ABSTRACT

Introduction: *Stenotrophomonas maltophilia* (*S. maltophilia*) is multidrug resistant (MDR) organism usually associated with hospital acquired infections. Here we report a rare case of community acquired *S. maltophilia* empyema in a human immunodeficiency virus (HIV) positive patient.

Case Report: A 54 year old male presented with cough, breathlessness and chest pain for one month. On investigation, radiological picture was suggestive of massive right empyema. Pleural fluid culture grew *S. maltophilia* repeatedly which was treated with cotrimoxazole and levofloxacin based on antibiogram. Following improvement patient was discharged on anti-retro viral and anti-tubercular treatment.

Conclusion: Community acquired invasive *S. maltophilia* infections should be kept as differential diagnosis in immunocompromised patients. Being MDR, appropriate microbiological identification and susceptibility play an important role in treatment and outcome of these patients.

Key Words: *Stenotrophomonas*, immunocompromised, empyema, HIV
Empiric treatment with intravenous piperacillin-
tazobactam, clindamycin and oral anti-tubercular
drugs (ATT) was started along with co-trimoxazole
prophylaxis in view of immunocompromised status.
Inter-costal chest tube drainage was inserted in
right 5th inter-costal space midaxillary line, which
drained around one liter of thick pus. This specimen
was sent for microbiological examination. Gram
stain revealed many pus cells and gram negative
bacilli, suggestive of pyogenic etiology. Smear for
acid fast bacilli, Gene Xpert for M. tuberculosis
complex, were negative. Pleural fluid culture
grew yellow pigmented, non fermenting smooth
colonies. The bacteria were gram negative and
motile. Biochemical tests including catalase,
citrate utilization, esculin hydrolysis were positive;
oxidase, Indole, Methyl red, Voges-Proskauer
reaction, Hydrogen sulfide, urea hydrolysis
were negative. Based on the above findings,
isolate was identified as *Stenotrophomonas maltophilia*
and further confirmed by Microscan
Autoscan-4 (Beckman Coulter semi automated
bacterial identification and susceptibility system).
Antibiotic susceptibility by Kirby Bauer method
showed sensitivity to cotrimoxazole, levofloxacin,
ciprofloxacin, cefoperazone-sulbactam and
polymyxin-B but resistance to imipenem,
gentamicin, amikacin, ceftriaxone and piperacillin
(Figure 2). Following the AST report, cotrimoxazole
was increased to therapeutic dose of 1500 mg
once a day. The patient started improving clinically.
The follow-up chest X-ray showed resolution and
right lung expansion; computed tomography scan
(CT scan) at day 15 showed only mild pleural
collection with thick enhancing right parietal and
visceral pleura associated with multiple air foci.
Subpleural fibrotic streaks in right lower and right
middle lung lobes was seen along with patchy
areas of ground glass attenuation with ill defined
nodular lesions in right upper lung lobes (Figure
3). The chest drain output decreased and repeat
culture of fluid at this time also revealed growth of
S.maltophilia. Hence intravenous levofloxacin
500mg was also added. There was further clinical
and radiological improvement; drain was removed
on day 20 and patient was discharged from
the hospital. At discharge, patient was advised
to continue cotrimoxazole for another 1 week,
ATT and ART including fixed dose combination

Figure 1. Massive right sided pleural effusion.

Figure 2. Antibiotic susceptibility by Kirby Bauer method

Figure 3. CT scan on day 15 of admission in hospital.
of tenofovir, lamivudine and efavirenz and was advised for further follow up at the ART and directly observed treatment short course (DOTS) centre.

DISCUSSION

S. maltophilia is an aerobic, motile, gram-negative multiple-drug-resistant organism. It is an emerging pathogen which is associated with hospital-acquired infections, rarely community-acquired. Our isolate was community acquired as it was isolated from pleural fluid culture from a patient with no previous history of hospitalization. These infections in community settings usually have an associated co-morbid conditions like prior hospitalization, chronic obstructive pulmonary disease (COPD), malignancy, HIV infection, or other immune suppressive conditions, trauma, prior antibiotic use. It mostly causes pulmonary infections though it has also been known to cause eye, heart, brain, bone & joints and urinary tract infections.

Possible community sources of infection may be water supply systems as these bacteria have been isolated from drains, water pipes, faucets, sponges, etc where they can form biofilms. Biofilm formation is enhanced by *S. maltophilia* fimbriae 1 (SMF-1). Other virulence factors are lipopolysaccharides, diffusible signal factor system, flagella, extracellular hydrolytic enzymes like DNase, RNase, proteases, lipases, esterase, and fibrolysin which are encoded by *S. maltophilia* K279a genome. It can also transfer resistance genes to and fro from other MDR bacteria like *Pseudomonas*, *Sphingomonas*, *Serratia*, *Citrobacter*, *Proteus*, *Klebsiella* etc. Global warming is implicated with higher infection rate as the bacterial growth increases in environment which in turn increases the cell concentration leading to more chances of gene exchanges.

In hospitals it has been isolated from tap water, endoscopes, suction tubings. Risk factors for acquisition of this infection include HIV, malignancy, other immune suppressive conditions, COPD, central venous catheterization etc. Our isolate was resistant to many drugs including carbapenems. Patients receiving long term carbapenem pose an increased threat to *S. maltophilia* infection to which it is inherently resistant. Mechanism of drug resistance in *S. maltophilia* include chromosomal or plasmid encoded β lactamases, mobile elements; Class 1 integrons & insertion element common region (ISCR) elements responsible for resistance to cotrimoxazole; phosphoglucomutase (SpgM)-resistance to ceftazidime, gentamicin, nalidixic acid, polymyxin B and E, piperacillin-tazobactam, ticarcillin-clavulanic acid and vancomycin. Other mechanisms include efflux pumps, reduction in outer membrane permeability; modification of antibiotics; mutations of topoisomerase and gyrase genes. Genes for intrinsic resistance has been acquired in natural environment thus indicating the non-clinical settings for resistance transfer.

Cotrimoxazole is considered drug of choice when found to be sensitive, though the sensitivity ranges from >90% to <35%. Alternatives being fluoroquinolones, colistin or tigecycline. Our patient improved on therapeutic dose combination of cotrimoxazole with levofloxacin. In vitro pharmacodynamics studies on *S. maltophilia* have proven that combination of TMP-SMX with ciprofloxacin, ceftazidime, or tobramycin demonstrates higher bactericidal efficacy (P < 0.0001) than co-trimoxazole alone. *S. maltophilia* being resistant to many drugs like β-lactam antibiotics including cephalosporins and carbapenems, aminoglycosides, macrolides, fluoroquinolones, chloramphenicol, tetracyclines, even TMP-SMX and polymyxins, pose difficulty in treatment leading to treatment failure or even death.

Patient presenting with massive pleural effusion and being HIV positive leads to presumptive diagnosis of tuberculosis in countries like India with high tuberculosis prevalence. In turn, pulmonary tuberculosis is an independent risk factor for MDR organism co-infection like *Stenotrophomonas*, *Pseudomonas*, *Enterobacter*, *Proteus* etc. This patient was also treated for *Mycobacterium tuberculosis* based on clinical diagnosis of Koch’s disease along with *S. maltophilia* co-infection.

CONCLUSION

Community acquired invasive *S. maltophilia* infections should be kept as differential diagnosis in immune compromised patients. Being MDR, appropriate microbiological identification and susceptibility testing play an important role in treatment and outcome of these patients.
ACKNOWLEDGEMENT

We sincerely thanks our laboratory staff for their expert technical support.

REFERENCES

2. Wood GS, Underwood EL, Croce MA, Swanson JM, and Fabian TC. Treatment of Recurrent *Stenotrophomonas maltophilia* Ventilator Associated Pneumonia with Doxycycline and Aerosolized Colistin

