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ABSTRACT

There is a demand for methods to accurately estimate above ground carbon stock in 
response to climate change mitigation action. The study aims to develop a method 
to accurately estimate and map above ground woody carbon stocks using airborne 
LIDAR data (0.8 point/m2) and optical images (0.45m resolution) acquired over the 
mountains in Central Nepal. Canopy Height Model (CHM) was generated using LIDAR 
first return and last return. RMSE of 2.8m was obtained for LIDAR derived height. 
Object based image analysis (OBIA) and nearest neighbor classification methods were 
used to retrieve individual tree crown area and tree species (Shorearobusta and others) 
information. Segmentation accuracy was 76.2% based on 1:1 correspondence andthe 
overall classification accuracy was 75.86%. Multiple linear regression models which 
showed the lowest relative RMSE36.8% (Shorearobusta) and 32.4% (others)were used 
to estimate carbon stocks of the study area. The total amount of carbon stocks in the 
study area was approximately 89.45 MgCha-1.

1. INTRODUCTION
Forests play crucial role in global carbon 
cycle as they act as sink as well as source of 
carbon (Muukkonen et al., 2007). They hold 
more than 60% of the carbon contained in 
the aboveground biomass and about 45% of 
the carbon contained in soils, roots and litter 
at a global carbon scale (Dixon et al., 1993). 
Reducing deforestation,afforestation, and 
reforestation are therefore mitigation measures 
for global climate change (Hunt, 2009).
Reducing Emissions from Deforestation and 
Forest Degradation (REDD+) implementation 
is one of the core component of Paris Agreement 
(COP 21) (UNFCCC, 2016) and is a climate 

change mitigation action. Reliable baseline 
statistics on national forest carbon stocks 
and sources of carbon emission is required 
to establish a national reference scenario 
and to implement REDD+. Therefore, there 
is a need to develop a robust method which 
can accurately estimate forest above ground 
biomass (AGB) and its carbon stocks (Thapa 
et al, 2015). Integrating remote sensing and 
field measured data provide important insights 
on AGB estimation of forest.

Several studies have already been done on 
estimation of ABG using remote sensing 
and field measurements (Saatchi et al., 2011, 
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Thapa et al., 2016, Flores et al., 2019). NOAA 
AVHRR and MODIS (Dong et al., 2003; 
Baccini et al., 2004) have been used for 
biomass estimation at global and continental 
scale. Coarser spatial resolution data for forest 
AGB estimation was found to be unsuitable 
due to mixed pixels and the huge difference 
between the support of ground reference data 
and pixel size of the satellite data (Muukkonen 
et al., 2007).AGB estimation using medium 
resolution satellite imagery such as Landsat 
TM at national and regional level showed data 
saturation, mixed pixels and cloudy weather 
problems (Lu,2005; Steininger, 2000). Very 
high resolution (VHR) images such as aerial 
photograph, satellite images such as Quickbird, 
IKONOS, WorldView and GeoEye images 
can detect individual tree crowns (Gonzalez 
et al., 2010). In addition, crown density and 
species identification had been done using 
high resolution data (Katoh et al., 2009) while 
some studies reported AGB estimation relating 
DBH to tree crown area delineated using 
VHR images (Hirata et al., 2009; Song et al., 
2010). However, models based on onlycrown 
area (CPA) and DBH are often insufficientto 
estimate biomass accurately because these 
models missed tree height information which 
is crucial parameter for biomass estimation. 
Height varies for same DBH of trees which 
eventually misguides AGB estimation. Thus, 
height of trees should be considered for 
accurate estimate of biomass. In addition, 
intermingled trees cannot be separated even 
with high resolution images which cause 
error in individual tree crown delineation and 
eventually leads inaccurate AGB estimation 
(Hirata et al., 2009; Palace et al., 2008). If the 
intermingled trees are of the same species, 
this might have less impact on AGB as wood 
density remains same. However, this might 
not always be the case in mixed sub-tropical 
forest. LIDAR data can separate intermingled 
tree crowns based on their tree tops as it gives 
tree height information (Thapa et al., 2015).

Optical remote sensing data lacks height 
information. To overcome this, airborne 
LIDAR data can be used which provides tree 
height information. Severalstudies (Asner et 
al.,  2012; Kronsederet al., 2012; Thapa et 
al., 2015 ) found accurate estimation of AGB 
using LIDAR data. Integration of LIDAR 
data with optical images have shown further 
improvement in accuracy of AGB estimation 
thereby improving individual tree crown 
delineation and forest type classification 
(Leckieet al., 2003; Holmgren et al., 2008; 
Karna et al., 2015, Wangda et al., 2019).More 
studies on AGB mapping are required over 
varying geographic areas as forest structure 
and associated environment varies in large 
geographic space. Such studies are still lacking 
in the unique geographic characteristics of 
Nepal, therefore, the study aims to develop a 
method to accurately estimate and map above 
ground woody carbon stocks using airborne 
LIDAR and optical images acquired overthe 
mountains in Central Nepal.

2. STUDY AREA AND DATA USED
Our study area is located in Ludikhola 
Watershed which lies in southern part of 
GorkhaDistrict, Nepal (Figure 1). The 
watershed covers 1888 ha of forest area with 
elevation ranging from 318 m to 1714 m 
(Shrestha et al., 2014; REDD, 2011) having 
sub-tropical forests. The watershed consists 
of 31 community forests (CFs). The study was 
carried out only in five CFs, i.e.,Ludidamgade, 
Birenchok, Kuwadi, Chisapani and Shikhar. 
These CFswere chosen as representative of 
sub-tropical forests of Nepal, and based on 
data availability and accessibility.

LIDAR data was acquired within 16 March to 
2 April 2011 with point density of 0.8 point/
m2 on average. High resolution optical camera 
was mounted in the same platform as LIDAR 
which acquired optical images at 0.45 m 
resolution (Arbonaut 2012). 
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3. METHODS
3.1 Field work
Stratified random sampling, as per the 
Community Forest Inventory Guideline of 
Nepal 2004was adopted for this research as 
it ensures samples are being spread out over 
the entire study area and gives more precise 
estimates of forest parameters (Husch et 
al., 2003). The field work was carried out in 
September-October 2011. Circular plots with 
radius 12.62 m and plot area of 500 m2 were 
used. Information on intermingled trees and 
forest parameters such as DBH, height, crown 
diameter, crown density and species were 
collected for each plot in the field. 

3.2 Trees delineation

Trees identified on the field were manually 
delineated on 3×3 low pass filtered in the 
optical image. Crown diameter measured in 
the field was used as reference to correctly 
delineate the tree.Only 294 trees were 
recognized on the image and were manually 
delineated. The delineated tree crown areas 
were used to extract the height of the trees 

from the LIDAR data. 

3.3 Canopy height model development 
and validation
Canopy height model (CHM) can be generated 
by subtracting Digital Terrain Model (DTM) 
from Digital Surface Model (DSM) which can 
be directly related to the height of the trees 
(Asner et al., 2012; Kim et al., 2010; Thapa 
et al., 2015). DTM represents bare ground 
surface whereas DSM represents ground 
surface including all objects on it (Heritage 
et al., 2009). The DTM was generated from 
the last returns of the LIDAR pulse which 
describes ground surface. Similarly,the DSM 
was generated from the first canopy return of 
the LIDAR pulse which describes the canopy 
surface. The available LIDAR data was in 
the form of point cloud which was processed 
using Lastoolsto develop DTM and DSM.The 
obtained CHM was then filtered to surpass the 
outliers.LIDAR derived height was validated 
with field measured heightinformation 
by computing regression coefficient of 
determination (R2) and root mean squared 
error (RMSE).

Figure 1: Location of study area
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Figure 2 Point cloud (different color shows 
height variation of the object)

3.4 Optical image segmentation and 
validation
Optical image segmentation was required 
to obtaincrown projection area (CPA) of 
individual tree. Several studies (Kim et al., 
2010; Leckie et al., 2003; Song et al., 2010; 
Karna et al., 2015) have shown individual 
tree crown delineation using high resolution 
images with segmentation techniques. We 
have chosen chessboard segmentation and 
region growing segmentation methods in 
eCognition Software. Grid size of two by two 
pixels was used for chessboard segmentation. 
Window size of 5×5 was given for region 
growing as average crown diameter measured 
in the field was approximately 4 m. Basic and 
advanced reshaping of tree crown segments 
were done using watershed transformation and 
morphology techniques to refine individual 
tree crown delineation. In this study, two 
segmentation accuracy measures were 
applied i.e. Relative Area Measures (Clinton 
et al.,2010) and 1:1 correspondence (Zhan et 
al., 2005). These measures wereused when 
manually delineated and automatic segments 
are available. Over segmentation, under 
segmentation, and segmentation goodness (D) 
weredefined according to Clinton et al. (2010).

3.5 Segmentation assessment for 
intermingled trees
Segmentation using both images (CHM and 
optical image) separates intermingled tree 
accurately. However, segmentation were 
visually checked with reference to field data. 
If there are two segments for two trees which 
were found to be intermingled in the field, then 
intermingled trees are considered separated. 

3.6 Tree species classification and 
accuracy assessment

Nearest neighbour classification algorithm 
was applied for tree species classification. 
Though Shorearobusta, Schimawallichii, 
Castanopsisindicaand Rhuswallichiitree 
species were found in the study area, 
classification was done only into two 
classes i.e. Shorearobustaand others. This 
is because most of the trees identified on the 
image were Shorearobusta and there were 
not enough samples for Schimawallichii, 
Castanopsisindicaand Rhuswallichiion the 
image. About 70% of the samples were used 
for classification and remaining 30% were 
used for validation.

3.7 AGB and carbon stock calculation
Allometric equation (Eq. 1) developed for 
tropical moist forest by Chave et al. (2005) 
was used to calculate AGB as site specific 
allometric equations were not available. 
………….(1)
Where,

AGB = above ground biomass [kg]
 = wood specific gravity [gm/cm3]

D = tree diameter at breast height 
(DBH) [cm] and

H = tree height [m]
Wood specific gravity for Shorearobusta is 
0.88 gm/cm3 and for others is 0.72 gm/cm3 

(Shrestha et al., 2014). Then, carbon stock 
of the tree was calculated from AGB using 
conversion factor 0.47 (IPCC, 2003).

3.8 Regression models and validations
Models based on linear relationships between 
carbon and CPA, carbon and height, and 
carbon, CPA and height were developed. 
Variation Inflation Factor (VIF) was calculated 
to checkmulticollinearity among the variables.
VIF value above 10 indicates that there will 
be effect of multicollinearity on the model 
(Obrien, 2007). Only trees which had one to 
one matching of the segments and correctly 
classified were taken for model development 
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and validation. Outliers were removed which 
is the prerequisite of the regression models 
(Mora et al., 2010). Thus, total number of 
sample data becomes lesser than the trees that 
were initially identified on the image. Only 
239 trees were used for model development 
and validation. Carbon calculated from the 
field data and carbon predicted by the model 
were compared to validate the models. Models 
performance were evaluated with coefficient 
of determination (R2) and root mean squared 
error (RMSE).

3.9 Carbon stock mapping

Multiple linear regression models were 
developed for both Shorearobusta and other 
species to estimate the amount of carbon 
stocks in the study area. Relative RMSE for 
each model was reported.

4. RESULTS AND DISCUSSION
4.1 CHM preparation and accuracy 
assessment of LIDAR derived height
CHM showed that the tree height in the study 
area is upto40 m. LIDAR derived height was 
compared with field measured height using 
linear regression modelin whichcoefficient 
of determination (R2) was 0.74 and RMSE 
was 2.8 m. LIDAR derived tree height 
underestimated field measured tree height 
by 0.98 m on average. The error could be 
because of low point density (0.8 point/
m2 on average) or tree height measurement 
errors induced by the equipment in the field. 
Due to the low point density, there is less 
probability that laser returns hit the true tree 
top of a tree (Suarez et al., 2005). This leads 
to the variation in LIDAR derived height 
with field measured height. Other studies also 
reported underestimation of ground measured 
tree height (Leckie et al., 2003; Saurez et al., 
2005) although these studies used higher point 
density LIDAR data compared to the data used 
in this study.This could be due to coniferous 
forests which were their study areas in both 
cases. The crowns of coniferous trees have a 
triangular shape (Figure 3a). Compare to this, 

the crowns of deciduous trees found in CFs of 
Ludikhola Watershed are relatively flat leading 
to less variation in height from tree top to the 
edges of the crowns (Figure 3b). Due to the 
crown shape in coniferous trees, laser returns 
hitting the true tree top and those hitting the 
edges have a higher variation in height than in 
deciduous trees. Thus, in this study with low 
point density the underestimation is not high 
compared to the studies (Leckie et al., 2003; 
Saurez et al., 2005). In addition, the gridding 
process might introduce error into the CHM 
through the interpolation method and the grid 
spacing chosen (Smith et al., 2004). Canopy 
height underestimation might be due to the 
laser pulse penetration into the canopy before 
reflecting a signal and the signal might not 
be detected by the scanner as a first return 
(Gaveau et al., 2003). 

(a) (b)

Figure 3: Crowns shape (a) coniferous tree 
(b) deciduous tree

4.2 Tree crown delineation and 
accuracy assessment
For the all delineated tree crowns of the 
study area, over segmentation was 0.29, 
under segmentation was 0.33 andD value 
was 0.31. For the accuracy measures of 
1:1 correspondence, manually delineated 
tree crowns and automated segments from 
segmentation were assessed by matching on 
one to one basis. On the basis of this accuracy 
measures, overall segmentation accuracy was 
76.2%.

Both images (CHM and optical image) were 
used in order to assign the classes trees and 
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others (shadow, bare land). The use of CHM 
in this step helped to extract trees in shadow 
area (Figure 4) which would be missed if only 
reflectance values were used. The use of height 
information helped to separate trees from other 
vegetation (shrubs and herbs). In this regard, 
the use of height information for tree crown 
delineation helped to eliminate most of the 
commission errors (delineating shrubs or other 
ground vegetation as trees) that often occur in 
open forest area with optical imagery. Lopped 
trees were filtered using height information.

 

a. Shadow area

 

b. Segments on shadow area   

Figure 4: Digital camera image showing shadow 
area and segments on the shadow area

Both commission and omission errors were 
found in the segmentation. Omission errors 

occurred due to intermingled trees whereas 
commission errors were due to irregular shape 
of the tree crowns where an individual branch 
may create falsetree tops, so there seems to be 
two trees instead of one. Segmentation accuracy 
in this study was improved as compared to 
Shah (2011).The improvement could be due 
to the addition of height information in the 
segmentation as similar to Kim et al. (2010).

4.3 Image classification and accuracy 
assessment

Trees were classified into two groups i.e. Shorea 
robusta and others. Overall classification 
accuracy was 75.86%. The accuracy might be 
affected by quality of crown delineation (Ke 
et al., 2010), the spectral information being 
used (ITC, 2010) and shadow due to high hills. 
Shadow was prominent due to the topography 
of the study area which led to variation in 
brightness values of trees even for same 
species. Eventually, this has affected in crown 
delineation and classification. The accuracy  
is lower than Ali et al. (2008) which achieved 
86% overall classification accuracy for two 
species using different multi-spectral imagery 
(4 bands) and higher resolution LIDAR data 
(16 points/m2).

4.4 LIDAR data in separating 
intermingled tree crowns

In this study, intermingled trees were not 
separated even using LIDAR data with point 
density of 0.8 point/m2. In region growing 
segmentation, a region grows from the 
tree top until it reaches to local minima. In 
intermingles trees, there are two trees but there 
are not enough points with brightness values 
that are sufficiently different due to which the 
algorithm cannot separate two intermingled 
trees (Figure 5). In addition, the points are 
irregularly shaped. However, this logic is 
applicable for low degree of intermingling, as 
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trees can be intermingled in different degrees 
in nature (Figure 6).

a. Multipoint on the image

b. Multipoint on the smoothen image

Figure 5: Showing multipoint (from point 
cloud) (yellow oval shapes show 2 trees that are 
intermingled)

Figure 6: Different degree of two intermingled 
canopy trees

In this study, data on the degree of intermingled 
trees were not collected. If crowns have a 
high degree of intermingling there would be 
no local minima or valleys between tree tops 
and the crowns are considered to be one. 
There were more omission errors observed in 
deciduous trees due to densely growing trees 
with homogenous height distribution resulting 
in inability to separate neighboring trees.

4.5 Regression models and validations

Relationships of field measured carbon 
with CPA and CHMfor both Shorearobusta 
and other species were obtained using 
multiple linear regression model (Eq. 1 and 
2).132 measurements were used for model 
development for Shorearobustaand 47 
measurements were used in case of the other 
species. In general, all models were explaining 
well the relationship of carbon with CPA and 
CHM. In this relationship, the VIF was less 
than 1. The multiple linear regression models 
had relative RMSEs,i.e. 36.8% and 32.4% 
for both Shorearobusta and other species, 
respectively.

........ (2)
........ (3)

Result showed that there were improvements 
in the models using two explanatory variables 
(CPA and the canopy height). Height and 
CPA are important biophysical parameters 
to estimate biomass of a tree using remote 
sensing. Moreover, biomass depends on 
volume and volume can be calculated from 
height and DBH. Since there is relation 
between CPA and DBH (Hirata et al., 2009; 
Shimano, 1997), it is expected that CPA and 
height will give a good estimate of biomass. 
Consequently, these two variables i.e. height 
and CPA can explain more about variability 
of biomass than using either of variables 
alone. Coefficient of determination (R2) were 
0.74 and 0.76 for Shorearobusta and others, 
respectively (Figure 7).
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a. Shorearobusta b. Others

Figure 7: Scatterplots of predicted versus observed carbon

4.6 Carbon stock mapping
The carbon stock models (Eq. 1 and 2) were used for both Shorearobusta and other species to 
extrapolate the amount of carbon stock spatially and mapping the carbon stock in the study area 
(Figure 8). The study area has approximately 89.45 MgCha-1.

Figure 8: Carbon Stock Map of the Study Area
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5. CONCLUSIONS
Although, numerous studies to estimate forest 
carbon stocks from LIDAR were documented, 
there are limited examples in the literature 
that address the combination of the LIDAR 
pulse returns and the very high resolution 
optical imagery in such varied topography. 
This study has demonstrated the development 
forest carbon stock estimation model using 
LIDAR and the optical imagery at species 
level accurately. Employing field and airborne 
LIDAR measurements, forest-specific models 
were developed, capturing major variety 
of forest species. Because of the structural 
differences and associated carbon content 
between the forest types, the forest specific 
models provided improved results with 
reduced uncertainty.The modeling outcomes 
has provided more options for forest carbon 
assessment in the Nepal where topography 
matters.Using height information in mountain 
region is crucial as the information not only 
help to improve the model but also extract trees 
information even in shadow area which would 
be missed if only reflectance values were 
used. The methodology for measuring carbon 
stock in sub-tropical forests will contributein 
response to climate change mitigation action.
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