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Abstract
Background: Sodium fluoride (NaF) is a highly consumed food additive, that is capable of disrupting the activities 
of several brain areas. It is unclear whether this compound affects the autonomic activities of the brain.
Objective: Therefore, this study was designed to investigate the ameliorative potentials of exogenous melatonin 
on sodium fluoride-induced pontine toxicity in adult male Wistar rats, as melatonin has been implicated to have a 
high concentration in the cerebrospinal fluid of injured brains.
Method: Thirty-two rats were randomly divided into 4 groups (n=8, per group). Groups I, II, III and IV received 
0.2 ml of normal saline (NS), 500 ppm of sodium fluoride (NaF) via their drinking water, 10 mg/kg melatonin 
(MLT), and melatonin with sodium fluoride concurrently (MLT+NaF) respectively for fourteen days. At the end of 
these treatments, the rats were euthanized and brainstem tissues were excised for histological, histochemical, and 
biochemical analyses.  
Results: There were shreds of evidence of DNA fragmentation, vacuolation, dispersion of the Nissl bodies, and 
axonal disruption in the cells of the basilar pons of the sodium fluoride-treated animals. This was coupled with high 
concentrations of malondialdehyde and low-level concentrations of glutathione reductase. Melatonin, however, 
was observed to limit neuronal injury in the cells of the basilar pons in the experimental animals by reducing the 
extent of cells undergoing process pyknosis, chromatolysis, and demyelination. Also, melatonin was able to reduce 
the concentration of malondialdehyde and increase glutathione reductase activities in the pons.
Conclusion: This study revealed that sodium fluoride injured the pontine histoarchitecture, and induced oxidative 
damage which were ameliorated by exogenous melatonin treatments.
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Introduction 

The effects of fluoride compounds on human health 
are receiving global attention because of their 

widespread distribution and usage.1 Sodium fluoride 
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tends to be beneficial to human health when consumed in 
minute quantity,2 as beers, soda, and juices.3 Also, it can 
serve as pesticide, rodenticides, fungicide for use on the 
farm, and a constituent of glass as an industrial product.4 
Experimental animals have shown that chronic fluoride 
toxicity is said to affect the blood vessels and brain cells.5 
Also, sodium fluoride has been implicated in increased 
production of free radicals,6,7 activation of the enzyme 
caspases, inhibition of glycolytic enzymes activities,7,8 and 
enhancement of inflammatory activities.9 Furthermore, 
sodium fluoride have been suggested to cause neural 
deficits in mammals,5 and this insult is independent of the 
route of administration when consumed in large amount.10 
The long-term intake of fluoride has been established to 
lead to different motor deficits and mental illness.11 

The pons forms part of the brain stem, a very organized 
structure that controls motor and sensory and autonomic 
activities.12 It is a complicated area of the brain, such that a 
small lesion can cause disastrous neurologic deficits, hence 
it is an important organ for survival.12 Also, the pontine 
nuclei located in the basilar part of the pons constitute the 
mossy fibers and forms the major pathway through which 
the cerebrum controls the activity of the cerebellum.12 
The pontocerebellar fibers participate in some important 
functions, which include, vision, planning, initiation, and 
execution of movement.13

Melatonin is a hormone secreted by the pineal gland 
and plays an important role in sleep and wakefulness.14 
Furthermore, melatonin has been implicated in several 
reports to have many therapeutic properties coupled 
with a neuroprotective role, which is evidenced by the 
ability to cross the blood-brain barrier.14,15 However, in 
humans, both the endogenous and exogenous melatonin 
acts as a good antioxidant in reducing oxidative stress.16 
Patients with brain injury have high concentrations of 
endogenous CSF melatonin, which helps to reduce the 
level of oxidants in the pathogenesis of brain injury.16 
Studies have suggested melatonin to work effectively 
against progressive fatal neurodegenerative disorders and 
neuropsychiatric conditions.17,18 

Existing literature have been associated with fluoride 
exposure to the cause of neurological motor and cognitive 
deficit in both matured and growing brains. 19,20 Although, 
there has been lack of data to support the effect of 
fluoride on autonomic functions and possible therapeutic 
approaches. Therefore, the present study was initiated to 
evaluate the impact of sodium fluoride through drinking 
water on the activities of the pons. Additionally, melatonin 
was introduced to restore or stop the deleterious effects of 
sodium fluoride in the brains of these animals.

Methods

Animal Design
Forty-eight adult male Wistar rats (Rattus novergicus), 

weighing between 150-180 g were used for this study. 
The animals were obtained from the animal holdings of 
the Department of Zoology and were acclimatized in the 
animal house of the College of Health Sciences, University 
of Ilorin, for two weeks before the commencement of the 
various treatments. The animals were housed in cages 
under normal light/dark cycle, at normal room temperature/
humidity, and given adequate food and water ad libitum.21 
This study was approved by the ethical review committee, 
faculty of basic medical sciences, University of Ilorin, 
Nigeria (UERC/ASN/2017/859).

The animals were randomly selected and grouped into 
4 groups of 8 rats each i.e. n= 8 per group.  Groups I, II, III 
and IV received 0.2 ml of normal saline (NS), 500 ppm of 
sodium fluoride (NaF)22 via their drinking water, 10 mg/
kg melatonin (MLT)23 and melatonin with sodium fluoride 
concurrently (MLT+NaF) respectively for fourteen days.

Note: the choice of 8 animals per group is to get a 
good statistically significant levels in case of mortality 
during the animal treatments. 

Tissue Collection
All antibodies were procured from Dianova (GmbH/ 

Warbugstr. 45/20354 Hamburg. Also, reagents and buffers 
used in this study were molecular biology grade (99.9% 
pure) from Sigma-Aldrich. At the end of the various 
treatments i.e. Twenty-four hours later, the animals were 
sedated with intramuscular administration of 20 mg/kg 
of ketamine,24 perfused through the heart, and brainstem 
tissues were excised. 

Histological Analyses
The tissues were fixed in 4 percent formaldehyde 

overnight before the pons was excised and further 
equilibrated in 30% sucrose solution. Sections were taken 
at 3 µm on paraffin wax embedded tissue blocks and later 
mounted on a glass slide. Hematoxylin and eosin, Cresyl 
violet stain, and Luxol fast blue stain were used in this 
study. The tissue slides prepared from these stains, were 
observed under a light microscope and photographed 
using the Amscope eyepiece camera, followed by a 
qualitative comparison between control groups and the 
treated groups. 

Determination Biochemical Parameters 
The 0.1g of the pons were homogenized 0.4 ml of 5 

percent sucrose solution and taken to the centrifuge. The 
homogenate was spun for 10 minutes at 5000 revolutions 
per minute and the supernatants were placed in plain 
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bottles and taken for analysis. Oxidative stress parameters 
examined were malondialdehyde and glutathione 
peroxidase. 

Statistical Analyses
This statistical test was performed using GraphPad 

Prism version 7.0. All data are expressed as the 
mean ± standard error of the mean. Differences among 
the experimental groups were considered statistically 
significant when the p-value is <0.05 using one-way 
analysis of variance (ANOVA) and Tukey post-hoc test.

Results

Sodium Fluoride Distorted the Histoarchitecture of 
Basilar Pons: Therapeutic Efficacy of Exogenous 
Melatonin 

The histological investigations were done on the 
basilar part of the pons and normal saline showed normal 
cytoarchitecture of the neurons with evidence of visible 
intact nuclei (Fig 1), normal appearance of Nissl bodies 
(Fig 2), blue and pink coloration indicating properly 
structured myelin fibers around the neuropil respectively 
(Fig 3). Sodium fluoride administration showed some 
condensed nuclei found in the neurons which indicates 
pyknosis, also seen are white patches of cells with empty 
cytoplasm which indicates vacuolation (Fig 1), dispersed 
Nissl bodies were seen which indicated chromatolysis (Fig 
2), the concentration of highly disorganized blue coloration 
which indicated irregular patterns of myelin fibers found 
around the neuropil (Fig 3). Melatonin administration 

shows the majority of the neurons to be normal with their 
nuclei intact (Fig 1), normal arrangements of Nissl bodies, 
(Fig 2) and blue, and pink coloration indicative of normal 
appearance of myelin fibers found around the neuropil (Fig 
3). The administration of melatonin with sodium fluoride 
revealed some intact neurons in the cytoplasm (Fig 1), 
regular patterns of Nissl bodies, (Fig 2) and the pattern 
blue and pink coloration indicated a better appearance and 
arrangement of the myelin fibers around the neuropil (Fig 
3), even though sodium fluoride was also administered.

Melatonin Action against Sodium Fluoride Induced 
Oxidative Damage 

The biochemical investigation revealed that the mean 
concentration of malondialdehyde in sodium fluoride-
treated animals was significantly lower than that of the 
animals that received melatonin and melatonin with 
sodium fluoride (Fig 4), which indicated that melatonin 
reduces the production of malondialdehyde by limiting 
the peroxidation of polyunsaturated fatty acids in the pons 
produced from sodium fluoride actions. Furthermore, there 
was a significant increase in glutathione concentration in 
melatonin treated and melatonin with sodium fluoride-
treated animals, when compared to sodium fluoride-treated 
animals (Fig 5), which revealed melatonin increases the 
activity of enzyme glutathione reductase in the pons and 
help to mop up free radicals produced within the cells of 
the animals (Fig 5), which revealed melatonin increases 
the activity of enzyme glutathione reductase in pons and 
help to mop up free radicals produced within the cells. 

Figure 1: Haematoxylin and Eosin stains showing general cytoarchitecture of the basilar pons of rats, NS: multiple intact 
neurons with the presence of nuclei. NaF: evidence of pyknotic neurons (PN) and vacuolations (V). MLT: series of neurons 
with nuclei their nuclei present. MLT+NaF: few neurons showing evidence of pyknosis and vacuolation when compared 
to NaF. Scale bar 313µ
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Figure 2: Cresyl fast violet stain showing the presence and arrangement of Nissl substance in the basilar pons of rats.  
NS: evidence of regular arrangement of the Nissl bodies in the neurons (N). NaF: dispersed and disintegration of Nissl 
bodies, evidence of chromatolysis as indicated by the chromatolytic neuron (CN). MLT: most of the Nissl bodies were well 
arranged within the cytoplasm. MLT+NaF: few cells undergoing chromatolysis as compared to NaF.  Scale bar 313µ

Figure 3: Luxol fast stain to demonstrate the arrangement of myelin fibers around the Neuropil in the basilar pons of rats. 
The blue and pink colors indicate myelin fibers and neuropil respectively. NS: myelin fibers appeared to be well arranged 
and structured found around the neuropil. NaF: evidence of abnormal appearance of the myelin fibers which indicted 
demyelination around the neuropil. MLT: majority of the myelin fibers appeared well organized around the neuropil. 
MLT+NaF: myelin fibers appeared more structurally organized around the neuropil compared to NaF. Scale bar 313µ
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Figure 4: Malondialdehyde Concentration (MDA): NS: 
served as the positive control, NaF: served as the negative 
control, MLT: was significantly reduced when compared to 
NaF, MLT+NaF: was significantly reduced as compared 
to NaF. * shows a statistically significant difference from 
NS, ** shows statistically significant difference from NaF. 
p<0.05

Figure 5: Glutathione Concentration (GSH): NS: served 
as the positive control, NaF: served as the negative control, 
MLT: was significantly increased when compared to NaF, 
MLT+NaF: was significantly increased as compared to 
NaF. * shows a statistically significant difference from 
NS, ** shows statistically significant difference from NaF. 
p<0.05

Discussion 

This study evaluated the ameliorative potentials of 
exogenous melatonin on sodium fluoride-induced toxicity 
on the pons of adult male Wistar rats. 

The results indicated the detrimental effect of 
sodium fluoride as there was disruption in the pontine 
histoarchitecture of the sodium fluoride-treated rats, which 
showed various degrees of neural degeneration evidenced 
by the appearance of pyknotic cells, vacuolation, 
chromatolysis like changes. This is likely the case of DNA 
fragmentation causing extrusion of the nuclei contents out 
of the cells,25 disruption in protein synthesis as a result of 
damage to the ribosomes, and rough endoplasmic reticulum 
which eventually led to dispersal and disintegration of the 
pontine cells.26,27 Also, the effect of sodium fluoride caused 
axonal degeneration which is evidenced by disruption in 
myelination of the neuropil and this constituted a slow 
conduction of action potentials of cells of the pons. 28 
The treatments with melanin showed reduced cellular 
vacuolation by limiting the extent of DNA fragmentation, 
nuclei extrusions,29–32 and helped reduce the process of 
chromatolysis by enhancing protein synthesis within the 
cells as evidenced by the majority of the cells were not 
undergoing disintegration and dispersion.33 Also, these 
melatonin treatments led to the restoration of axonal 
projections and myelination causing rapid conduction of 
action potentials among the cells of the basilar pons in 
these animals.34 This in line with the previous report that 

suggested pineal protein and melatonin can be useful in 
the control of neurotoxicity induced by fluoride35.

The normal physiological and biochemical activities of 
the brain, includes polyunsaturated fatty acids and energy 
requirements, makes it susceptible to free radicals mediated 
injury associated with sodium fluoride exposure.36 It was 
observed in this study that the pontine malondialdehyde 
concentration in the animals treated with Sodium fluoride 
was high, which indicates lipid peroxidation as a result 
of production polyunsaturated fatty acids,6,36,37 and 
glutathione levels were observed to be significantly lower 
in sodium fluoride-treated animals, which indicates sodium 
fluoride to inhibits the activity of antioxidant enzymes 
glutathione reductase.6,36 Furthermore, in this case, 
sodium fluoride led to the generation of reactive oxygen 
species, impaired mitochondria function, diminished 
cellular respiration, and promoted cytochrome C release 
in the cytosol which eventually causes the production of 
free radicals in the pons of the animals.37 The treatment 
with melatonin showed a reduction in Malondialdehyde 
concentrations in the pons of the animals. This statement 
suggests that melatonin treatments were able to reduce 
the concentration of reactive oxygen species and suppress 
the lipid peroxidation of polyunsaturated fatty acids in 
the pons of the animals. 30,31,38,39 Also, the concentration 
of glutathione was observed to be reduced with melatonin 
treatment. This indicates that melatonin increased the 
activities of glutathione reductase, which in turn limited 
the circulation of free radicals in the pontine cells of the 
animals.15
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Conclusion

The prolonged exposure to sodium fluoride caused 
cytoarchitectural and biochemical damages to the 
pons. However, exogenous melatonin served as a good 
therapeutic agent against sodium fluoride toxicity to the 
pons of adult Wistar rats.
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