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Abstract: The coupled Klein-Gordan (KG) field in FLRW space-time has been further studied to explore its effect on 

entropy. The modifications in pressure and density and hence entropy due to coupling have been calculated. There is an 

indication seen that the introduction of the coupling contributes to the generation of entropy in the KG field which may 

probably explain the large entropy of the universe. 
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Introduction 

In the course of studying density perturbation in the context 

of studying and explaining the formation and evolution of 

the large scale structures in the Universe1-6, investigating 

the behaviour of the massive Klein-Gordan (KG) field and 

the Dirac field coupled to the Friedman Lemaitre Robertson 

Walker (FLRW) spacetime has been useful.  In our previous 

works7-11, we have attempted to do so using Neumann-

Penrose (NP) formalism12,13, where the equation was solved 

separating the angular, radial and temporal parts. WKB 

approximation up to the first order was used for the 

temporal part to explain the evolution of the universe. In 

this work, we are further investigating the coupled KG field 

to see its effect on entropy. 

Separation of the KG field equations 

Since it is the extension of our previous works7, some 

equations have been gathered here from the work for ready 

reference.  The metric for FLRW space-time can be written 

as  

𝑑𝑑𝑑𝑑� =  𝑎𝑎�[𝑑𝑑𝑑𝑑� −  𝑑𝑑𝑑𝑑� −  𝑆𝑆�(𝑑𝑑𝑑𝑑� +  sin� 𝑑𝑑 𝑑𝑑𝜃𝜃� ) ] … (1) 

where a is the scale factor which is connected to the 

conformal time 𝑑𝑑  and the co-moving time t by 𝑑𝑑𝑑𝑑 = 𝑎𝑎 𝑑𝑑𝑑𝑑, 

and  

𝑆𝑆 = ��� √��
√�

= �
sin 𝑑𝑑 ,       𝑘𝑘 = 1  for closed

𝑑𝑑,            𝑘𝑘 =  0  for flat
sinh 𝑑𝑑 ,      𝑘𝑘 =– 1  for open

 … (2) 

 

From the equation of motion 

[ � + 𝑀𝑀� + 𝜉𝜉𝜉𝜉]𝜓𝜓 = 0       … (3) 

where  𝜓𝜓  can be separated into its spatial and temporal parts 

as 𝜓𝜓(𝑑𝑑, 𝑑𝑑) = 𝕋𝕋(𝑑𝑑)𝑓𝑓(𝑑𝑑)   and hence we can write  

� �
�� 𝜕𝜕�𝑎𝑎�𝜕𝜕� + 𝑀𝑀�𝑎𝑎� + 𝜉𝜉𝜉𝜉𝑎𝑎�� 𝜓𝜓 = ∇�𝜓𝜓 = Constant 𝜓𝜓 =

(𝑘𝑘 − 𝑝𝑝�)𝜓𝜓       … (4) 

Here the separation constant 𝑝𝑝� can identified with the co-

moving momentum: 𝑘𝑘 = 𝑝𝑝𝑎𝑎 and 𝜉𝜉 as the coupling constant. 

This can further be written as 

�𝜕𝜕�
� + 𝑀𝑀�𝑎𝑎� + (𝜉𝜉 − �

�
)𝜉𝜉𝑎𝑎�� 𝑎𝑎𝑆𝑆𝜓𝜓 = �𝜕𝜕�

� +

�
�� ∇��

� � 𝑎𝑎𝑆𝑆𝜓𝜓 = (Constant − 𝑘𝑘) 𝜓𝜓 = (−𝑝𝑝�)𝜓𝜓 … (5) 

Rearranging and using the expressions of energy 

momentum 𝑇𝑇    �
�  and its time and spatial components 𝑎𝑎�𝑇𝑇    �

�  

and −𝑎𝑎𝑇𝑇    �
�  , we get  

𝐷𝐷�𝑇𝑇    �
� = −2𝜉𝜉𝜉𝜉    �

� 𝐷𝐷�|𝜓𝜓|�   … (6) 
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The separated radial and angular parts of 𝜓𝜓 will be removed 

using the normalization condition:  

∫ |𝑓𝑓(𝑟𝑟)|� sin� 𝑟𝑟 sin 𝜃𝜃 𝜃𝜃𝑟𝑟 𝜃𝜃𝜃𝜃 𝜃𝜃𝑑𝑑 = 1, and leaving only the 

temporal part 𝕋𝕋: 

�
��

�
��

𝑎𝑎� 𝑇𝑇    �
� +  ��

�
 𝑇𝑇�

� = −2𝜉𝜉𝜉𝜉    �
� �

��
|𝕋𝕋|�   … (7) 

Converting 𝜃𝜃𝑑𝑑 to da (since ��
��

= 𝑎𝑎′), replacing 𝑇𝑇�
� by 𝜌𝜌 - 3P 

and rearranging the right hand side, 

�
��

�
��

𝑎𝑎� 𝑇𝑇    �
� +  ��

�
 = −2𝜉𝜉 �

��
�𝑎𝑎�𝜉𝜉    �

� |𝕋𝕋|�� +

 2𝜉𝜉 |𝑇𝑇|� �
��

(𝑎𝑎�  |𝕋𝕋|�)   … (8) 

The various values to be used are listed below 

𝑎𝑎′� =  ���
��

�
�

=  𝐻𝐻�
�[Ω�𝑎𝑎� + Ω�𝑎𝑎� + Ω�]  … (9) 

which is given by the Friedman-Lemaitre equation such that 

Ω�, Ω�, and Ω� are densities contributed by the 

cosmological constant, curvature and radiation, 

respectively, in units of the critical density at the time η� 

when the scale factor is normalized to 𝑎𝑎� = 1; 

𝑎𝑎�� =  𝐻𝐻�
�[2Ω�𝑎𝑎� + Ω�𝑎𝑎]   … (10) 

𝑎𝑎��� =  𝐻𝐻�
�[6Ω�𝑎𝑎� + Ω�] 𝑎𝑎′  … (11) 

𝑎𝑎�𝜉𝜉    �
�  =  𝜉𝜉�� = 3 ����

�
− ���

�� �  … (12) 

 = 3𝐻𝐻�
� �Ω�𝑎𝑎� − ��

�� �  (using Eq. (8) & (9)) 

𝑎𝑎�𝑇𝑇    �
�  =  𝑇𝑇�� = 𝑎𝑎�𝜌𝜌 = 𝑛𝑛𝑎𝑎�𝜀𝜀  … (13) 

Normalizing the total comoving particle number as 

𝑁𝑁𝑎𝑎� = 2𝜋𝜋�𝑛𝑛𝑎𝑎� = 1, the comoving particle density is 

obtained as 

 𝑛𝑛𝑎𝑎� = 1/2𝜋𝜋� and the comoving energy density as 

𝜌𝜌𝑎𝑎� = 𝑛𝑛𝑎𝑎�𝜀𝜀 = � �
���� 𝜀𝜀  …(14) 

The temporal wave function is given by 

|𝑎𝑎𝕋𝕋|� = ���

���
 ⇒  |𝕋𝕋|� = �

���(��)
   … (15) 

The comoving total energy 𝑎𝑎𝜀𝜀 is given by 

(𝑎𝑎𝜀𝜀)� = 𝑝𝑝� + 𝑎𝑎�𝑀𝑀� + 3𝜉𝜉 ����

�
+ ���

�� + 2𝐾𝐾�   … (16) 

Using Eq. (8) and (9), this becomes 

(𝑎𝑎𝜀𝜀)� = 𝑝𝑝� + 𝑎𝑎�𝑀𝑀� + 3𝜉𝜉𝐻𝐻�
� �Ω�𝑎𝑎� + ��

�� �   … (17) 

The pressure P is given by 

𝜌𝜌 − 3𝑃𝑃 =  ���

�
⇒ 3𝑃𝑃 =  𝜌𝜌 −  ��

�����(��)
  …. (18) 

 

Entropy of coupled kg field 

We now use the information/relations gathered in the 

previous section to calculate the entropy of coupled KG 

fields / particles. Using Eq. (12), (9) and (10) in (8), we get 

𝜃𝜃 �𝑎𝑎� � 𝑇𝑇    �
� +  6𝜉𝜉 𝐻𝐻�

�  �Ω�𝑎𝑎� −
Ω�

𝑎𝑎
� |𝕋𝕋|� �� 

+𝜃𝜃𝑎𝑎� �𝑃𝑃 + 2𝜉𝜉 𝐻𝐻�
� |𝑇𝑇|� �3Ω�𝑎𝑎� + ��

�
��  …(19) 

which is in the form  𝜃𝜃(𝑎𝑎�𝜌𝜌���)  +  𝑃𝑃��� 𝜃𝜃𝑎𝑎� = 0 … (20) 

where, 

 𝜌𝜌��� =  𝑇𝑇    �
� +  6𝜉𝜉 𝐻𝐻�

�  �Ω�𝑎𝑎� − ��
�

� |𝕋𝕋|�   … (21) 

𝑃𝑃��� =  𝑃𝑃 + 2𝜉𝜉 𝐻𝐻�
� |𝕋𝕋|� �3Ω�𝑎𝑎� + ��

�
�  … (22) 

Some typical plots of them have been shown in Fig.-1 and 

Fig.-2.    

The Eq. (19) is the standard entropy conservation equation: 

𝜃𝜃(𝜌𝜌 𝑉𝑉) + 𝑃𝑃 𝜃𝜃𝑉𝑉 = 𝒯𝒯 𝜃𝜃𝑑𝑑 = 0 so that the entropy is given by 

𝑑𝑑 =  � (���)
𝒯𝒯

   … (23) 

Since the temperature, 𝒯𝒯 ~ 1/a, for the coupled KG 

fields/particles, the effective entropy per comoving volume 

is given by  𝑑𝑑��� =  𝑎𝑎�(𝜌𝜌��� + 𝑃𝑃���)   … (24) 

Its typical plots have been shown in Fig.-3. Interestingly, 

the curve is flat across a short period around a = 0.5 (where 

we have taken a = 1 at around equilibrium between 

cosmological constant and radiation with small contribution 

of curvature) and then rises up. Also the entropy is overall 

larger for larger coupling constant. 
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Figure 1: Effective energy density of coupled KG fields. The solid 

curve is for the coupling constant, 𝝃𝝃 < 1/6, dotted one is for 𝝃𝝃 = 1/6 and 

dot-dashed for 𝝃𝝃 > 1/6. In the early period, the energy density with 

lower coupling constant has dominated whereas for later epochs, 

larger coupling constant has contributed to larger energy density. 

  

Figure 2: Effective pressure variation with scale factor at various 

coupling constant. The solid curve is for the coupling constant, 𝛏𝛏 < 1/6, 

dotted one is for 𝛏𝛏 = 1/6 and dot-dashed for 𝛏𝛏 > 1/6. Larger the coupling 

constant, larger the pressure. 

 

Figure 3: Effective entropy of coupled KG field per comoving volume 

at various coupling constant. The solid curve is for the coupling 

constant, 𝛏𝛏 < 1/6, dotted one is for 𝛏𝛏 = 1/6 and dot-dashed for 𝛏𝛏 

> 1/6. The effective entropy is seen to grow towards both small 

and larger a while remaining constant at small middle region 

abound a = 0.5 where we have taken a = 1 at around  𝛀𝛀𝚲𝚲 ≈

 𝛀𝛀𝐑𝐑 ≈ 𝟓𝟓𝟓𝟓% .  

Conclusions 

In this work, we have attempted to interpret the 

conservation of the energy-momentum of massive Klein-

Gordon field coupled to a background FLRW spacetime. 

The coupling is seen to introduce viscous like terms 

consisting of one part that can be added to the comoving 

density as an energy generated by the viscous flow, and the 

remaining part can be added to pressure which can be 

considered as an additional pressure offered to the viscous 

fluid. Then we see that the comoving entropy can be written 

as 𝒮𝒮��� =  𝑎𝑎�(𝜌𝜌��� + 𝑃𝑃���)  ; where it should be noted that 

this is basically the familiar form with temperature T ~ 1/a: 

The plot for S reveals that it grows at both small and large 

a; and becomes flat at mid region. The plot of the pressure 

has also shown interesting trend. While it is high at small a 

and almost flat for large a, it goes to a minimum at some 

value at the middle. Further detailed investigation must be 

done to find out whether this process can account for the 

large entropy of the Universe14. 
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