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ABSTRACT

Scattering dynamics play a crucial role in understanding the fundamental interactions
between particles and external fields. When a particle interacts with a target potential
under the influence of an external laser field, its motion and energy distribution can be
significantly modified. The aim of this work is to study the scattering dynamics of electron-
gaussian potential in presence of bichromatic linearly polarized laser fields. To fulfill the
objective, we obtained S-matrix use Volkov wave equation and Gaussian potential with
the help of Kroll-Watson approximation. Using relation of S-matrix and T-matrix, the
obtained T-matrix which is directly related to differential cross section (DCS). The obtained
DCS used to study the scattering dynamics of electron behavior with gaussian potential in
laser field. The developed DCS equation was computed, the computed result shows DCS
increases with increase of incidence energy of electron and becomes maximum and finally
decreases. The DCS with photon energy is highly fluctuations and decrease with increase
of scattering angle. The DCS of Bessel first order found greater than Bessel second order.
These findings aid in laser-assisted collision studies, plasma diagnostics, nanomaterial
design, and quantum device optimization by revealing electron behavior, multiphoton
effects, and resonance control under bichromatic laser fields.

1. INTRODUCTION

equation, focusing on photoionization rates in strong-field regimes

This study investigates DCS in the presence of a linearly polarized
laser field, employing Bessel functions of varying orders, with
oxygen molecules modeled under the Lennard-Jones potential.
The analysis demonstrates that electron energy can be absorbed
or emitted during interactions, producing pronounced resonance
peaks in the DCS, which indicate potential formation of new
particle structures, while minima correspond to strong electron—
target coupling and smaller composite formation. The Bessel zero-
order exhibits higher DCS values compared to higher orders, and
at zero-radian scattering angle, the DCS reaches its minimum,
emphasizing enhanced particle interactions at this orientation [1].
the
Schwinger equation for a one-dimensional 6-function potential

Analytical studies using coupled-channel Lippmann—
further show that electrons can absorb or emit energy in integer
multiples of the laser frequency, resulting in elastic, inelastic, and
superelastic scattering amplitudes with observed stimulated
recombination resonances [2]. Accurate modeling of laser-assisted
multiphoton transitions also requires consideration of realistic
laser field properties, including focusing, pulse structure,
statistical which

significantly affect scattering cross sections in fast electron—atom

multimode behavior, and fluctuations,
collisions [3]. Previous studies have explored electron-laser
interactions using attractive &-function potentials, primarily

through numerical solutions of the time-dependent Schrédinger
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(10°-10" W/cm?), while ultra strong-field domains (210 W/cm?)
remain less examined. Laser-modified scattering rates for this
potential are not well-studied, though related phenomena have
been analyzed in other systems, showing stabilization of bound
high-intensity fields [2]. The Kroll-Watson
is widely employed, treating electron-laser

states under
approximation
interaction nonperturbatively but neglecting direct laser-atom
coupling, predicting that the field-free scattering cross section is
modified mainly by electron-laser interactions [4]. In strong fields,
electrons can undergo scattering, leading to above-threshold
ionization, harmonic generation, and further excitations [5], while
intense lasers enhance charge exchange in ion-atom collisions
under resonant conditions [6]. Quantum-orbit theory effectively
describes multistep processes [7] by MiloSevi¢ et al. Realistic laser
models incorporating multimode behavior and pulse shaping are
essential for accurate light-matter interaction simulations [8].
Correlated double ionization highlights strong electron correlation
in  multiphoton ionization [9], and ponderomotive effects
dominate electron-photon scattering in high-intensity fields [10].
Beyond fundamental physics, laser microtechnology enables
precise fabrication of micrometer-scale structures for optics and

electronics applications [11].

The scattering dynamics of particles interacting with a Gaussian
potential in the presence of a bichromatic laser field is a complex
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phenomenon studied within atomic physics and laser-matter
interaction, integrating concepts from quantum mechanics and
electromagnetism [12-15]. A Gaussian potential is often employed
in theoretical models due to its analytical tractability and its ability
to represent localized interactions, such as those occurring in
quantum dots or screened atomic potentials. The presence of a
bichromatic laser field, which consists of two laser components
with different frequencies (e.g., w and 2w or w and 3w) and a
controllable relative phase, introduces a powerful tool for
coherent control of scattering processes [16-17]. The theoretical
framework for analyzing such interactions typically involves
solving the time-dependent Schrédinger equation or employing
approximations like the Born approximation, particularly the first
and second Born approximations. The Volkov wave functions are
often used to describe the states of electrons in the presence of a
strong laser field [18]. These approaches allow for the calculation
of DCS and total differential cross sections, which are crucial for
understanding the probability and angular distribution of
scattered particles [19].

Despite extensive studies on laser-assisted scattering using
monochromatic fields and simple potentials, the effects of
Gaussian potentials under bichromatic laser fields remain
particularly  regarding

multiphoton interactions, and nonlinear frequency-dependent

underexplored, phase-dependent,
effects. Most prior work has focused on &-function or Lennard-
Jones potentials, often neglecting realistic laser properties and
coherent control over electron dynamics. Investigating electron
scattering in a bichromatic field composed of two frequencies
(e.g., w and 2w or w and 3w) with a controllable relative phase
provides enhanced flexibility, enabling precise manipulation of
energy and momentum transfer, resonances, and multiphoton
processes. Understanding these dynamics is crucial for laser-
assisted collision studies, plasma diagnostics, nanomaterial
design, and quantum device optimization, as it reveals detailed
electron behavior under realistic experimental conditions and
allows coherent control that monochromatic fields cannot

achieve.
2. MATERIALS AND METHODS

The time dependent Schrédinger equation can be used to describe
the conduction-band electrons dynamics in the (x,y) plane [15, 20]

as:
1 e 2 0X(x,y,t)
lzm'<p‘z““)) (0 —=

represents the time-dependent Schrodinger equation for an

X(x,y,t) = ik

electron in the presence of an external electromagnetic field,
where m’ is the electron mass, p is the momentum operator, e is
the electron charge, c is the speed of light, A(t) is the time-
dependent vector potential, and V(r) is the potential energy. The

2
term (p—%A(t)) accounts for the coupling between the

charged particle and the electromagnetic field through the
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minimal coupling scheme, while the right-hand side describes the
time evolution of the wave function X (%, y,t). The corresponding
solution of equation (1) is presented in equation (2) [21-24].

1

X(r,t) = ——sexpli.(r+= [A(Ddt)—iZ¢e -

( ) (2n)2 p{ h ( mlf ( ) ) h

. e?

i [ A%(6) dt} 2)

which is known as the Volkov wave function, describing a free
electron dressed by the electromagnetic field; here r is the
position vector, E is the electron energy, and the exponential
terms represent, respectively, the plane-wave contribution, the
phase modulation due to the vector potential, and the additional
phase shift arising from the field intensity through the [ A%(t)dt
term. The vector potential for bichromatic linear polarized laser
[25].
&1 Em
Alt)=¢ (—) cos(wt) + €,, (—) cos(mwt + ¢) 3)
W mw

where €; and g, denote the independent polarization vectors. For
simplicity, both fields are assumed to have the same linear
polarization. Here, &; and &, represent the corresponding electric
field strengths, while ¢ indicates the relative phase. In practical
applications, the parameter m typically takes the values 2 or 3,
corresponding to the second and third harmonics. Experimentally,
the achievable ratio &,,/&; is usually around 10% in nonlinear
media, and this ratio is even smaller for the third harmonic. Now
putting value of A(t) form equation (3) in equation (2) and solving
as:

1
(2m)
€m (;_1:)) cos(mwt + ¢) dt) - i%t -

X(r,t) = exp{i% .(r +% [ e (%) coswt +

3
2

i% [ (61 (%‘) coswt + €, (%) cos(mwt + ¢>))2 } 4)
Equation (4) represents the wavefunction of a charged particle in
an oscillating electromagnetic field, known as the Volkov-type
solution. Physically, it describes how the particle’s phase and
motion are modified by the presence of combined laser fields the
fundamental frequency w and its harmonic mw (usually m = 2 or
3). On integration Equation (4) and solving with omitting last term
of equation (4) because it is very small in magnitude and it doesn’t
play the vital role. When system is unperturbed due to laser field
then we apply Kroll-Watson Approximation for perturbation. S-
matrix is used to get the system information and it is also used
when times tends to infinity

X(r,t) = ! 3
(2m)2

€m (1:—0")‘2) sin(mwt + ¢) ] - iEt}

exp {iprcose +ip [61 (%) sin(wt) —
(5)

Physically, this equation emphasizes how the particle’s position
and phase vary with time due to the external electric fields, while
neglecting the overall phase factor that has no observable effect.
The term prcosf accounts for the propagation of the wave in
space, and the sine-dependent terms represent the field-driven
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displacement of the electron caused by the oscillating
components of the electric field. Thus, equation (5) captures the
essential dynamic behavior of the system in a simplified form,
focusing only on the physically meaningful, time-dependent
motion. Now using Kroll-Watson Approximation S-matrix [26-28]
is defined as

3}

S =80 — 3 | XC.ONOIX(0) de (©)
—o
Where Equation (6) represents, the S-matrix with transition
amplitude [second term of Equation (6)] between an initial
quantum state X;(r,t) and a final state X¢(r,t) under the
influence of an interaction potential V(7). Physically, this equation
comes from time-dependent perturbation theory and describes
how an external field or potential induces a transition between
two quantum states. The first term, &, corresponds to the case
where no interaction occurs (the system remains in the same
state), while the second term gives the probability amplitude for
transition due to the perturbing potential. The integral over time
accounts for the accumulated effect of the interaction throughout
the field’s duration. The second term of equation (6) for transition
matrix or T-matrix is obtained with the help of Equation (7),
o
Ti= [ Kol oxeo)d %)
—o

Physically, it quantifies how strongly and effectively the interaction
couples the two states over time. A larger value of T indicates a
higher probability of transition, meaning the potential V(r)
strongly influences the particle’s motion. In laser—-matter or
scattering processes, this term is crucial for determining transition
probabilities, cross-sections, and emission or absorption rates,
reflecting how external fields or potentials drive the exchange of
energy between the system and its environment. After putting the
value of wave function equation (5) on equation (7) and solving we
get,

Ty = fd3rf_i< L exp {—ipfrcose -

(22
ips (61 (%) sin(wt) — €, (1222) sin(mwt + ¢) ) +

1
iEstt V(r)
u } (2m)

3 exp {ipircose +ip; (61 (%) sin(wt) —
2

€m (r:ZZ) sin(mwt + ¢) ) — iEl-t} > dt (8

After performing the time integral with the Jacobi—Anger
expansion, the oscillatory factors turn into sums of Bessel
functions (J,) and the time integral produces a Kronecker/Dirac
delta enforcing discrete energy balance in Equation (8). Physically
that result has two immediate meanings: (a) the Bessel functions
give the amplitude for absorbing/emitting n photons from a given

do _ kr | VoJu(dny)]n(dn,) exp(ing)

harmonic component, so they set the relative strength of each
multiphoton channel; and (b) the Kronecker/energy delta
implements energy conservation. The final equation (8) after

solving we get equation (9) as,

o [exp(iler) x Jn(dny) x

Jn(dny) exp(ing)}V(r)d®r

Tfi =
€]

Where dn; = ke; (%) and dn, = —€,, (%) and d3r =
r2sinf d d¢ dr represent the volume for spherical coordinate
system and k = kg — k;. On putting the value of V(r) which is

known as Gaussian potential [29] defined in Equation (10) as,

V (r) =V, exp {— (RL)Z}

Physically, V, defines the depth or strength of the potential well,

(10)

while R specifies its spatial extent or characteristic range, the
region within which the interaction is significant. The exponential
decay ensures that the potential rapidly approaches zero as
T increases, meaning the particle experiences a strong interaction
only near the center and is essentially free beyond that region. On
substituting the value form equation (10) to equation (9) and
solving we get the T-matrix as

_ VoJn(dny)In(dn,) exp(ing)
4m?ik

Tfi =

R3 erf(;—;—ikcose)
8vVikcosf

_ (kcos8)? R

VI (ikcos@)exp( " 2)
R? exp(r {ikcosH—RLzD
2

Equation (11) is final equation of transition matrix which is directly
related to DCS and this transition matrix is used to study the
scattering dynamics of electron with gaussian potential in laser
field. Since we have relation of DCS and transition matrix [30-32]

we have,
dO' kf 2
o= % [Tl (12)

Equation (12) shows relationship between the transition matrix
element and the DCS, which quantifies the probability of an
electron being scattered into a specific solid angle dQ. Physically,
this equation shows that the DCS depends on the magnitude
squared of the transition amplitude, representing the strength of
interaction between the incoming and outgoing states. The
transition matrix Tj;, derived from equation (11), encapsulates all
the effects of the laser field, Gaussian potential, and multiphoton
interactions. Now substituting value from equation (11) to
equation (12) we get final equation (13) to study the scattering
dynamics of electron and gaussian potential as

2

id)

R3 erf (% - ikcos@) R? exp (r {ikcos@ -

v (ikcos6)exp <— 7

a0 "k 4nik

(kcos@)? R2>
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Equation (13) gives the DCS for an electron scattering from a
Gaussian potential in the presence of a two-color laser field.
Physically, it combines the effects of the laser-driven multiphoton
processes (through Bessel functions and the relative phase ¢), the
spatial characteristics of the Gaussian potential (strength V, and
range R, including error-function and exponential terms from
spatial integration), and the kinematic/angular dependence of the
scattering (k;, k¢, cos 6). The modulus squared represents the
probability of the electron being scattered into a specific angle,
showing how the laser field, potential shape, and scattering
geometry together control the angular distribution and intensity
of the scattered electrons.

3. RESULTS AND DISCUSSION

Computational detail: Change in momentum (1-4) eV, strength of
the potential well 2.7x 10~1%mV, Bessel order (1-5), harmonic
order (2-3), r =14, R = 0.6 — 0.8 4, scattering angle (0-120°),
polarization vectors (€; = €, = 1), electric field strength (&, =
1la.u. and &, = 2 a.u.), phase angle (5.7° and 57°). Figure 1
illustrates the variation of the DCS with photon incidence energy
in the presence of a laser field for the Bessel first-order. The
analysis revealed that Figure 1(a) corresponds to the second-order
harmonic (m = 2), while Figure 1(b) represents the third-order
harmonic (m = 3). Also, the harmonic order of the laser field
increases, the DCS decreases for the Bessel first-order. This
reduction is attributed to the decrease in field amplitude at higher
harmonic orders. Furthermore, shift in maxima peak towards
lower photon incidence energy is observed with increasing
harmonic order. On the other hand, the maxima peak for the m =
2 appears at approximately 1.7 eV and the m = 3 around 1.9 eV.
The peak was due to superposition of amplitude of projected,
target and laser where project is nearer to target.

The demonstrate shows dependency of the DCS on the harmonic
order of the applied laser field. The increasing in harmonic order
shows the DCS decreases due to the reduction in field amplitude
as it is directly related to DCS. The maxima peak for m = 2 and
m = 3, suggests lower-order harmonics the probability of
scattering is higher means weaker interaction while higher-order
harmonic the probability of scattering is lower and interaction is
higher. This means scattering dynamic of electron with gaussian
potential is higher for lower order harmonic. In lower energy
region below 10 eV [33] show that DCS initially increase with
increasing in scattering electron energy and become maximum
and then decrease for electron-atom in two polarized colors. Also
Figure 1 and Figure 2 has similar nature obtained by Bartschat et
al. [34] where they study quantum-mechanical calculations of
cross sections for electron collisions with atoms and molecules.
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Fig. 1: DCS with incidence energy of electron (a) m = 2 and (b)
m = 3 for Bessel first-order

Fig. 2 presents the variation of the DCS with photon incidence
energy for the Bessel second-order and similar nature to Figure 1
but shifting of maxima peak was observed around 3 eV [34] for
the m = 2 and m=3. On comparing the DCS between harmonic
orders, the DCS for the second-order harmonic is consistently
lower than that of the first-order harmonic. Also comparing the
DCS with Bessel order it is found that Bessel first-order has higher
than second order. This is because on compare the amplitude of
field Bessel second-order has lower ampltiude than first order and
as we known field ampltiude is DCS is directly related.

Fig. 3 illustrates the behavior of the DCS with photon energy of the
laser field for the Bessel first-order at m = 2 and m = 2. The DCS
exhibits two major peaks when the photon energy exceeds 0.4 eV,
as shown in Figure 3(a). In contrast, for the m = 3, three distinct
peaks are observed when the photon energy exceeds 0.3 eV, as
presented in Figure 3(b). The comparative analysis shows that the
DCS corresponding to m = 2 is consistently higher than that of
m = 3. DCS is directly proportional to the amplitude of the laser
field, higher harmonic orders lead to lower DCS values.
Furthermore, the observed peaks are attributed to superpostion
interactions of electrons with the laser field in the vicinity of the
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Fig. 2: DCS with incidence energy of electron (a) m=2 and (b) m=3
for Bessel second-order

target. The sharp and high peak of DCS is due to field amplitude of
scattering particles. The analysis of Figure 3 reveals that the
number of peaks in the DCS increases with harmonic order: two
major peaks for m = 2 and three peaks for m = 3. However, the
overall amplitude of the DCS decreases with higher harmonic
order due to the reduction in field oscillation strength. These
findings highlight the intricate role of harmonic order and
superposition effects in shaping scattering dynamics under a laser-
assisted environment.

Fig. 4 presents the DCS as a function of photon energy for the
Bessel second-order. The overall trend is similar to that observed
in Fig. 3 with larger number of small peaks the small peaks are the
superpostion of smaller amplitude of scattering particle because
the particle during scattering looses and gain the energy.

Figus. 4(a) and 4(b) reveal that as the harmonic order increases,
smaller peaks become more pronounced. Another key
observation is the shift of the peaks towards lower photon
energies with increasing harmonic order. For instance,at m = 3, a
peak appears below 0.4 eV, accompanied by several small-
amplitude oscillatory peaks at even lower photon energies.

The combined influence of harmonic order and Bessel order
enhances oscillatory structures in the DCS, while simultaneously
reducing the overall amplitude due to diminished field strength.
The observed peak shifts toward lower photon energies with
increasing harmonic order highlight the sensitivity of scattering
dynamics to multiphoton resonance processes.
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Fig. 3: DCS with photon energy (a) m = 2 and (b) m = 3 for Bessel
first-order

Fig. 5 illustrates the variation of the DCS with scattering angle for
the Bessel first-order at different harmonic orders. The results
show that the DCS decreases for both the m = 2 and m = 3, as
seen in Figures 5(a) and 5(b), respectively. The DCS for the m = 2
is consistently higher than that of m = 3, which can be explained
by the reduction in field amplitude with increasing harmonic
order. Physically, a lower DCS indicates stronger interactions
between scattering particles and a reduced probability of
scattering, as the interacting particles are closer together.
Conversely, a higher DCS corresponds to weaker interactions and
a greater probability of scattering, since the particles are relatively
farther apart. Das and Dhobi [35] study the differential cross-
section of scattering by using Gaussian potential in presence of
laser and with linear polarization found decrease with scattering
angle. Ghoshal and Ho [36] study positron scattering from
hydrogen atomembedded in weakly-coupled plasmas and found
the DCS decrease with incresing scattering angle.

This behavior arises because as the Bessel order increases, the
amplitude of the field oscillation decreases. Interestingly, after a
certain Bessel order, the DCS becomes nearly constant. This
suggests that at this regime the interacting particles no longer
move closer to each other, as the electrostatic interaction energy
between them reaches a value comparable to the rest energy of
the particles. This point acts as a reference threshold beyond
which the incident particles cannot penetrate or approach the
target field any further. In other words, the target field becomes
dominant over the incident field, leading to a saturation of the
scattering process.
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Fig. 6 shows the variation of the DCS with increasing order of the
Bessel order for both lower and higher harmonic orders. The
obseravtion shows the DCS decreases with increasing Bessel order,
and the magnitude of the DCS for the lower harmonic order is
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consistently higher than that for the higher harmonic order. This
behavior arises because as the Bessel order increases, the
amplitude of the field oscillation decreases. Interestingly, after a
certain Bessel order, the DCS becomes nearly constant. This
suggests that at this regime the interacting particles no longer
move closer to each other, as the electrostatic interaction energy
between them reaches a value comparable to the rest energy of
the particles. This point acts as a reference threshold beyond
which the incident particles cannot penetrate or approach the
target field any further. In other words, the target field becomes
dominant over the incident field, leading to a saturation of the
scattering process.

Fig. 7 presents the three-dimensional distribution of the DCS as a
function of unit vectors for the Bessel first- and second-order. The
results show that when the magnitude of the unit vector is lower,
the DCS attains higher values, indicating stronger scattering at
smaller vector components. A comparison between Bessel order
eveals that the DCS for the Bessel first-order is consistently higher
than that of the second order. Similarly, when comparing harmonic
orders, the DCS corresponding to lower-order harmonics is higher
than that of higher-order harmonics. This behavior aligns with the
general trend that increasing either the Bessel order or the
harmonic order reduces the field amplitude, and consequently
decreases the DCS.

4. CONCLUSION

The present analysis reveals that harmonic and Bessel order
fundamentally govern the strength and angular characteristics of
electron scattering in bichromatic laser fields. The observed
correlation between field amplitude reduction and diminishing
DCS values highlights the tunability of scattering processes
through external laser parameters. This tunability offers potential
control mechanisms for designing precise electron—laser
interaction systems, relevant to plasma diagnostics, nanostructure
fabrication, and high-resolution spectroscopy. Physically, the shift
and broadening of resonance peaks with increasing harmonic
order indicate altered energy absorption dynamics that can be
exploited for studying nonlinear multiphoton processes. Future
extensions of this work could incorporate Coulomb potentials to
account for long-range interactions, relativistic corrections for
high-energy regimes, and comparisons with experimental data to
validate the theoretical framework. Such developments would
deepen understanding of laser-assisted collision phenomena and
support the advancement of next-generation light—-matter

interaction technologies.
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