
SOME DISCRETE OPTIMIZATION PROBLEMS 
WITH HAMMING AND H-COMPARABILITY 

GRAPHS 
Tanka Nath Dhamala∗ 

ABSTRACT 

Any H-comparability graph contains a Hamming graph as spanning 
subgraph. An acyclic orientation of an H-comparability graph contains an 
acyclic orientation of the spanning Hamming graph, called sequence graph in the 
classical open-shop scheduling problem. We formulate different discrete 
optimization problems on the Hamming graphs and on H-comparability graphs 
and consider their complexity and relationship. Moreover, we explore the 
structures of these graphs in the class of irreducible sequences for the open shop 
problem in this paper. 

INTRODUCTION 

We consider a strongly NP-hard open-shop scheduling problem O || 
Cmax, where each job i  {1, . . . , n} has to be processed on each machine j 

{1, 2, . . . ,m} exactly once without preemption for the positive time pij . 
Assume that each machine can process at most one job at a time and each job can 
be processed on at most on machine at a time. Let P = [pij], SIJ = {oij | pij > 0} 
and C = [C1, . . . ,Cn] be the matrix of processing times, the set of all operations 
and the vector of completion times of all jobs, respectively, so that 

iIi CC ∈= maxmax  and ijij cC maxmax =  hold. A sequence is represented 
either by an acyclic digraph (sequence graph) G = (SIJ, E), where E represents the 
union of all machine orders and all job orders, or by a rank matrix A = [aij] (also 
called sequence) with specific sequence property that for each integer 1>ija  

there exists 1a ij −  in row i or in column j or in both (Dhamala 2007). 

Our major task is to find an acyclic (feasible) combination of all 
machine orders (the order in which a certain job is processed on the 
corresponding machines) and all job orders (the order in which a certain machine 
processes the corresponding jobs), called sequence, which minimizes the 
maximum completion time, that is an optimal schedule. The set of all n × m 
sequences is denoted by nmS . A sequence A is called reducible to another 

sequence B if )()( maxmax ACBC ≤ for all nmPP∈ , we write AB p . A sequence 

A is called strongly reducible to B, denoted by AB p  if AB p but not BA p . 
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Two sequences A and B are called similar, denoted by BA ≈ if AB p  and 

BA p  hold. A sequence A is called irreducible if there exists no other non-

similar sequence B to which A can be reduced. The irreducible sequences are the 
minimal sequences with respect to the partial order p  and hence are locally 
optimal elements. The set of all irreducible sequences contains at least one 
optimal solution for the problem O || Cmax independent of the processing times. 
Investigations show that the ratio of all irreducible sequences to the all sequences 
decreases drastically as the size of the problem grows. Therefore, it is believed 
that the structures of these sequences would help for the development of exact or 
heuristic algorithms for this problem. 

The problem O2 || Cmax is solvable in time O(n) and it is NP-hard for n 
≥  3, (Gonzalez and Sahni 1976). Braesel and Kleinau (1996), present an 
algorithm of the same complexity for O2||Cmax by means of block-matrices model. 
We refer to Braesel 1990, for the block-matrices model. 

This dominance relation on the set of all sequences was already introduced 
in 1990’s. The irreducible sequences for the problem O || Cmax on an operation set 
with spanning tree structure and on tree-like operation sets are tested in polynomial 
time. This concept has been generalized by considering a dominance relation between 
a sequence and a set of sequences. Willenius (2000) extends the results for the other 
regular objective functions. Dhamala (2007) has introduced a decomposition 
approach in a sequence. Several necessary and sufficient conditions, which can be 
tested in polynomial time, and some computational results can be found in the 
literature (see, for instance, Braesel, Harborth, Tautenhahn and Willenius, (1999). 
However, up to now, no polynomial time algorithm is known for the decision whether 
a sequence is irreducible, in general. We refer to the references, Andresen (2009), 
Braesel, Harborth, Tautenhahn and Willenius (1999), Dhamala (2007), for the 
updated results. Andresen (2009) presents different mathematical formulations of 
irreducibility (reducibility) theory in the classical open shop scheduling problems 
(Dhamala 2010). 

In this paper, we explain why H-comparability graphs constructed from 
classical open shop irreducible sequences are also interesting for other discrete 
optimization problems. Furthermore, we consider different optimization problems 
on H-graphs and on H-comparability graphs, discuss their relationship and the 
complexity status.  

The paper is organized as follows. Sections 2 and 3 describe some basic 
properties of graph colorings and the comparability graphs, respectively. In 
Section 4, the properties of the comparability graphs in open shop scheduling 
problem are described. We construct a set of solutions for the considered problem 
that contains a global optimal solution for arbitrary numerical input data that is 
also interesting for other optimization problems on H-comparability graphs. We 
formulate these different optimization problems in Section 5 and present their 
relationships. The final section concludes the paper. 
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GRAPH COLORING 

An undirected graph G = (V, E) is called a comparability graph, if there 
exists a transitive orientation of its edges. That is, if the arcs (uv) and (vw) are 
contained in the orientation D = (V, A), then the transitive arc (uw) must be also 
contained in D = (V, A).  

Comparability graphs are perfect graphs, where a graph G = (V, E) is 
called perfect if, for each of its induced subgraphs *G , the chromatic number is 
equal to the clique number. The chromatic number )(Gχ  of a graph G = (V, E) 
is the smallest number of colors that can be assigned to the vertices in V such that 
any pair of adjacent vertices receive two distinct colors. The clique number 
w(G)of G is defined as the largest number of pairwise adjacent vertices in V . 

By assignment of a positive integral weight w(v) to each vertex v of the 
graph G, this property can be extended as follows: For each induced subgraph 

*G of a vertex weighted comparability graph G, the weighted chromatic number 
)( *Gwχ  is equal to the weighted clique number )( *Gwω . The weighted 

chromatic number )(Gwχ  is the smallest number of colors for a weight 
coloring of the given graph, where to each vertex v, a set of colors F(v) of 
cardinality w(v) is assigned with F(v)∩ F(w) = φ  for all adjacent vertices v and 

w. The weighted clique number wω  is equal to the weight of a maximal weighted 
clique in the considered graph. 

Vertex weighted comparability graphs are super-perfect graphs, i.e., the 
interval chromatic number )(Giχ  is equal to the weighted clique 

number )(Gwω . An interval coloring of G is an assignment of each vertex v to 
an open interval Iv of length w(v) such that the intervals corresponding to 
adjacent vertices are disjoint. The number of colors needed for an interval 
coloring is the length of vv I∪ . The interval chromatic number )( Giχ  is the 
minimal number of colors needed for an interval coloring of G. 

The calculations of all introduced chromatic numbers and clique 
numbers belong to NP-hard. However, there exist polynomial algorithms for 
comparability graphs. In this paper property of vertex weighted Hamming graphs 
and H-comparability graphs with a Hamming graph as a spanning subgraph are 
considered. 

COMPARABILITY GRAPHS 

 If there exists a transitive orientation of a given graph G, then the 
reserve orientation is also transitive. We call a comparability graph unique 
orientable if only these two orientations of G are possible. Therefore, an arbitrary 
orientation of a randomly selected edge can be continued to a complete 
orientation of a comparability graph. In the literature there exist two distinct 
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approaches for the orientations of a comparability graph which can be used to 
decide if a given graph is transitive orientable.  

 The first approach is based on the color classes or the implication 
classes. The transitive closure *Γ  of the following relationΓ  is equivalence 
relation on the set of all undirected edges of the comparability graph 

:),( EVG =  

.}{}{}{}{}{}{}{:}{},{ EaccbaborcbabcbabEcbab ∉∧≠=⇔Γ∈∀  

.}{ Eacd ∉∧=   

 We say, the edges {ab}, {cb} form a V-shape, if {ab}Γ {cb} and {ab} 
≠  {cb} is valid. The orientation of one edge forces the orientation of the second 
one. The generated equivalence classes are called the color classes. 

 If we set {ab} = {(ab), (ba)}, then the transitive closure d
*Γ  of the 

following relation dΓ  partitions the set of edges into the equivalence classes, 

called the implication classes: aorcd}{= }{},{ cdab∀  

}{}{}{: abcdabE d ⇔Γ∈ borEbdc ∉∧= }{  If A is an implication class 

of a graph generated by the arc (ab), then the implication class 1−A  is generated 
by the reverse arc (ba). In such a way that the set of edges is spitted into the 
implication classes 11

11 ,...,,..., −−
rr AAAA  and any transitive orientation has to 

contain exactly one of each pair 1, −
kk AA  k = 1, ..., r. An O(n2) time algorithm is 

described for the orientation of a comparability graph by means of implication 
classes by Simon 2000. Clearly, if {ab} and {cb} form a V -shape, then (ab) and 
(cb) belong to the same implication class. Each induced subgraph of a 
comparability graph is also transitive orientable. The following statements are 
equivalent for a graph G = (V, E) which can be used, to test, if a given graph is a 
comparability graph. 

1. G is a comparability graph. 

2. 2. φ=∩ −1
kk AA  for all k = 1, ..., r. 

3. G does not contain a closed odd walk, where no pair of vertices with 
distance 2 are adjacent. 

4. G has a quasi-transitive orientation, i.e. cycles of length 3 are allowed in 
the orientation. 

 The second approach is a dual one and uses the modular decomposition 
of a comparability graph which generates an acyclic orientation of G, which is 
also transitive, if the graph G is a comparability graph. We refer to McConnell 
and Spinrad 2000, Dahlhaus, Gustedt and McConnel 2001, for detail description 
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of the linear time algorithms. With this approach, the transitivity of the generated 
acyclic orientation has to be proved, where the time complexity increases. 

 The transitive closure of an acyclic oriented graph G is the smallest 
transitive oriented graph which contains G. The transitive reduction of a graph G 
is the smallest subgraph of G whose transitive closure is equal to the transitive 
closure of G. The symmetric closure of a directed graph G is generated from G by 
adding all arcs (ab) whenever (ba) ∈  E(G), which makes this graph is 
undirected. From any given undirected graph G a comparability graph can be 
easily constructed: Calculate an acyclic orientation of G and determine the 
transitive closure of this orientation. Obviously, the symmetric closure of the 
obtained graph is a comparability graph. 

OPEN SHOP PROBLEMS ON COMPARABILITY GRAPHS 

 Any sequence can be one-to-one assigned to an acyclic orientation of the 
Hamming graph Kn×Km = (V, E) (called sequence graph), where two operations 
are connected by an edge, if they cannot be processed simultaneously, i.e., they 
belong to the same job or to the same machine. We describe a sequence by the 
rank matrix ][ ikk orRK =  of the corresponding sequence graph, i.e., the entry 

lor ikk =  means that a path to operation oij with maximal number of operations 
has l operations. 

 If each vertex oij is weighted by its processing time pij , the time table of 
a semiactive schedule is given by the completion times cij of the operation oij , 
where cij is the weight of a maximal weighted path to operation oij . The weight of 
a maximal weighted path is equal to the makespan: 

SIJocC ijij ∈= /max{max }. Here, we consider the open shop problem 
O||Cmax to minimize the maximum completion time. 

 We denote a simple graph as H-graph, if it contains a Hamming graph 
Kn × Km as spanning subgraph. An H-graph HG is usually drawn into the plane as 
n row-cliques of size m connected to m column-cliques of size n together with 
diagonal edges. Therefore, Dmn EKKEHGE ∪×= )()(   holds, where ED is 
the set of all diagonal edges. Clearly, for each Hamming graph the set ED is 
empty. Furthermore, an H-comparability graph is an H-graph, which can be 
transitively oriented. We observe: 

1. The symmetric closure of the transitive closure of a sequence graph is an 
H-comparability graph. 

2. There exist H-comparability graphs with more than one sequence 
orientations. 

3. There exist H-comparability graphs without sequence orientation. 
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 An H-comparability graph HG has a sequence orientation, if there exist a 
sequence that the graph constructed by (1) yields HG. The investigation of H-
comparability graphs is important in scheduling theory. All sequences obtained 
by different orientations of a given H-comparability graph have the same 
makespan, that is, the similar sequences which are independent from the given 
processing times. In the set of all irreducible sequences (potentially optimal set) 
there is an global optimal sequence for all processing time matrices. For more 
information of the irreducibility theory, we refer to Andresen 2009, Braesel and 
Kleinau 1996, Braesel, Harborth, Tautenhahn and Willenius 1999, Willenius 

2000, Dhamala 2007, and the references therein. Note that the relation 
p

 

generates a poset in the set of all sequences. The minimal elements of this poset 

are the irreducible sequences. For the sequences A and B the relation AB p
 (B 

p  A) holds, if and only if for the corresponding comparability graphs CG(B) ⊆  
CG(A) (CG(B) ⊂CG(A)) is valid, Braesel, Harborth, Tautenhahn and Willenius 
1999,. 

 There are a number pf sufficient conditions for irreducibility of a 
sequence. Among them, we need in this paper a condition by means of so-called 
sequence implication classes, introduced by Willenius 2000. Here the relation d is 
only applied on the Hamming graph using the non-existent diagonal edges: 

orEbdcaorcdabcdabHGcdab d ∉∧==⇔∈∀ }{}{}{}{}{:}{},{ γ
.}{ Eacdb ∉∧=  

 The transitive closure *Γ d of this relation yields a partition of all arcs of 
the sequence graph in sequence implication classes. Willenius 2000 proved that a 
sequence is irreducible if all arcs belong to the same implication class. In 
particular all latin square sequences LS[n, n, n] are irreducible. Note that this 
property is not satisfied for implication classes. Recall, a latin rectangle LR[n, m, 
r] is an n×m matrix with entries from B = {1, ..., r}, where each element from B 
occurs at most once in each row and column, respectively. It is a latin square if n 
= m = r. In the following section, we explore how comparability graphs 
constructed from irreducible sequences are also interesting for other discrete 
optimization problems. 

OPTIMIZATION PROBLEMS ON H-GRAPHS 

 In this section we consider different optimization problems on H-graphs 
and H-comparability graphs, respectively, and we discuss their relationship and 
their complexity status (Braesel, Bettina and Dhamala 2008). Given the Hamming 
graph Kn × Km with n, m ≥  2 and positive integer weight pij for each vertex vij, 
we formulate 
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Problem 1 O || Cmax: Determine an acyclic orientation of this graph where the 
weight of a maximal weighted path (critical path) Cmax is minimal. 

 The calculation of Cmax needs O(max{n, m)3) time, because the Hamming 
graph contains  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
22
m

n
n

m  edges. If all weights are equal to 1, then cij = rk(vij). 

 Given the H-comparability graph HG on the Hamming graph Kn×Km 

with n, m ≥  2 and positive integer weight pij for each vertex vij , we formulate 
Problems 2 and 3. 

Problem 2 Determine the interval chromatic number iχ  of HG. 

Problem 3 Determine the weight  wω  of a maximal weighted clique. 

 It is already known that the Problems 2 and 3 for arbitrary graphs belong 
to NP-hard, even in the case of unit weights. But they are polynomial solvable for 
H-comparability graphs and it holds wi ωχ = . 

Theorem 1 For a fixed vertex weighted H-comparability graph HG, a maximal 
weighted clique and a minimal interval coloring can be calculated in polynomial 
time. 

Proof: The orientation of a comparability graph can be done by modular 
decomposition in linear time O(|E|), McConnel and Spinrad 2000, which yields a 
complete order of all vertices. Therefore a critical path with weight cij to each 
vertex vij can be calculated in O(|E|) time. 

 Because an orientation of a clique contains a Hamiltonian path, Redei 
1934, the weight of a clique is equal to the weight of the contained Hamiltonian 
path. Therefore, the weight of a maximal weighted clique is equal to the weight of 
a critical path. Then a minimal interval coloring of the vertices can be constructed 
by Ivij = (cij − pij , cij) for all vij ∈  V . If all vertices have unit weights, it follows 

Corollary 1 The calculation of the clique number and the chromatic number of a 
fixed H- comparability graph can be calculated in linear time O(|E|).  

 Given the set of all H-comparability graphs on the Hamming graph Kn × 
Km with n, m ≥  2 and a positive integer weight pij for each vertex vij, we extend 
the Problems 2 and 3 to the Problems 4 and 5 on H-comparability graphs, 
respectively. 

Problem 4 Determine an H-comparability graph HG with minimal iχ (HG). 

Problem 5 Determine an H-comparability graph HG where wω (HG) of a 
maximal weighted clique is minimal. 
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Theorem 2 Consider the Problems 1, 4 and 5 with pij = 1 for all vij. Then the 
problems are polynomial solvable with optimal value max{n ,m} for all problems.  

Proof: We have to construct solutions for these problems with Cmax = max{n, m} 
and show that this value is equal to the clique number and the chromatic number. 
Each sequence, whose rank matrix is a latin rectangle LR[n, m, max{n, n}] = [lrij] 
solves the problems which can be constructed in linear time O(nm). Because we 
have unit weights, it holds lrij = cij, and therefore Cmax = max{n, m} is satisfied. 
For the comparability graph CG(A) corresponding to a rank minimal sequence A, 
the equality Cmax(A) = χ (CG(A))=ω (CG(A)) = max{n, m} holds, by Theorem 1.  

 If the weights are arbitrary, all three problems belong to NP-hard. 
Nevertheless, if one of then problems is solved, then both of the others are solved, 
too. 

Theorem 3 Consider the Problems 1, 4 and 5, with the same positive integer 
weights pij. Then there exists an optimal acyclic orientation in Problem 1 which 
can be one-to- one assigned to optimal H-comparability graphs in Problems 4 
and 5. 

Proof: Let PO1 and PO2 be the partial orders on the sets of all H-comparability 

graphs on Kn×Km with sequence orientation constructed by 
p

and of all H-

comparability graphs HG = (V, E) on Kn×Km which is given by HG1 
p

 HG2 if 

and only if E(HG1) ⊆  E(HG2), respectively. Clearly, PO1 is contained in PO2. 

 Then there has to be an H-comparability graph HG with minimal 

wω (HG) and minimal iχ (HG) in the set of all minimal elements in PO2. Each 
orientation of such minimal H-comparability graph must be a sequence 
orientation. If there is an orientation of a minimal H-comparability graph, which 
is not a sequence orientation, at least one arc belongs to the transitive reduction in 
the set of all diagonal edges of HG, (Willenius 2000). We can cut this arc and 
obtain transitively oriented graph, contradicting the minimality of HG. In this 
way, Problem 1 has been embedded in Problems 4 and 5. 

 Because in the set of all irreducible sequences there is an optimal 
sequence A for Problem 1 independent of processing times, the corresponding 
comparability graph CG(A) is an optimal H-comparability graph for the Problems 
4 and 5. 

 An optimal H-comparability graph CG for the Problems 4 or 5 is 
calculated, this H-comparability graph is also optimal for the Problem 5 or 4, 
respectively, and each orientation of this H-comparability graph belongs to an 
optimal sequence for Problem 1. This follows directly from Theorem 1. 
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 Recently, the theory of reducibility for the open shop problem with 
respect to the H-comparability graphs has been further investigated, (Andresen 
2009, Dhamala 2010). They discuss the complexity issues of the decision 
problem whether a given sequence is irreducible. The results depend on the 
characteristics of the specific diagonal edges of the corresponding comparability 
graphs. It has been shown that the problem can be solved in polynomial time in 
most of the cases and conjectured its status for the remaining. 

CONCLUDING REMARKS 

 The theories of reducibility and irreducibility in the classical open shop 
scheduling problem have been investigated since the beginning of 1990’s. Since 
then several necessary and sufficient conditions have been established to decide 
whether an open shop sequence is irreducible or reducible. For instance, two 
machines (equivalently, two jobs) open shop problems, problems with spanning 
tree structure and the problems with tree-like operations sets have been solved in 
polynomial time. 

 Structural analysis of the sequence implication classes plays an 
important role as sequences with only one-sequence implication classes yields an 
irreducible sequence. Recently, a number of propositions have been made to 
decide its complexity status. It has been established that the critical analysis of the 
diagonal edges are not part of the sequence implication classes or their transitive 
closures play central role. 

 A number of conjectures have been proposed on the literature whose 
decisions would play decisive role on the status of the problem of reducibility. 
Investigations in this field are believed to develop good approximate algorithms 
or heuristics as the number of irreducible sequences is very small in comparison 
to the number of all sequences when the problem size grows. 

 Here in this paper, we analyzed the status of the irreducibility problem in 
the open shop and formulate different equivalent discrete optimization problems 
based on the Hamming graph, H-graphs and the H-comparability graphs. The 
investigations of this work restricted to the open shop problem with makespan 
objective, do have scope to the extension in the case of other shop problems like 
job shop scheduling problems and other general regular objective functions. 
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