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1. INTRODUCTION

In the earlier work [2], the Newman-Penrose formalism [1,2,3]
was used to separate the variables and solve the free Dirac
field equation in the  Friedmann-Roberston-Walker (FRW)
spacetime. The FRW metric can be written as
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Here, a is the scale factor,  η = dt

a
∫  is the conformal time

and r* is the tortoise radial coordinate that is related to the

usual radial coordinate by r* = dr / f =
2
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∫ arctan

Kr

2
,

and K = (0, +1 or -1) for the flat, closed or open universe
respectively. In the work, among other things, the spatial
part of the Dirac equation was completely solved. In this
paper, we will concentrate on the solution for the closed
universe case and discuss the distribution of energy in the
Dirac field.

2. DIRAC EQUATION

It was shown [2] that the equations governing the free Dirac
field reduce to

......... (2)

where k = pa is the comoving momentum, l in λ = ( l + ½) is the
total angular momentum including the spin as well and hence
is a half-integer. The coupled equation (2) can be written as
two pairs of decoupled radial and temporal equations for
each of different cases flat, closed and open universes. The
radial solutions that are regular at the origin, for the closed
universe (K = 1), are

..... (3)

where  Pn
(α , β )(x)  is Jacobi Polynomial [4].  This solution for

the closed universe is regular at r* = π, the maximum value

that r* can have, only if k – l -1 . Although such a quantization
of momentum has appeared in the context of closed FRW
model, this may be a general rule for all gravitationally bound
massive particles.

Writing  x  =  cos r*,  ,  2
1

2
1 ±+= lβ   and n = k – l

– 1, equation (3) can be written as

 R± = A±2− 1
2 α +β +1( ) 1− x( )α / 2+1/ 4

1+ x( )β / 2+1/ 4
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Using the normalization condition:  R±0

π∫
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we get  
 
A±

2
 =  

Γ n +1( )Γ α + β + n +1( ) α + β + 2n +1( )
Γ α + n + 1( )Γ β + n + 1( ) ,
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or, 
 
A±

2
 =  

Γ n +1( )Γ 2l + n + 2( ) 2l + 2n + 2( )
Γ l + n +1( )Γ l + n + 2( ) ......................... (6)

3. ENERGY

The energy momentum tensor quoted in reference [2], let’s
consider the energy density given by its η-η component:
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where Z = RT represents the radial and temporal wave-
function, and Y the angular.  Integrating over a solid angle,
using the normalization condition  Y±

2
dΩ  =  1∫ , we get

............................ (8)

The energy flow rate, after using (2) and simplifying, is given
by

................................. (9)

Integrating this over the three-space volume and simplifying,
we find the total energy [5] flowing out of the volume of
radius  to be

....... (10)

At η  0, ,  

If we take the integration limit for r as (0, π), obviously R± (0)
= R± (π) = 0. So the total comoving energy Ea4 remains
constant. At any r < π, however, there does occur flow of
energy from one region to another. For the closed universe
(K = 1), using the value of R± given by equation (4) along
with the normalized A± given by equation (6) noting the fact
that A- = iA+, we have

.............................. (11)

Since , the rate of flow of energy per unit mass is

given by

................................ (12)

Its plots against  for l = ½, 3/2 and 5/2 for each of n = 0, 1, 2
and 3 have been shown in figures 1a, 1b, 1c and 1d respectively.

From the equation (8) with the help of equation (2), the energy
density can be written as

Fig. 1a: The rate of flow of comoving energy per unit mass for n = 0.
The solid, dotted and dashed curves are for l = 1/2, 3/2 and 5/2
respectively. The maximum energy increase is near r = π/2. Larger l
makes the peak sharper.

Fig. 1b: The rate of flow of comoving energy per unit mass for n = 1.
The solid, dotted and dashed curves are for l = 1/2, 3/2 and 5/2
respectively. There occurs negative energy flow from near r = π/2.  So
energy flow out the region. It may be expected that the two regions,
on either sides may become disjoint over time, indicating the process
of fragmentation large structures.

........................................................... (13)

At η  0, i.e., a 0, , this can simply be written as

Fig. 1c: As in 1c for n = 2, its showing more number of density
contrasts.
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Fig. 1d: As in 1c for n = 3, its showing more number of density
contrasts.

Fig. 2c: As in 2b for n = 2.

.... (14)

Its plots against  for l = ½, 3/2 and 5/2 for each of n = 0, 1
and 2 have been shown in figures 2a, 2b and 2c  respectively.

4. CONCLUSION

In this paper, we have looked at the behavior of the energy of
the free Dirac field in the closed FRW universe. It is generally
expected that the comoving energy density either  a4 for
relativistic or  a3 for non-relativistic particles is conserved.
Although this expectation is true for the massless fields, it is
not for the massive ones. So, there is a finite energy current
in any finite sized volume of the universe.  In fig. 1a, for n = 0,
energy current is positive throughout. The maximum energy
increase is near r ≈ π/2. Larger l makes the peak sharper. For n
= 1, however, there occurs negative energy flow near r = π/2.
So energy flows out of the region. It may be expected that the
two regions, on either sides may become disjoint over time,
but this can be confirmed only after studying the time
evolution. If confirmed, this could explain the process of
fragmentation of large structures. Larger n appears to produce
larger number of such density contrasts.

REFERENCES

[1] Newman, E.T. and Penrose, R. 1962. J. Math. Phys. 3: 566.
[2] Khanal, U. 2006. Class. Quantum Grav. 23: 4353.
[3] Chandrasekhar, S. 1983. The Mathematical Theory of Black

Holes, Clarendon Press, Oxford).
[4] Gradshteyn, I.S. and Ihzhik, I.M. 2000. Table of Integrals, Series,

and Products, Sixth Edition, Academic Press.
[5] Khanal, U. 2006. ICTP Preprint. IC/2006/136.

Fig. 2a: The comoving energy density at a distance r for n = 0. The
solid, dotted and dashed curves are for l = 1/2, 3/2 and 5/2 respectively.
The maximum energy density is near r = π/2. Larger l makes the peak
sharper.

Fig. 2b: The comoving energy density at a distance r for n = 1. The
solid, dotted and dashed curves are for l = 1/2, 3/2 and 5/2 respectively.
It may be expected that the two regions, on either sides may become
disjoint over time, indicating the process of fragmentation large
structures.


