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Abstract: The behavior of the particle number and particle current of the free Dirac field in the closed FRW universe has been
explored. Although the particle number is conserved for the massless fields as expected, it is not for the massive ones. So,
there is a finite particle current in any finite sized volume of the universe. Such currents tend to enhance the density contrast
over time. It is seen that the momenta of the Dirac particle is quantized in a closed FRW model. The particles distribute
themselves in such a way as to resemble that required for the flattened rotation curves of galaxies.
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1. INTRODUCTION

In the Friedmann-Roberston-Walker (FRW) spacetime, the
Newman-Penrose formalism [1,2,3] was used to separate the
variables and solve the free Dirac field equation in the work
of U. Khanal [2]. The FRW metric can be written as
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where a is the scale factor, 7= I ” is the conformal time, 7,

is the tortoise radial coordinate that is related to the usual

2
radial coordinate by r, = jdr/f e arctan—— and K =

(0, +1 or -1) for the flat, closed or open universe respectively.
The spatial part of the Dirac equation was completely solved.
In this paper, we will concentrate on the solution for the
closed universe case and discuss the distribution of the Dirac
particles and the particle current.

2. DIRAC EQUATION

It was shown that the equations governing the free Dirac
field reduce to
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where k = pa is the comoving momentum, lin A = (1 +%2) is
the total angular momentum including the spin as well and
hence is a half-integer. The coupled equation (2) can be written
as two pairs of decoupled radial and temporal equations for

each of different cases flat, closed and open universes. The
radial solutions [4] that are regular at the origin, for the closed
universe (K =1), are
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where P* #)( ) is Jacobi Polynomial [5]. This solution
for the closed universe is regular at =, the maximum value

that r, can have, only if k—1-1 =n = integer. Although such

a quantization of momentum has appeared in the context of
closed FRW model, this may be a general rule for all
gravitationally bound massive particles.

Writing x = cos r, a=Il+LF4, f=
—1, equation (3) can be ertten as
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Using the normalization condition: [*|R_| dr, i.e.,
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3. PARTICLE NUMBER AND CURRENT

Since the continuity equation is satisfied by the very
structure of the Dirac equation, the particle current is found
to be conserved [2]. However, the comoving particle number
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is not conserved for massive Dirac field. So, there is a flow of
particles into or out of a comoving volume. The comoving
particle number density is given by
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where Z = RT represents the radial and temporal wave-
function, and Y the angular. Integrating over a solid angle,
using the normalization condition [v.['v@ = 1, we get
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For early universe (atn > 0),|7.|" — .,
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Using equations (3) or (4), this comoving particle density
can be expressed as
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Its plots against #, for | = 1/2, 3/2 and 5/2 for each of n =0, 1
and 2 have been shown in figures 1a, 1b and 1c respectively. In
order to fit all the graphs within the range, they have been
appropriately scaled. In fig. 1a, it is seen that the particle density
occurs at r~m/2 for n = 0. For larger values of |, the peaks have
become sharper. For n = 1, there are two maxima, on either
sides of r~m/2 . These two overdenisty regions may disjoint
over time and could explain the process of fragmentation of
large structures. Larger n appears to produce larger number of
such density contrasts, as shown in fig. 1c, for n=2.
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Fig. 1a: The comoving particle number density at a surface of radius
7. forn=k-1-1=0,i.e,, k=1+1. The solid, dotted and dashed curves

are for | = 1/2, 3/2 and 5/2 respectively. The density has peaked at
r~m/2. For larger values of |, the peak has become sharper.
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Fig. 1b: The comoving particle number density at a surface of radius
1, forn=k-1-1=1,i.e.,k=1+2. The solid, dotted and dashed curves

are for | = 1/2, 3/2 and 5/2 respectively. The peaks indicating
overdensity regions have split into two, which may be explained as
the process of fragmentation of large structures.
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Fig. 1c: The comoving particle number density at a surface of radius
7, forn=k-1-1=2,i.e.,k=1+ 3. The solid, dotted and dashed curves

are for | = 1/2, 3/2 and 5/2 respectively. The peaks indicating
overdensity regions have split into three as in 1b.

Integrating equation (9) over a spatial volume of radius »,
we get the total comoving particle number within the volume

as
I ik
=0 |
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Its plots against s, for 1 =1/2, 3/2 and 5/2 foreachof n =0, 1
and 2 have been shown in figures 2a, 2b and 2c respectively.
Figures 3a, 3b and 3c show the corresponding plots of the
comoving particle number per unit », at a distance r, , i.e.,

Na'(r) 1 r. - It is well known that MNa®/r represents the

gravitational potential, and is equal to the square of the
rotational velocity of particles in Keplerian orbit. Saturation
of this quantity at large distance is an important feature of
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the rotation curves of spiral galaxies. Here, it is seen that the
Dirac particles distribute themselves in such a density profile
that it resembles with the shape of the observed rotation
curve of galaxies.
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Fig. 2b.
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Fig. 2: Comoving particle number Na3(r) within the volume of radius
r. The solid, dotted and dashed curves are for | = 1/2, 3/2 and 5/2
respectively. Figures a, b and c are for n = 0, 1 and 2 respectively. In
all the cases, the particle distributions seem to resemble that required
for the flattened rotation curves of galaxies.
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Fig. 3a: Na¥/rforn=k—-1-1=0. The solid, dotted and dashed curves
are for I = 1/2, 3/2 and 5/2 respectively. The quantity Na®/r is like the

square of rotational velocity. So, as expected the curves are like rotation
curves of galaxies.
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Fig. 3b: Asiin 3a forn = 1.
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Fig. 3c: Asin 3a forn = 2.

d(Nu") RR.

dn 2
which vanishes at 77, showing conservation of the comoving
particle number, otherwise it gives a net particle current. The
solution of the time part and hence this current will be
calculated in future works.

Using equation (2), it simplifies to (T -171)
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4. CONCLUSION

Since all the matter particles are ultimately fermions, the study
of Dirac field in the real universe is very important. In this
paper, we have looked at the behavior of the particle number
and particle current of the free Dirac field in the closed FRW
universe. Although the particle number is conserved for the
massless fields as expected, it is not for the massive ones. So,
there is a finite particle current in any finite sized volume of the
universe. Such currents tend to enhance the density contrast
over time. It appears that the momenta of the Dirac particle is
quantized in a closed FRW model, the quantization condition
for the comoving momentum beingk =1+n+ 1wheren>0is
an integer, and the total angular momentum | is a half-integer.
As our Universe is almost flat, any overdensity region that

has developed into structures should behave as a closed
universe. Hence, Dirac particles that are gravitationally trapped
in such structures will have their momentum quantized.
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