 
centered over the observed values, which indicates good fit. In general, the distribution 
of replicated data appears to match that of the observed data fairly well. 

The MCMC results of the posterior mean, median, mode of smallest and largest  
(X(1) and X(100)) and X(30) are displayed in Table 5.4.

Fig 5.18 Density estimates of the X(30) , vertical lines 
represent corresponding observed values
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Table 5.4:  Posterior characteristics

Observed Mode Mean Median
X(1)   0.39 0.545 0.521 0.606
X(30)   2.00 2.007 2.001 2.072
X(100)   5.56 5.378 5.580 5.803

Figure 5.20 exhibits graphical posterior predictive check of the model adequacy, 
solid line(   ) represents the posterior median and dashed lines (...) represent lower 
and upper bounds of 95% probability intervals, observed data is superimposed. The 
predictive data reflect the expected observations after replicating the experiment in 
future, having already observed x and assuming that the adopted model is true.

Fig.  5.20 Graphical posterior predictive check of the model adequacy.

Overall, the results of the posterior predictive simulation indicate that model 
fits these data particularly well. Model fit assessments based on posterior predictive 
checks are somewhat too liberal, and posterior predictive checks should not be used for 
model selection [Ntzoufras (2009)].

6. Conclusions
We have discussed the Markov chain Monte Carlo (MCMC) method to compute 

the Bayesian estimates the parameters and reliability functions of exponentiated log-
logistic distribution based on a complete sample. We have obtained the probability 
intervals for parameters. The MCMC method provides an alternative method for 
parameter estimation of the exponentiated log-logistic distribution. It is more flexible 
when compared with the traditional methods such as MLE method. Moreover, ‘exact’ 
probability intervals are available rather than relying on estimates of the asymptotic 
variances. Indeed, the MCMC sample may be used to completely summarize posterior 
distribution about the parameters, through kernel estimation. This is also true for any 
function of the parameters such as reliability and hazard functions. We have applied 
the developed techniques on a real data set. The paper successfully describes the scope 
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of Markov chain Monte Carlo (MCMC) technique in the exponentiated log-logistic 
distribution. Thus, the tools developed can be applied for full Bayesian analysis of 
complementary exponential power distribution.
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