A GENERAL THEOREM FOR BILATERAL GENERATING RELATIONS

SHANTI BAJRACHARYA*

INTRODUCTION

The purpose of this paper is to establish a general theorem for bilateral generating relations for a class of polynomials satisfying certain kind of Rodrigues' formula. We may consider this as an extension of the general theorem for bilinear function extended by Saran [6] which also includes a theorem on bilateral generating functions for ultraspherical polynomials derived by Chatterjea [4]. We also discuss some particular cases of this theorem.

The generalized polynomial of our interest will be defined by the following generalized Rodrigues' formula.

$$f_n(x,A,k) = [\phi(x)]^n \mu(n) G(x) (x^{k+1} D + A)^n \{g(x)\}$$

This set of polynomials reduces to Srivastava-Singhal polynomials

Mrs. Bajracharya is Associated with Padmakanya Campus, Bagbazar, T.U.

when D = d/dx and the parameters a,k,p and r are unrestricted in general,

$$A = 0, \phi(x) = x^{-k}, \mu(n) = \frac{1}{n!}, G(x) = x^{-\alpha} \exp(px^{s})$$

and
$$g(x) = x^{\alpha} \exp(-px^{s})$$
.

We prove the following theorem:

Theorem: If there exists

$$f_n(x,A,k) = [\phi(x)]^n \mu(n)G(x) (x^{k+1} D + A)^n \{g(x)\}$$

where g(x), f(x), G(x) [f(x), G(x) _0] are independent of n with A as real parameters and

$$F(x, A, k; t) = \sum_{m=0}^{\infty} a_m t^m f_m(x, A, k)$$

then there exists

$$\frac{G(x) \exp(x^{-A}) \exp\{-\{(x^{-k} - tk \phi(x))\}^{-\frac{A}{k}}\}}{[G(x^{-k} - t\phi(x)k)]^{\frac{-1}{k}}}$$

$$F\left(x^{k}-tk\phi(x)^{-\frac{1}{k}},Ae^{A},ke^{A},\frac{ty\phi(x)}{\phi\left[x^{-k}-kt\phi(x)\right]^{\frac{1}{k}}}\right)$$

$$\sum_{r=0}^{\infty} b_r(y) \frac{f_r(x, A, k)}{\mu(r) r!} t^r$$

where

$$b_r(y) = \sum_{m=0}^r (-1)^m (-r)_m a_m \mu(m) y^m.$$

PROOF

To start with, we assume the relations

(2.1)
$$F(x, A, k; t) = \sum_{m=0}^{\infty} a_m t^m f_m(x, A, k).$$

and

$$(2.2) f_n(x,A,k) = [\phi(x)]^n \mu(n)G(x) (x^{k+1} D+A)^n \{g(x)\}$$

We replace t by $ty/\phi(x)$ in (2.1) and employ (2.2) in (2.1) to yield

(2.3)
$$F\left(x,A,k;\frac{ty}{\phi(x)}\right) = \sum_{m=0}^{\infty} a_m \frac{(ty)^m}{[\phi(x)]^m} [\phi(x)]^n \mu(m)$$

$$G(x) (x^{k+1} D+A)^m \{g(x)\}.$$

We now multiply both sides of (2.3) by $[G(x)]^{-1}$ and then

operate by $e^{t(x^{k+1}D+A)}$ to arrive at

42 A GENERAL THEOREM FOR BILATERAL GENERATING RELATIONS......

(2.4)
$$e^{t(x^{k+1}D+A)} [G(x)]^{-1} F\left(x, A, k; \frac{ty}{\phi(x)}\right)$$

$$e^{t(x^{k+t}D+A)} \sum_{m=0}^{\infty} a_m \mu(m) y^m (x^{k+1}D+A)^m \{g(x)\} t^m.$$

Since

$$e^{t(x^{k+1}D+A)} \phi(x,A,k;t) = \exp(x^{-A}) \exp\{(x^{-k}-tk)^{-\frac{A}{k}}\}$$
$$.\phi\Big((x^{-k}-tk)^{-\frac{1}{k}}, Ae^{A}, ke^{A}, t\Big)$$

the left member of (2.4) may be obtained in the form

(2.5)
$$e^{t(x^{k+1}D+A)} [G(x)]^{-1} F\left(x, A, k; \frac{ty}{\phi(x)}\right)$$

$$= \exp(x^{-A}) \exp \left\{-(x^{-k}-tk)^{-\frac{A}{k}}\right\} \left[G(x^{-k}-tk)^{-\frac{1}{k}}\right]^{-1}$$

$$F\left((x^{-k}-tk)^{-\frac{1}{k}}, Ae^{A}, ke^{A}; \frac{ty}{\phi(x^{-k}-tk)^{-\frac{1}{k}}}\right)$$

The right member of (2.4) may be worked out as follows:

(2.6)
$$e^{t(x^{k+1}D+A)} \sum_{m=0}^{\infty} a_m \mu(m) y^m (x^{k+1}D+A)^m \{g(x)\} t^m$$
.

$$\sum_{m=0}^{\infty} \sum_{r=0}^{\infty} \frac{t^r}{r!} (x^{k+1}D + A)^r \ a_m \ \mu(m) \ y^m (x^{k+1}D + A)^m \ \{g(x)\} \ t^m.$$

$$\sum_{m=0}^{\infty} \sum_{r=0}^{\infty} \frac{a_m \, \mu(m) \, y^m}{r!} \, (x^{k+1} \, D + A)^{m+r} \, \{g(x)\} \, t^{m+r}$$

$$\sum_{r=0}^{\infty} \sum_{m=0}^{r} a_{m} \mu(m) \frac{y^{m}}{(r-m)!} (x^{k+1} D + A)^{r} \{g(x)\} t^{r}$$

$$\sum_{r=0}^{\infty} \sum_{m=0}^{r} \frac{a_{m} \mu(m) y^{m}}{(r-m)! \mu(r)} f_{r}(x,A,k) [\phi(x)^{-r} [G(x)]^{-1} t^{r}$$

$$[G(x)]^{-1} \sum_{r=0}^{\infty} \sum_{m=0}^{r} \frac{a_{m} \mu(m) y^{m}}{(r-m)! \mu(r)} f_{r}(x,A,k) \left[\frac{t}{\phi(x)}\right]^{r}$$

We replace $t/\phi(x)$ by t and then equate (2.5) and (2.6) to get the desired result

(2.7)
$$\frac{G(x) \exp(x^{-A}) \exp\left\{ \left\{ x^{-k} - tk \phi(x) \right\}^{-\frac{A}{k}} \right\}}{G((x^{-k} - t\phi(x)k)^{-\frac{1}{k}})}$$

$$F\left(\left[x^{-k}-tk\;\phi(x)\right]^{-1/k},\;Ae^{A},\;ke^{A};\;\frac{ty\;\phi(x)}{\phi\left(\left(x^{-k}-tk\;\phi(x)\right)^{-1/k}\right)}\right)$$

$$\sum_{r=0}^{\infty} b_r(y) \frac{f_r(x,A,k)}{\mu(r) r!} t^r$$

where
$$b_r(y) = \sum_{m=0}^r (-1)^m (-r)_m a_m \mu(m) y^m$$
.

SPECIAL CASES

(a) We set k = -1, $\phi(x) = 1$, A = 0, and replace t by -t and y by -y to arrive at the result

(3.1)
$$\frac{G(x) H(x-t,ty)}{G(x-t)} = \sum_{r=0}^{\infty} \frac{(-t)^r}{\mu(r)r!} b_r^{(1)}(y) h_r(x)$$

where $h_r(x) = f_r(x,0,-1) = \mu(r) G(x) D^r \{g(x)\},$

$$H(x-t,ty) = F(x-t,0,-1,ty)$$

and
$$b_r^{(1)}(y) = \sum_{m=0}^r (-r)_m \mu(m) a_m y^m$$
.

Which is the general theorem extended by Saran [6].

(b) We take,

$$A = 0$$
, $\phi(x) = x^{-k}$, $\mu(n) = 1/n!$

$$G(x) = x^{-\alpha} \exp(px^s), g(x) = x^{\alpha} \exp(-px^s)$$

$$f_n(x,0,k) = G_n^{\alpha}(x,s,p,k)$$
 (Srivastava - Singhal Polynomial [8])

With these substitutions, the relation (2.7) becomes

(3.2)
$$\exp[px^{s}](1-(1-tk)^{-\frac{s}{k}}](1-tk)^{-\frac{\alpha}{k}}$$

$$\cdot \psi \left(\frac{x}{(1-tk)^{\frac{1}{k}}}, \frac{y}{(1-tk)} \right)$$

$$= \sum_{r=0}^{\infty} b_r(y) G_r^{\alpha}(x,s,p,k) t^r$$

where
$$b_r(y) = \sum_{m=0}^r a_m \binom{r}{m} y^m$$
,

$$\psi\left(\frac{x}{(1-tk)^{\frac{1}{k}}},\frac{y}{(1-tk)}\right) = F\left(\frac{x}{(1-tk)^{\frac{1}{k}}},0,k,\frac{y}{(1-tk)}\right)$$

Thus we have obtained the bilateral generating relation for the Srivastava-Singhal polynomial $G_n(x,s,p,k)$. Similar result has been deduced earlier by Singhal-Srivastava [7] and by the authors [2].

(c) We set p = s = 1, a = a + 1 and use the relation (Carlitz [3]) $\overset{a}{Y}_r$ $(x;k) = k^{-n} \overset{a}{G}_r$ (x,1,1,k) where

[α >-1, k is non-zero positive integer] in (3.2) to obtain the following bilateral generating relation for the biorthogonal polynomial $\overset{\alpha}{Y}_{r}(x;k)$

(3.3)
$$\exp \left[x \left\{ (1-(1-t)^{-\frac{1}{k}}) \right\} \right] (1-t)^{-\frac{1}{k}}$$

$$G\left(\frac{x}{(1-t)^{\frac{1}{k}}}, \frac{y}{(1-t)}\right)$$

$$= \sum_{r=0}^{\infty} b_r(y) y_r^{\alpha}(x;k) t^r$$

where
$$b_r(y) = \sum_{m=0}^r a_m \binom{r}{r} y^m$$
,
$$G\left(\frac{x}{(1-t)^{\frac{1}{k}}}, \frac{y}{(1-t)}\right) = F\left(\frac{x}{(1-t)^{\frac{1}{k}}}, 0, k, \frac{y}{(1-t)}\right)$$

(d) For k=1 and
$$Y(x;1) = L_r(x)$$
, (3.3) becomes

(3.4) $(1-t)^{-\alpha} \exp\left(\frac{-tx}{1-t}\right) \lambda \left(\frac{x}{1-t}, \frac{y}{1-t}\right) = \sum_{r=0}^{\infty} b_r(y) L_r^{\alpha}(x) t^r$

where, $b_r(y) = \sum_{m=0}^{r} a_m \binom{r}{m} y^m$,

$$\lambda \left(\frac{x}{(1-t)}, \frac{y}{(1-t)}\right) = F\left(\frac{x}{(1-t)}, 0, 1, \frac{y}{(1-t)}\right)$$

It represents a bilateral generating relation for the Laguerre polynomials which has been proved earlier by Al-Salam [1], Singhal-Srivastava [7] and Changdar and Chatterjea [5] by different methods.

EFERENCES		
1. Al-Salam W. A.,	1964,	Operational representation for Laguerre and other polynomials. Duke Math. J. Vol. 31, 127-142,.
2. Bajracharya S.,	1995,	Analytical and Group Theoretic Study of some Special Functions. Ph.D Thesis, Tribhuvan University, Kath.
3. Carlitz,L.	1968,	A note on certain biorthogonal polynomials. Pacific J.Math.Vol.24, 425 to 430.
4. Chatterjea, S.K.	1969,	A bilateral generating function for the ultraspherical polynomials Pacific, J. Math. 29, 73-76,.
5. Chongdar, A.K. and		
Chatterjea, S.K.,	1981,	On a class of Trilateral generating relations with Tchebychev polynomials from point of one parameter group of continuous transformation. Bull. Cal. Math. Soc. 73, 127-140,.
6. Saran, S.,	1970,	A General function for bilinear generating functions. Pacific, J. Math. Vol. 35, No. 3,783-786,.
7. Singhal ,JP and		
Srivastava, H.M,	1972,	A class of bilateral generating functions for certain classical polynomials. Pacific J. Math. Vol. 42

No.755-762,.

1971, A class of polynomial defined by

generalised Rodrigues' formula, Ann.

Mat. Pura Appl.(4),90,75-,90,75-85,.

8. Srivastava, H.M. and

Singhal J.P.,