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ABSTRACT 

Scattering dynamics play a crucial role in understanding the fundamental interactions 
between particles and external fields. When a particle interacts with a target potential 
under the influence of an external laser field, its motion and energy distribution can be 
significantly modified. The aim of this work is to study the scattering dynamics of electron-
gaussian potential in presence of bichromatic linearly polarized laser fields. To fulfill the 
objective, we obtained S-matrix use Volkov wave equation and Gaussian potential with 
the help of Kroll-Watson approximation. Using relation of S-matrix and T-matrix, the 
obtained T-matrix which is directly related to differential cross section (DCS). The obtained 
DCS used to study the scattering dynamics of electron behavior with gaussian potential in 
laser field. The developed DCS equation was computed, the computed result shows DCS 
increases with increase of incidence energy of electron and becomes maximum and finally 
decreases. The DCS with photon energy is highly fluctuations and decrease with increase 
of scattering angle. The DCS of Bessel first order found greater than Bessel second order. 
These findings aid in laser-assisted collision studies, plasma diagnostics, nanomaterial 
design, and quantum device optimization by revealing electron behavior, multiphoton 
effects, and resonance control under bichromatic laser fields. 

 

1. INTRODUCTION 

This study investigates DCS in the presence of a linearly polarized 

laser field, employing Bessel functions of varying orders, with 

oxygen molecules modeled under the Lennard-Jones potential. 

The analysis demonstrates that electron energy can be absorbed 

or emitted during interactions, producing pronounced resonance 

peaks in the DCS, which indicate potential formation of new 

particle structures, while minima correspond to strong electron–

target coupling and smaller composite formation. The Bessel zero-

order exhibits higher DCS values compared to higher orders, and 

at zero-radian scattering angle, the DCS reaches its minimum, 

emphasizing enhanced particle interactions at this orientation [1]. 

Analytical studies using the coupled-channel Lippmann–

Schwinger equation for a one-dimensional δ-function potential 

further show that electrons can absorb or emit energy in integer 

multiples of the laser frequency, resulting in elastic, inelastic, and 

superelastic scattering amplitudes with observed stimulated 

recombination resonances [2]. Accurate modeling of laser-assisted 

multiphoton transitions also requires consideration of realistic 

laser field properties, including focusing, pulse structure, 

multimode behavior, and statistical fluctuations, which 

significantly affect scattering cross sections in fast electron–atom 

collisions [3]. Previous studies have explored electron-laser 

interactions using attractive δ-function potentials, primarily 

through numerical solutions of the time-dependent Schrödinger 

equation, focusing on photoionization rates in strong-field regimes 

(10⁹–10¹⁴ W/cm²), while ultra strong-field domains (≥10¹⁶ W/cm²) 

remain less examined. Laser-modified scattering rates for this 

potential are not well-studied, though related phenomena have 

been analyzed in other systems, showing stabilization of bound 

states under high-intensity fields [2]. The Kroll–Watson 

approximation is widely employed, treating electron-laser 

interaction nonperturbatively but neglecting direct laser-atom 

coupling, predicting that the field-free scattering cross section is 

modified mainly by electron-laser interactions [4]. In strong fields, 

electrons can undergo scattering, leading to above-threshold 

ionization, harmonic generation, and further excitations [5], while 

intense lasers enhance charge exchange in ion-atom collisions 

under resonant conditions [6]. Quantum-orbit theory effectively 

describes multistep processes [7] by Milošević et al. Realistic laser 

models incorporating multimode behavior and pulse shaping are 

essential for accurate light-matter interaction simulations [8]. 

Correlated double ionization highlights strong electron correlation 

in multiphoton ionization [9], and ponderomotive effects 

dominate electron-photon scattering in high-intensity fields [10]. 

Beyond fundamental physics, laser microtechnology enables 

precise fabrication of micrometer-scale structures for optics and 

electronics applications [11]. 

The scattering dynamics of particles interacting with a Gaussian 

potential in the presence of a bichromatic laser field is a complex 
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phenomenon studied within atomic physics and laser-matter 

interaction, integrating concepts from quantum mechanics and 

electromagnetism [12-15]. A Gaussian potential is often employed 

in theoretical models due to its analytical tractability and its ability 

to represent localized interactions, such as those occurring in 

quantum dots or screened atomic potentials. The presence of a 

bichromatic laser field, which consists of two laser components 

with different frequencies (e.g., ω and 2ω or ω and 3ω) and a 

controllable relative phase, introduces a powerful tool for 

coherent control of scattering processes [16-17]. The theoretical 

framework for analyzing such interactions typically involves 

solving the time-dependent Schrödinger equation or employing 

approximations like the Born approximation, particularly the first 

and second Born approximations. The Volkov wave functions are 

often used to describe the states of electrons in the presence of a 

strong laser field [18]. These approaches allow for the calculation 

of DCS and total differential cross sections, which are crucial for 

understanding the probability and angular distribution of 

scattered particles [19]. 

Despite extensive studies on laser-assisted scattering using 

monochromatic fields and simple potentials, the effects of 

Gaussian potentials under bichromatic laser fields remain 

underexplored, particularly regarding phase-dependent, 

multiphoton interactions, and nonlinear frequency-dependent 

effects. Most prior work has focused on δ-function or Lennard-

Jones potentials, often neglecting realistic laser properties and 

coherent control over electron dynamics. Investigating electron 

scattering in a bichromatic field composed of two frequencies 

(e.g., ω and 2ω or ω and 3ω) with a controllable relative phase 

provides enhanced flexibility, enabling precise manipulation of 

energy and momentum transfer, resonances, and multiphoton 

processes. Understanding these dynamics is crucial for laser-

assisted collision studies, plasma diagnostics, nanomaterial 

design, and quantum device optimization, as it reveals detailed 

electron behavior under realistic experimental conditions and 

allows coherent control that monochromatic fields cannot 

achieve. 

2. MATERIALS AND METHODS 

The time dependent Schrödinger equation can be used to describe 
the conduction-band electrons dynamics in the (x,y) plane [15, 20] 
as:          

[
1

2m′
(𝐩 −

e

c
𝐀(t))

2

+ V(r)] 𝑋(x, y, t) =   iℏ
∂𝑋(x, y, t)

∂t
     (1)  

represents the time-dependent Schrödinger equation for an 

electron in the presence of an external electromagnetic field, 

where m′ is the electron mass, p is the momentum operator, e is 

the electron charge, c is the speed of light, A(t) is the time-

dependent vector potential, and V(r) is the potential energy. The 

term (𝐩 −
e

c
𝐀(t))

2

 accounts for the coupling between the 

charged particle and the electromagnetic field through the 

minimal coupling scheme, while the right-hand side describes the 

time evolution of the wave function 𝑋(x, y, t). The corresponding 

solution of equation (1) is presented in equation (2) [21-24]. 

𝑋(𝑟, 𝑡) =
1

(2𝜋)
3
2

exp {𝑖
𝒑

ℏ
. (𝒓 +

e

m′
 ∫ 𝐀( 𝑡)𝑑𝑡) − 𝑖

𝐸

ℏ 
𝑡 −

𝑖
e2

2m′ℏ 
∫ 𝐀2(𝑡) 𝑑𝑡}                                                                            (2)  

which is known as the Volkov wave function, describing a free 
electron dressed by the electromagnetic field; here 𝒓 is the 
position vector, 𝐸 is the electron energy, and the exponential 
terms represent, respectively, the plane-wave contribution, the 
phase modulation due to the vector potential, and the additional 

phase shift arising from the field intensity through the ∫ 𝐀2(𝑡)𝑑𝑡 
term. The vector potential for bichromatic linear polarized laser 
[25]. 

𝐀(𝑡) = 𝜖1 (
𝜀1

𝜔
) cos(𝜔𝑡) + 𝜖𝑚 (

𝜀𝑚

𝑚𝜔
) cos(𝑚𝜔𝑡 + 𝜙)           (3) 

where 𝜖1 and 𝜖𝑚 denote the independent polarization vectors. For 
simplicity, both fields are assumed to have the same linear 
polarization. Here, 𝜀1 and 𝜀𝑚 represent the corresponding electric 
field strengths, while 𝜙 indicates the relative phase. In practical 
applications, the parameter m typically takes the values 2 or 3, 
corresponding to the second and third harmonics. Experimentally, 
the achievable ratio 𝜀𝑚/𝜀1 is usually around 10% in nonlinear 
media, and this ratio is even smaller for the third harmonic. Now 
putting value of A(t) form equation (3) in equation (2) and solving 
as: 

𝑋(𝑟, 𝑡) =
1

(2𝜋)
3
2
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𝑝
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𝐸
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 ∫  (𝝐𝟏 (

𝝐𝟏 

𝜔
) 𝒄𝒐𝒔𝜔𝑡 + 𝜖𝑚 (

𝜀𝑚

𝑚𝜔
) 𝑐𝑜𝑠(𝑚𝜔𝑡 + 𝜙))

𝟐
 }       (4)  

Equation (4) represents the wavefunction of a charged particle in 

an oscillating electromagnetic field, known as the Volkov-type 

solution. Physically, it describes how the particle’s phase and 

motion are modified by the presence of combined laser fields the 

fundamental frequency 𝜔 and its harmonic 𝑚𝜔 (usually 𝑚 = 2 or 

3). On integration Equation (4) and solving with omitting last term 

of equation (4) because it is very small in magnitude and it doesn’t 

play the vital role. When system is unperturbed due to laser field 

then we apply Kroll-Watson Approximation for perturbation. S-

matrix is used to get the system information and it is also used 

when times tends to infinity 

 𝑋(𝑟, 𝑡) =
1

(2𝜋)
3
2

exp {𝑖𝑝𝑟𝑐𝑜𝑠𝜃 + 𝑖𝑝 [𝜖1 (
𝜀1

𝜔2
) sin(𝜔𝑡) −

𝜖𝑚 (
𝜀𝑚

𝑚𝜔2
) sin(𝑚𝜔𝑡 + 𝜙) ] − 𝑖𝐸𝑡}                                            (5)  

Physically, this equation emphasizes how the particle’s position 

and phase vary with time due to the external electric fields, while 

neglecting the overall phase factor that has no observable effect. 

The term 𝑝𝑟cos𝜃 accounts for the propagation of the wave in 

space, and the sine-dependent terms represent the field-driven 
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displacement of the electron caused by the oscillating 

components of the electric field. Thus, equation (5) captures the 

essential dynamic behavior of the system in a simplified form, 

focusing only on the physically meaningful, time-dependent 

motion. Now using Kroll-Watson Approximation S-matrix [26-28] 

is defined as  

Sfi
E = δfi −

i

ℏ 
∫  ⟨Xf(𝑟, 𝑡)|V(𝑟)|Xi(𝑟, 𝑡)⟩ 𝑑𝑡                    (6)

∞

−∞

 

Where Equation (6) represents, the S-matrix with transition 

amplitude [second term of Equation (6)] between an initial 

quantum state X𝑖(𝑟, 𝑡) and a final state Xf(𝑟, 𝑡) under the 

influence of an interaction potential V(𝑟). Physically, this equation 

comes from time-dependent perturbation theory and describes 

how an external field or potential induces a transition between 

two quantum states. The first term, δfi, corresponds to the case 

where no interaction occurs (the system remains in the same 

state), while the second term gives the probability amplitude for 

transition due to the perturbing potential. The integral over time 

accounts for the accumulated effect of the interaction throughout 

the field’s duration. The second term of equation (6) for transition 

matrix or T-matrix is obtained with the help of Equation (7), 

𝑇𝑓𝑖 = ∫  ⟨𝑋𝑓(𝑟, 𝑡)|𝑉(𝑟)|𝑋𝑖(𝑟, 𝑡)⟩ 𝑑𝑡
∞

−∞

                              (7) 

Physically, it quantifies how strongly and effectively the interaction 

couples the two states over time. A larger value of Tfi indicates a 

higher probability of transition, meaning the potential V(𝑟) 

strongly influences the particle’s motion. In laser–matter or 

scattering processes, this term is crucial for determining transition 

probabilities, cross-sections, and emission or absorption rates, 

reflecting how external fields or potentials drive the exchange of 

energy between the system and its environment. After putting the 

value of wave function equation (5) on equation (7) and solving we 

get,  

𝑇𝑓𝑖 = ∫ 𝑑3𝑟 ∫ (
1

(2𝜋)
3
2

exp {−𝑖𝑝𝑓𝑟𝑐𝑜𝑠𝜃 −
∞

−∞

𝑖𝑝𝑓 (𝜖1 (
𝜀1

𝜔2
) sin(𝜔𝑡) − 𝜖𝑚 (

𝜀𝑚

𝑚𝜔2
) sin(𝑚𝜔𝑡 + 𝜙) ) +

𝑖𝐸𝑓𝑡}  V(𝑟)  
1

(2𝜋)
3
2

exp {𝑖𝑝𝑖𝑟𝑐𝑜𝑠𝜃 + 𝑖𝑝𝑖 (𝜖1 (
𝜀1

𝜔2
) sin(𝜔𝑡) −

𝜖𝑚 (
𝜀𝑚

𝑚𝜔2
) sin(𝑚𝜔𝑡 + 𝜙) ) − 𝑖𝐸𝑖𝑡}  )   𝑑𝑡                               (8)  

After performing the time integral with the Jacobi–Anger 

expansion, the oscillatory factors turn into sums of Bessel 

functions (Jn) and the time integral produces a Kronecker/Dirac 

delta enforcing discrete energy balance in Equation (8). Physically 

that result has two immediate meanings: (a) the Bessel functions 

give the amplitude for absorbing/emitting 𝑛 photons from a given 

harmonic component, so they set the relative strength of each 

multiphoton channel; and (b) the Kronecker/energy delta 

implements energy conservation. The final equation (8) after 

solving we get equation (9) as,  

𝑇𝑓𝑖 =
1

(2𝜋)3 
∫{exp(𝑖𝑘𝑟)  × Jn(𝑑𝑛1) ×

Jn(𝑑𝑛2) exp(𝑖𝑛𝜙)}V(𝑟)𝑑3𝑟                                                           (9)  

Where 𝑑𝑛1 = 𝑘𝜖1 (
𝜀1

𝜔2
)  𝑎𝑛𝑑 𝑑𝑛2 = −𝜖𝑚 (

𝜀𝑚

𝑚𝜔2
) and 𝑑3𝑟 =

𝑟2𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜙 𝑑𝑟 represent the volume for spherical coordinate 

system and 𝑘 = 𝑘𝑓 − 𝑘𝑖. On putting the value of V(r) which is 

known as Gaussian potential [29] defined in Equation (10) as, 

V (𝑟) = Vo exp {− (
𝑟

𝑅 
)

2

}                                                          (10) 

Physically, V0 defines the depth or strength of the potential well, 

while 𝑅 specifies its spatial extent or characteristic range, the 

region within which the interaction is significant. The exponential 

decay ensures that the potential rapidly approaches zero as 

𝑟 increases, meaning the particle experiences a strong interaction 

only near the center and is essentially free beyond that region. On 

substituting the value form equation (10) to equation (9) and 

solving we get the T-matrix as  

𝑇𝑓𝑖 = −
V0Jn(𝑑𝑛1)Jn(𝑑𝑛2) exp(𝑖𝑛𝜙)

4π2𝑖𝑘 
   

{
√𝜋 (𝑖𝑘𝑐𝑜𝑠𝜃)exp (−

(𝑘𝑐𝑜𝑠𝜃)2 𝑅2

4
)

 𝑅3 𝑒𝑟𝑓(
2𝑟

𝑅2−𝑖𝑘𝑐𝑜𝑠𝜃)

8√𝑖𝑘𝑐𝑜𝑠𝜃
− 

𝑅2 exp(𝑟 {𝑖𝑘𝑐𝑜𝑠𝜃−
𝑟

𝑅2})

2

}                  (11)  

Equation (11) is final equation of transition matrix which is directly 

related to DCS and this transition matrix is used to study the 

scattering dynamics of electron with gaussian potential in laser 

field. Since we have relation of DCS and transition matrix [30-32] 

we have, 

dσ

dΩ
=

𝑘𝑓

𝑘𝑖  
 |𝑇𝑓𝑖|

2
                                                                   (12)     

Equation (12) shows relationship between the transition matrix 

element and the DCS, which quantifies the probability of an 

electron being scattered into a specific solid angle dΩ. Physically, 

this equation shows that the DCS depends on the magnitude 

squared of the transition amplitude, representing the strength of 

interaction between the incoming and outgoing states. The 

transition matrix Tfi, derived from equation (11), encapsulates all 

the effects of the laser field, Gaussian potential, and multiphoton 

interactions. Now substituting value from equation (11) to 

equation (12) we get final equation (13) to study the scattering 

dynamics of electron and gaussian potential as  

dσ

dΩ
=

𝑘𝑓

𝑘𝑖  
 |−

V0Jn(𝑑𝑛1)Jn(𝑑𝑛2) exp(𝑖𝑛𝜙)

4𝜋2𝑖𝑘 
{√𝜋 (𝑖𝑘𝑐𝑜𝑠𝜃)exp (−

(𝑘𝑐𝑜𝑠𝜃)2 𝑅2

4
)

 𝑅3 𝑒𝑟𝑓 (
2𝑟
𝑅2 − 𝑖𝑘𝑐𝑜𝑠𝜃)

8√𝑖𝑘𝑐𝑜𝑠𝜃
−

𝑅2 exp (𝑟 {𝑖𝑘𝑐𝑜𝑠𝜃 −
𝑟

𝑅2})

2
}|

2

(13) 
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Equation (13) gives the DCS for an electron scattering from a 

Gaussian potential in the presence of a two-color laser field. 

Physically, it combines the effects of the laser-driven multiphoton 

processes (through Bessel functions and the relative phase 𝜙), the 

spatial characteristics of the Gaussian potential (strength 𝑉0 and 

range 𝑅, including error-function and exponential terms from 

spatial integration), and the kinematic/angular dependence of the 

scattering (𝑘𝑖 , 𝑘𝑓 , cos 𝜃). The modulus squared represents the 

probability of the electron being scattered into a specific angle, 

showing how the laser field, potential shape, and scattering 

geometry together control the angular distribution and intensity 

of the scattered electrons. 

3. RESULTS AND DISCUSSION  

Computational detail: Change in momentum (1-4) eV, strength of 

the potential well 2.7× 10−10mV, Bessel order (1-5), harmonic 

order (2-3), 𝑟 = 1 Å, 𝑅 = 0.6 − 0.8 Å, scattering angle (0-120o),  

polarization vectors (𝜖1 = 𝜖𝑚 = 1), electric field strength (𝜀1 =

1 𝑎. 𝑢. and 𝜀𝑚 = 2 𝑎. 𝑢. ), phase angle (5.7o and 57o). Figure 1 

illustrates the variation of the DCS with photon incidence energy 

in the presence of a laser field for the Bessel first-order. The 

analysis revealed that Figure 1(a) corresponds to the second-order 

harmonic (𝑚 = 2), while Figure 1(b) represents the third-order 

harmonic (𝑚 = 3). Also, the harmonic order of the laser field 

increases, the DCS decreases for the Bessel first-order. This 

reduction is attributed to the decrease in field amplitude at higher 

harmonic orders. Furthermore, shift in maxima peak towards 

lower photon incidence energy is observed with increasing 

harmonic order. On the other hand, the maxima peak for the 𝑚 =

2 appears at approximately 1.7 eV and the 𝑚 = 3 around 1.9 eV. 

The peak was due to superposition of amplitude of projected, 

target and laser where project is nearer to target.  

The demonstrate shows dependency of the DCS on the harmonic 

order of the applied laser field. The increasing in harmonic order 

shows the DCS decreases due to the reduction in field amplitude 

as it is directly related to DCS. The maxima peak for 𝑚 = 2 and 

𝑚 = 3, suggests lower-order harmonics the probability of 

scattering is higher means weaker interaction while higher-order 

harmonic the probability of scattering is lower and interaction is 

higher. This means scattering dynamic of electron with gaussian 

potential is higher for lower order harmonic. In lower energy 

region below 10 eV [33] show that DCS initially increase with 

increasing in scattering electron energy and become maximum 

and then decrease for electron-atom in two polarized colors. Also 

Figure 1 and Figure 2 has similar nature obtained by Bartschat et 

al. [34] where they study quantum-mechanical calculations of 

cross sections for electron collisions with atoms and molecules. 

 

Fig. 1: DCS with incidence energy of electron (a) 𝑚 = 2 and (b) 

𝑚 = 3 for Bessel first-order        

Fig. 2 presents the variation of the DCS with photon incidence 

energy for the Bessel second-order and similar nature to Figure 1 

but shifting of maxima peak was observed  around 3 eV [34] for 

the 𝑚 = 2 and m=3. On comparing the DCS between harmonic 

orders, the DCS for the second-order harmonic is consistently 

lower than that of the first-order harmonic.  Also comparing the 

DCS with Bessel order it is found that Bessel first-order has higher 

than second order. This is because on compare the amplitude of 

field Bessel second-order has lower ampltiude than first order and 

as we known field ampltiude is DCS is directly related. 

Fig. 3 illustrates the behavior of the DCS with photon energy of the 

laser field for the Bessel first-order at 𝑚 = 2 and 𝑚 = 2. The DCS 

exhibits two major peaks when the photon energy exceeds 0.4 eV, 

as shown in Figure 3(a). In contrast, for the 𝑚 = 3, three distinct 

peaks are observed when the photon energy exceeds 0.3 eV, as 

presented in Figure 3(b). The comparative analysis shows that the 

DCS corresponding to 𝑚 = 2 is consistently higher than that of 

𝑚 = 3. DCS is directly proportional to the amplitude of the laser 

field, higher harmonic orders lead to lower DCS values. 

Furthermore, the observed peaks are attributed to superpostion 

interactions of electrons with the laser field in the vicinity of the 
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Fig. 2: DCS with incidence energy of electron (a) m=2 and (b) m=3 

for Bessel second-order        

target. The sharp and high peak of DCS is due to field amplitude of 
scattering particles. The analysis of Figure 3 reveals that the 
number of peaks in the DCS increases with harmonic order: two 
major peaks for 𝑚 = 2 and three peaks for 𝑚 = 3. However, the 
overall amplitude of the DCS decreases with higher harmonic 
order due to the reduction in field oscillation strength. These 
findings highlight the intricate role of harmonic order and 
superposition effects in shaping scattering dynamics under a laser-
assisted environment. 

Fig. 4 presents the DCS as a function of photon energy for the 
Bessel second-order. The overall trend is similar to that observed 
in Fig. 3 with larger number of small peaks the small peaks are the 
superpostion of smaller amplitude of scattering particle because 
the particle during scattering looses and gain the energy.  
Figus. 4(a) and 4(b) reveal that as the harmonic order increases, 
smaller peaks become more pronounced. Another key 
observation is the shift of the peaks towards lower photon 
energies with increasing harmonic order. For instance, at 𝑚 = 3, a 
peak appears below 0.4 eV, accompanied by several small-
amplitude oscillatory peaks at even lower photon energies.   

The combined influence of harmonic order and Bessel order 

enhances oscillatory structures in the DCS, while simultaneously 

reducing the overall amplitude due to diminished field strength. 

The observed peak shifts toward lower photon energies with 

increasing harmonic order highlight the sensitivity of scattering 

dynamics to multiphoton resonance processes.  

 

Fig. 3: DCS with photon energy (a) 𝑚 = 2 and (b) 𝑚 = 3 for Bessel 

first-order        

Fig. 5 illustrates the variation of the DCS with scattering angle for 
the Bessel first-order at different harmonic orders. The results 
show that the DCS decreases for both the 𝑚 = 2 and 𝑚 = 3, as 
seen in Figures 5(a) and 5(b), respectively. The DCS for the 𝑚 = 2 
is consistently higher than that of 𝑚 = 3, which can be explained 
by the reduction in field amplitude with increasing harmonic 
order. Physically, a lower DCS indicates stronger interactions 
between scattering particles and a reduced probability of 
scattering, as the interacting particles are closer together. 
Conversely, a higher DCS corresponds to weaker interactions and 
a greater probability of scattering, since the particles are relatively 
farther apart. Das and Dhobi [35] study the differential cross-
section of scattering by using Gaussian potential in presence of 
laser and with linear polarization found decrease with scattering 
angle. Ghoshal and Ho [36] study positron scattering from 
hydrogen atomembedded in weakly-coupled plasmas and found 
the DCS decrease with incresing scattering angle.  

This behavior arises because as the Bessel order increases, the 
amplitude of the field oscillation decreases. Interestingly, after a 
certain Bessel order, the DCS becomes nearly constant. This 
suggests that at this regime the interacting particles no longer 
move closer to each other, as the electrostatic interaction energy 
between them reaches a value comparable to the rest energy of 
the particles. This point acts as a reference threshold beyond 
which the incident particles cannot penetrate or approach the 
target field any further. In other words, the target field becomes 
dominant over the incident field, leading to a saturation of the 
scattering process. 
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Figure 4: DCS with photon energy (a) 𝑚 = 2 and (b) 𝑚 = 3 for 

Bessel second-order        

 
Fig. 5: DCS with scatterionga angle (a) n=1 and (b) n=2 for Bessel 
order.  

       
 

 

Fig. 6: DCS with different order Bessel order 

 

 

Fig. 7: 3D DCS  with polarization vector at n=1 (upper-side)  and 

n=2 (lower side). 

Fig. 6 shows the variation of the DCS with increasing order of the 
Bessel order for both lower and higher harmonic orders. The 
obseravtion shows the DCS decreases with increasing Bessel order, 
and the magnitude of the DCS for the lower harmonic order is 
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consistently higher than that for the higher harmonic order. This 
behavior arises because as the Bessel order increases, the 
amplitude of the field oscillation decreases. Interestingly, after a 
certain Bessel order, the DCS becomes nearly constant. This 
suggests that at this regime the interacting particles no longer 
move closer to each other, as the electrostatic interaction energy 
between them reaches a value comparable to the rest energy of 
the particles. This point acts as a reference threshold beyond 
which the incident particles cannot penetrate or approach the 
target field any further. In other words, the target field becomes 
dominant over the incident field, leading to a saturation of the 
scattering process.  

Fig. 7 presents the three-dimensional distribution of the DCS as a 
function of unit vectors for the Bessel first- and second-order. The 
results show that when the magnitude of the unit vector is lower, 
the DCS attains higher values, indicating stronger scattering at 
smaller vector components. A comparison between Bessel order 
eveals that the DCS for the Bessel first-order is consistently higher 
than that of the second order. Similarly, when comparing harmonic 
orders, the DCS corresponding to lower-order harmonics is higher 
than that of higher-order harmonics. This behavior aligns with the 
general trend that increasing either the Bessel order or the 
harmonic order reduces the field amplitude, and consequently 
decreases the DCS. 

4. CONCLUSION 

The present analysis reveals that harmonic and Bessel order 

fundamentally govern the strength and angular characteristics of 

electron scattering in bichromatic laser fields. The observed 

correlation between field amplitude reduction and diminishing 

DCS values highlights the tunability of scattering processes 

through external laser parameters. This tunability offers potential 

control mechanisms for designing precise electron–laser 

interaction systems, relevant to plasma diagnostics, nanostructure 

fabrication, and high-resolution spectroscopy. Physically, the shift 

and broadening of resonance peaks with increasing harmonic 

order indicate altered energy absorption dynamics that can be 

exploited for studying nonlinear multiphoton processes. Future 

extensions of this work could incorporate Coulomb potentials to 

account for long-range interactions, relativistic corrections for 

high-energy regimes, and comparisons with experimental data to 

validate the theoretical framework. Such developments would 

deepen understanding of laser-assisted collision phenomena and 

support the advancement of next-generation light–matter 

interaction technologies. 
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