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Abstract
Using an extension of the contraction mapping principle, a new approach has been proposed  in proving the
existence of unique solutions of some differential equations.
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Introduction
Over the past few decades there has been a clear
emergence of the idea of contraction mapping in the realm
of nonlinear functional analysis. With a germ of this idea,
it was Banach who was first able to introduce and prove
a very powerful principle, called Contraction Mapping
Principle.

Beginning from the idea of a contraction T and its
fixed point (Baily 1966, Rubinstein 1998, Yosida 1978) we
state the principle and extend it to iterates i.e. a result
similar to contraction mapping principle is obtained for a
mapping T (not contraction) provided that some iterate
of is a contraction. This paper is mainly concerned with
the extraordinary applicability and effectiveness of the
principle to evolve a number of useful results in
differential equations. Particularly the strength will be
given for a new approach in proving the existence of
unique solutions of some differential equations with some
initial conditions. Compared to the proofs through Picard
iterates (Braun 1993) the method of our proof based on
an extension of contraction mapping principle is a new
approach. In fact the major technical novelty is to obtain
the result (3.9) proving that  is a contraction for some
positive integer. Finally, some examples to illustrate the
results are suitably provided.

Preliminaries
Many equations which are of interest in applications
can be put in the form 0where  is a mapping of some
subset of a metric space into itself. Such a pointquite
naturally is called a fixed point of . An ancient method of

solving equations of the form is the method of iteration
i.e. an initial approximationis chosen and successive
approximationsare generated by the formula

If the mappingis continuous and if the sequence
  converges to w , then

Thus for continuous mapping T if the process
(2.1) converges at all, then it converges to a fixed point
of T. However, to prove the convergence of (2.1), we
will in general need a condition on T which is much
stronger than continuity. Specifically, we will require
that T  be contraction in the sense that it always maps
any two points closer together in uniform way as
expressed by the following definition.

             (2.1)

Definition 2.1: Let be a metric space. Then a

contraction of is a mapping with

the property that for some real number ,

.

Note that a differentiable mapping
 is a contraction if and only if there

is a number with .
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Theorem 2.1: (Contraction Mapping Principle, [2])
Let XXT →: be a contraction of a complete metric

space ),( dX . ThenT has a unique fixed point i.e.

there exists a unique point w in X such

that wwT =)( . Furthermore, if 0x is any point

of X and )( nx is a sequence of iterates defined by

.,2,1),( 1 L== − nxTx nn Then0 wxnn =∞→lim .

Remark 2.1: Both conditions of Theorem 1.1 are
necessary sincethe mapping

]1,0(]1,0(: →T defined by 2/)( xxT = is a

contraction map but has no fixed point since ]1,0( is
not a complete metric space. the mapping T : R → R

defined by is not a contraction and has
no fixed point although R is complete.

If T is a contraction mapping, then nT where n is
a positive integer, is clearly a contraction mapping.
However the converse may not be true as can be seen
from the following example.

Example 2.1: The function T : R → R defined

by is not a contraction, but that 2T is.

Thus we see that provided some iterate of T is a
contraction we still get a fixed point result similar to the
contraction mapping principle for T. The following
theorem is an extension of the principle to iterates.

Theorem 2.2: Let ),( dX be a complete metric space

and let XXT →: have the property that for some

integer 0>N , the iterate NT  is a contraction of X.
Then T has a unique fixed point i.e. there exists a unique

point w in X such that . Furthermore, if 1x is
in X, then the sequence of iterates defined

by 1),(1 ≥=+ nxTx nn  converges to w .

Proof:  Since NT is a contraction of the complete metric

space ),( dX , it has a unique fixed point w , say. It
then follows that

This shows that )(wT is another fixed point of NT .
From uniqueness, T has a fixed point w in X and
moreover it is unique since any point which T fixes
clearly remains fixed by . Finally to see

that L,,, 321 xxx  converges to w ,  we re-label

NT as g and note that

)())(())(()( 2212 xgxTTxTTxTx N
NNN ===== ++ L

We now rewrite the sequence L,,, 321 xxx as

.)),(()),(()),((),(,),(),(),(,,,,, 321321321 ⋅LLL xggxggxggxgxgxgxgxxxx NN

This is actually a combination of the N sequences

L

M

L

L

L

)),((),(,

)),((),(,

)),((),(,
)),((),(,

333

22

111

NNN xggxgx

xggxgx
xggxgx
xggxgx

Each row in the above ‘array’ is obtained by
starting at some point of X and iterating with the
contraction of g . By Theorem 1.1, any such sequence

converges to a unique fixed point of NTg = ,
namely w . Since each row in the above ‘array’ is a
subsequence of the combined

sequence converging to w ,  the

sequence must also converge to, as desired ◊ .

Main results
Let F be a real valued function on a nonempty
subset D of the Euclidean space R2. A real valued

function φ  on an interval I is said to be a solution of
the differential equation
                         ),(/ txFdtdx =                          (3.1)

on the interval I if and only if Dtt ∈)),((φ for

all ,is differentiable on I and .)),(()(' ItttFt ∈∀= φφ
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Definition 3.1: Let F be a continuous real valued
function on a nonempty subset D of the Euclidean

space R2.  A real valued function φ on an

interval I containing c is said to be a solution of the
integral equation

                (3.2)

if and only if Dtt ∈)),((φ for all It ∈ , is continuous
on I and for all It ∈

The integral ∫
t

c

dsssF )),((φ is defined for

each It ∈ since the function is

continuous on I . It is easy to see that the differential

equation (3.1) with the initial condition 0)( xcx =  is
equivalent to the integral equation (3.2).

Theorem 3.1: Let F : R× → R be a function of

two variables such that is defined for all x∈R

and . Assume that F is continuous and that

there exists a real number L with

|||),(),(| yxLtyFtxF −≤−
for all R and . Then the differential equation
                                           (3.3)
subject to an initial condition of the type                   has
a unique solution.

Proof: Let.                          Then  X is a complete metric space
with the metric

Define                              by

Then the fixed points of T are the solutions of the integral
equation

],[ baCX =
.

XXT →:

.)),(()))((( ∫+=
t

a

dsssxFtxT β

on          and hence these are the solutions to the
differential equation (3.3). To prove the theorem it
suffices to show that T has a unique fixed point. We
first show that some iterate of T is a contraction of X
into  itself. To each
and, we have

],[ ba

],[, baCyx ∈ and ,

(3.4) But

!2
),()(

)(),(|)))((()))(((|

|)),)(((()),))((((|))))(((())))((((

|)))((()))(((|

22

2

22

yxdatL

dsasyxdLdssyTsxTL

dsssyTFssxTFtyTTtxTT

tyTtxT

t

a

t

a

t

a

−
=

−≤−≤

−≤−=

−

∫ ∫

∫

By induction, it is easy to see

that
!

),()()))((()))(((|
N

yxdatLtxTtxT
NN

NN −
≤− .

It then follows that

|)))(()))(((|sup))(),(( tyTtxTyTxTd NN
bta

NN −= ≤≤

                            
!

)(sup),(
N

atyxdL N
bta

N −
≤ ≤≤

!
),()(

N
yxdabL NN −

=                                     (3.5)

Claim: 0
!

)]([
→

−
N

abL N

as .∞→N

Proof of the claim: Let A be the smallest positive
integer such that AabL ≤− )( . Then

( )
!!

][
N
A

N
abL NN

≤
−

                                        (3.6)
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But for AN > ,

N
A

N
A

A
A

A
A

A
AA

121! −++
= L

and since the product 1
121

<
−++ N
A

A
A

A
A

L , we have

NA
A

N
A AN

!!

1+

<                                                        (3.7)

Let 0>ε be arbitrary. Choose . Then

.1
!

'''
1

NNNNN
A

AA

≥∀≤<−=
+

εεε

Thus

.
!

'
1

NN
NA

A A

≥∀<
+

ε                                       (3.8)

From (3.6), (3.7) and (3.8),

we have .
!

)]([ 'NN
N

abL N

≥∀<
−

ε  Thus

               0
!

)]([
→

−
N

abL N

as .∞→N           (3.9)

Clearly there exists a positive integer M such that

1
!

)]([
<

−
M

abL M

and hence from (3.5), we have

).,(
!

)]([))(),(( yxd
M

abLyTxTd
M

MM −
≤

It proves that MT  is a contraction of X into itself.

By Theorem 2.2, T has a unique fixed point, say )(tφ and
which is the unique solution to the differential equation
(3.3). ◊

In practice, finding whether there is such an L as
in Theorem 3.1 is a major question. This can be seen
from the following theorem and some examples.

Theorem 3.2: Let F : R →× ],[ ba R be a function of

two variables such that ),( txF  is defined for all x∈R

and . Assume that F is continuous, that F is
partially differentiable with respect to x and that

is bounded throughout R× . Then the

differential equation  
subject to an initial condition of the type

has a unique solution.

Proof: Assume that LxF ≤∂∂ |/|  for all x∈ R

and . Fix t and define a function G of x alone

by ),()( txFxG = . Clearlyis differentiable and by
mean value theorem forin R

for some ),( yxz ∈ . Hence

The proof is complete by Theorem 3.1. ◊

Example 3.1: Let )2/(),( 2xttxF t += for x∈R

and . Then the differential equation

 with some initial

condition has a unique solution on

]10,10[− . For, let P be any positive real number
and x any real number. Then

0)](/[)()]/(2[ 222221 ≥++=++− xPPxPxPxP

which yield 122 |)/(2| −≤+ PxPx  so that

.|)/(2||)/(2| 3222222 −− ≤+≤+ PPxPxxPx    (3.10)
Using (3.10) and ,)2/(2/),( 22xtxxtxF t +−=∂∂
we have

Since the same conclusion can be drawn for any interval

],[ nn−  the given differential equation has a unique

solution defined for t∈R.
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Example 3.2: Let ],[ ba  be an interval contained

in ),0( ∞ . Let  for x∈ R

and . Then the differential equation

 with  has a unique

solution on ],[ ba . For,,

.)/(1)/(|/| 12 −≤+≤+=∂∂ aetetexF xxx
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