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ABSTRACT

Dengue disease dynamics highly depends on environmental temperature as its
transmitting vectors-Aedes aegypti and Aedes albopictus mosquitoes are
poikilothermal. Temperature influences mosquitoes’ key traits, including biting rate,
oviposition rate, development rates of aquatic and adult stages, and lifespan. Rainfall in
proper amounts, together with suitable temperatures, significantly supports egg
hatching and growth of aquatic stage by creating breeding sites. In regions like Nepal,
where seasonal variations in temperature and rainfall occur, mosquito population
fluctuates seasonally, causing vector-borne diseases like dengue fever to similarly rise
and fall. This paper develops a climate-sensitive mathematical model for dengue
transmission in Sudurpashchim Province, Nepal, integrating effects of seasonal change
in temperature and rainfall on mosquito life traits. We analyze the dengue dynamics
model using symbolic and numerical tools to better understand disease patterns.
Numerical simulations indicate that increasing mosquito mortality and reducing carrying
capacity of environment to limit aquatic phase population are effective strategies for
controlling and diminishing dengue outbreaks.

1. INTRODUCTION

Vector-borne diseases such as dengue, Zika, and chikungunya
continue to pose significant public health challenges globally,
especially in tropical and subtropical regions. Among these, dengue
is currently the most threatening vector-borne disease affecting
human populations, imposing an estimated yearly infection burden
of up to 400 million [1, 2]. Dengue fever is caused by the dengue
virus, which exists in four serotypes (DENV1-DENV4), and is
transmitted principally by Aedes aegyptiand, less commonly, Aedes
albopictus [3]. The transmission cycle follows a “human—mosquito—
human” pattern primarily driven by mosquito bites. Dengue
transmission is strongly influenced by climatic factors such as
temperature and rainfall, which affect mosquito breeding, survival,
and biting behavior. Although dengue transmission is mostly
seasonal due to weather conditions, Aedes aegypti can sustain
populations even in dry seasons under suitable temperatures,
leading to potential year-round transmission.

Mathematical models have become invaluable tools in studying
the transmission dynamics of vector-borne diseases and designing
effective intervention strategies. Compartmental models, such as
the SEIR-SEI frameworks developed by Esteva and Vargas [4] and
Yang and Ferreira [5], form the foundation of vector-borne disease
modeling by capturing host—vector interactions and human
demography. Subsequent studies have extended these frameworks
to incorporate environmental effects, particularly climate variables,
to improve realism. For instance, Barsante et al. [6] developed and
validated a rainfall driven model of Aedes aegypti populations,
noting that additional climatic factors such as temperature and
humidity should be included for better predictive performance.
Johanson et al. [7] analyzed 20 years of data from Puerto Rico to

show significant associations between temperature, precipitation,
and dengue transmission, while Morin et al. [8] developed a
framework to model mosquito growth under climatic influences.
Hii et al. [9] used weekly temperature and rainfall data for dengue
forecasting. Furthermore, temperature-dependent mosquito traits
like development and biting rates have been modeled using the
Briere function [10] and quadratic functions [11, 12]. Vaidya and
Wang [13] incorporated both seasonal and daily temperature
variations in their biologically realistic model.

Motivated by these studies, our work aims to integrate both
temperature and rainfall into a mathematical model to capture
realistic mosquito population dynamics and dengue transmission
patterns. We also focus on accounting for the under-reporting of
infections, which remains a significant issue in dengue surveillance.
In Nepal, over 90% of dengue cases go unreported due to
asymptomatic infections or reporting barriers. In this paper, we
formulate a model that incorporates the impacts of summer and
rainy seasons on mosquito traits, as well as the phenomenon of
under-reported dengue cases. The model is fitted to monthly
dengue case data from 2024 in the Sudurpashchim Province of
Nepal to estimate key epidemiological parameters and better
understand local dengue dynamics.

2. METHODOLOGY

2.1 Data and Tools
We use demographic and epidemiological data, and climate
information to formulate and analyze the SIR-SI dengue model

with reported and non-reported infections. We manage raw case
counts and climatic averages in Microsoft Excel. We perform
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symbolic derivations, including the disease-free equilibrium, the
basic reproduction number (R,), and stability conditions, in
Mathematica. We run numerical solutions, simulations, and plots
in Python to solve the nonlinear differential equations and assess
seasonal effects on dengue spread. We obtain monthly dengue
case data from the Epidemiology and Disease Control Division
(EDCD) of Nepal, demographic information from the 2021 Nepal
Census, and climate data (temperature and rainfall) from the
Department of Hydrology and Meteorology. These datasets
provide the basis for model parameterization.

2.2 Mathematical Model

We formulate the SIR-SI compartmental model by dividing the
human population into four compartments: susceptible humans
(Sy), reported infectious humans (), non-reported infectious
humans (Iy,), and recovered humans (Rp). The mosquito
population is split into susceptible vectors (S,,) and infected vectors
(I,). We express the dynamics through a system of nonlinear
ordinary differential equations, where climate-dependent
functions adjust key
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Fig. 1: Periodic pattern of tempeFature and rainfall in
Sudurpashchim.

transmission and growth parameters. The model serves as the main
research tool to study unreported infections, determine threshold
conditions for disease persistence, and evaluate control strategies.
Modeling climatic impacts dengue transmission is highly sensitive
to environmental factors such as temperature and rainfall, which
directly affect mosquito population dynamics and virus incubation
times. To understand the climatic context of Sudurpashchim
Province, we observed the pattern made by ten years of weekly
meteorological data (2014-2023), specifically weekly average
temperatures and total weekly rainfall.

Fig. 1 reveals a clear periodic pattern in both temperature and
rainfall, with a one-year cycle. Significant rainfall is concentrated
during the monsoon months (June to August), while summer
months (April to September) exhibit high temperatures favorable
for mosquito development, feeding frequency, and viral
replication. This seasonal fluctuation in climatic variables directly
motivates our inclusion of periodic effects in the transmission
model. In particular, high summer temperatures enhance mosquito
biting rate, survival, and viral transmission efficiency while
monsoon rainfall increases mosquito breeding sites, thus
temporarily boosting the vector carrying capacity.

To further support this, we analyzed the 2022 weekly data of
temperature, rainfall, and reported dengue cases in

Sudurpashchim.
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Fig. 2: Dengue trend in 2022 with respect to temperature and
rainfall.

As shown in Fig. 2, dengue incidence in 2022 increased sharply
starting mid-summer and peaked several weeks after the end of the
monsoon season. This lag between rainfall and dengue outbreak is
a typical pattern in dengue epidemiology and reflects the life cycle
delay between vector proliferation and disease transmission.

These climatic realities of Sudurashchim strongly support the
necessity of incorporating seasonal variation in temperature into
the vector growth rate r, the transmission rates 8}, (from vector to
human) and B, (from human to vector), and the seasonality of
rainfall on the carrying capacity K, in our mathematical model.
Thus, we introduce seasonally modulated parameters using scaling
factors to better capture the climatic influence on dengue
dynamics. Let S, Byo and ry be baseline values of S, 5, and 1,
respectively, for off-summer season. Now, we define

Brn =1 +n1) Pros B =1 +n02)Bpo, 7 =1 +n3)15 (2.1)

where 14, 17, 113 = 0 for off-summer time and are some positive
constants scales to the rates respectively in average due to
warmth in summer. Similarly, we define

K, = (1 + @)Ky, (2.2)

where K,, denotes off-monsoon carrying capacity (indicating
overall space including breeding sites during aquatic stages) and «
is additional positive scale to the carrying capacity due to rainfall.
Other parameters used in the model are defined as follows. The
symbol Ay, represents the recruitment rate of humans, while puy
and w, denote the natural death rates of humans and vectors,
respectively. The parameter yy, stands for the human recovery rate
(Fig. 3). The transmission rate from vector to human is represented
by S5, and the transmission rate from human to vector is denoted
by B,,. The symbol 8 indicates the proportion of reported infections,
T represents the mosquito growth rate, and K, denotes the
carrying capacity for vectors.

Model Equations

ds, Bnly

d—th = Ap— Nh—h Sh— UnSh (2.3)
Alpy Bnly

d—}; =0 A’,lh Sn = Yalnr = dnlnr (2.4)
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Model Diagram
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Fig. 3: SIR-SI dengue model with temperature and rainfall impacts.
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- v viv .

dt Np
where N, = Sy, + Ipy + Ipp + Rpand N, =S, + [,.

2.3 Mathematical Analysis

To understand the qualitative behavior of the proposed model, we
perform  mathematical analysis involving well-posedness,
equilibrium analysis, and stability. We use standard techniques
from dynamical systems and epidemiological modeling as discussed
in [14, 15, 16].

Uniqueness and Existence of Solution

The model equations represent a system of ordinary differential
equations (ODEs) with continuously differentiable right-hand sides.
By the Picard—Lindel6f theorem [14], there exists a unique solution
for given initial conditions in a suitable domain.

Positivity and Boundedness of Solutions

Let all initial values be non-negative. The model ensures that all
state variables remain non-negative for all ¢ > 0.This can be
shown by contradiction: if any variable reaches zero, its derivative
is non-negative or bounded below, preventing it from becoming
negative. We define the total human and mosquito populations:

Nh(t) = Sh + Ihr + Ihn + Rh and Nv(t) = Sv + Iv.

Summing the human equations yields:
dNy

= A, —
dt h

Ap
upNp = Np(t) < —,

Hp
which ensures boundedness. Similarly, mosquito population N, is
regulated by logistic growth, bounded above by K,,. Disease-Free
Equilibrium (DFE) The disease-free equilibrium (DFE) corresponds
to the state where no infection is present in the population, i.e.,
I, = Iy, = R, = I; = 0. The human susceptible class at DFE
% = Ap— unSn = Sp =ﬁ_:
population, we consider logistic growth given by:

satisfies: For the mosquito

dN. N;
Y = 'va ( — _V) —
dt Ky

At DFE, all vectors are susceptible, so N, = §,. Setting the
derivative to zero:

Hy Ny

> Si= K,,(1 —%)

This shows that the mosquito population at DFE is strictly less than
the carrying capacity, unless p, < r. This expression is derived
from logistic growth dynamics, as supported in [17]. Thus, the

disease-free equilibrium is: E* = (? ,0,0,0,K, (1 - %),0) .
h

Basic Reproduction Number (R;)

We compute R, using the next generation matrix (NGM) approach
[15]. Take as infected compartments x = (I, Inn, I,) 7. Write the
system for these compartments in the form % =F(x)—V(x)

where F contains new infection terms and V contains transition
terms. From the model, the new infection terms are

Bhlv

(1 - 0B,
Nh - N, S

N, h

Fl =60 Sh' FZ
Iy +1
F3 — .Bv( hr hn) 51;
Np

and the remaining transition terms are
Vi = (rn + wdlner Vo = (Yn + Wpdlnn, Vs = wl,.
We compute the Jacobians F and V of (F;, F,, F3)T and

(V1,V,,V5)T atthe E*. Since at the DFE, Sj = Ny and S; = N;; , we
obtain

0 0 Sbnsy
hﬁs* Y+ i 0 0
F=[ 0 o0 (1—9)1'\‘]*”‘,V= 0 Yr+up 0
h
Bsi Bsi 0 0
N, M

The next-generation matrix is K = FV 1,
Computing V=" = diag((y + 1) ™" (vn + a) ™5 1 "), we get

0B6,S:

0 0 ﬁf h

Nyt
BrSn

K= 0 0 1-g)t
(-0t
BySy BvSy 0
Ny(rn + tn)  Np(vn + pn)
Let 28nSh — g (1 — 9) BuSh — ppgng Lo =
Np ity Np iy Nyp(Yr+in)

0 0 a
ThenK=(0 0 b
c ¢ 0

The characteristic polynomial of K can be computed as:
det(K — AI) = =23 + Ac(a + b) = —A(A% — c(a + b)).
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Thus, the eigenvaluesare A = 0and A = +y/c(a + b) .
The spectral radius is p(K) = +/c(a + b).

Now, substituting the values of a + b, ¢ and hence using values at
DFE, we obtain the formula,

(1+112)Bo (1+112) By (1+)Kyo (1-—L2—)
R, = Fy—1) = (1+7m3)To :
0=n( ) uy(Yn+un)Ny,

(2.9)

Stability of Disease-Free Equilibrium

On the basis of the theory about the spectral radius of the next-
generation matrix [15], we note the following. If Ry < 1, then all
eigenvalues of the linearization at E* have negative real parts and
hence E* is locally asymptotically stable. If Ry, > 1, the
linearization at E* has an eigenvalue with positive real part since
Ry—1=p(K)—1>0 gives a real positive root of the
characteristic equation, hence E* is unstable.

3. RESULTS AND DISCUSSION

3.1 Parameter Estimation and Model Calibration

To conduct numerical simulations and reproduce realistic dengue
transmission dynamics, model parameters were estimated using a
combination of methods:

Calculated Parameters: Demographic parameters such as human
recruitment rate (4y) and natural death rate (1) were computed
using census data (CBS, 2021) and the average life expectancy in

Nepal.
SIR-SI Dengue Model Fitted with Real Dengue Cases 2024 Sudurpaschim
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Fig. 4: Fitting the Dengue Model vs Real Time Dengue Data 2024
Sudurpashchim.

Data-Driven Fitting: Monthly new dengue cases of 2024 reported
in Sudurpashchim Province was obtained from the Epidemiology
and Disease Control Division (EDCD), Nepal. Parameters such as the
transmission rate from vector to human (f8;,) and human to vector
(By), reporting proportion (6), the vector carrying capacity K,
mosquito death rate (L), mosquito growth rate (r), and human
recovery rate (yn) were calibrated by minimizing the sum of

squared errors between observed and predicted monthly new
infections. Here, the initial intervals for values of the fitted
parameters during optimization were assumed being based on
ranges reported in peer-reviewed literature [4, 18, 19]. Reasonable
ranges were selected to reflect the local climatic and
epidemiological context of Nepal.

This parameter estimation process ensures the model captures key
biological, epidemiological, and environmental factors influencing
dengue dynamics in Sudurpahschim.

Table 1: Estimated Parameters: Source and description.

Param  Estimated Source Parameter Estimated
- eter Value Value
Ap 130 calculated r 1.4
Un 0.00119 calculated K, 4976640
Bn 2.79 data fitting 6 0.11225
By 2.77 data fitting a 2.81
Yn 2.15827 data fitting N, M2, M3 1.5
Wy 1.80723 data fitting Ry 1.9499

(Source: Data fitting)

3.2 Sensitivity Analysis

Each of the parametersn; = 7n,i = 1,2,3 and a was varied from
75% to 150% of its baseline value. Plots were generated showing
the sensitivity of Ry with respect to key parameters a, yp, 17 and 1,
are presented in Fig. 5 (a). The resulting value of Ry was computed
and heatmap is plotted as shown in Fig. 5 (b).

Sensitivity of Ry to Selected Parameters
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Fig. 5: Sensitivity analysis of the basic reproduction number
and heat-map.

These results help to identify which parameters are critical for
control strategies (e.g., vector control, sanitation, or public
awareness). Sensitivity analysis supports the design of robust, data-
informed intervention policies.

Fig. 5 illustrates the sensitivity of dengue outbreak dynamics to key
model parameters: mosquito mortality rate (u,,), initial susceptible
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vector population (S9), transmission rates 8, and f3,, and human
recovery rate (yy). Each subplot reveals how changes in these
parameters influence the total number of new dengue cases, peak
infection size, and timing of the epidemic peak.

Increment in the mosquito mortality rate p, results in a significantly
delayed and reduced epidemic peak. Even modest increments in
lead to substantial reductions in disease burden, highlighting the
critical role of adult mosquito control (e.g., safe use of insecticides,
environmental management). This finding aligns with biological
expectations, as higher mosquito death rates limit the infectious
lifespan and overall vector population.

Similarly, reduction in the initial susceptible vector population S —
which can be interpreted as lowering the vector carrying capacity
via reduced breeding sites (e.g., eliminating stagnant water, waste
management)—also results in a notably lower and delayed peak.
This supports the effectiveness of pre-monsoon vector source
reduction programs in tropical regions like Sudur Pashchim, where
vector populations rise with rainfall (Fig.6).

Impact of Parameter Variations on New Infections
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Fig. 6: Impact of some parameters in the peak time and size of
infections.

Higher transmission rates 8, and 3, naturally increase the outbreak
size and cause earlier peaks, underscoring the importance of
reducing human-vector contact. Use of mosquito repellents,
protective clothing, and awareness campaigns could help reduce
effective transmission. In contrast, increasing the human recovery
rate (yy) shortens infection duration and dampens the outbreak
peak, though this may depend on treatment access and public
health response.

4. CONCLUSION AND RECOMMENDATION

Mathematical model for dengue transmission dynamics is
constructed, analyzed and fitted with monthly dengue cases of one
year reported in Sudur Pashchim province of Nepal. Our model
incorporates with the impacts of key climatic factors temperature
and rainfall which are periodic in the region. Our model simply
includes parameters for average increment in mosquito growth
rate, transmission rates, mosquito mortality due to the warm
temperature of summer period. Also, the average impact of rainy
season over carrying capacity of environment for mosquito
population is involved in the model. These parameters make the
model more realistic than usual deterministic models employed in
other studies in Nepal and better describing the seasonality of

dengue in the reasons like Nepal. The small reported proportion
and only monthly data availability (not strong) are limitations of our
study. If the data were a bit richer (e.g. weekly and well reported)
and parameters were time dependent as temperature and rainfall
(instead of the impacts in average) the model could do still better.

Based on the findings of our study, we recommend integrated
vector management focusing on strategies.

Mosquito mortality increase: Promote safe insecticide use and
larvicide treatment to moderately raise ,, , which simulations show
can significantly flatten and delay epidemic peaks.

Source reduction: Reduce S9 by targeting breeding sites before and
during monsoon, as this greatly lowers transmission potential.

Transmission reduction: Encourage personal protection measures
to reduce B, and B,, especially during the summer and post-
monsoon months.

Case management: Improve healthcare access and early diagnosis
to increase yp, reducing infectious periods and secondary
transmissions. These interventions, especially when coordinated
and seasonally timed, could significantly mitigate dengue burden in
Sudurpaschim and similar regions.
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