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ABSTRACT 

Dengue disease dynamics highly depends on environmental temperature as its 
transmitting vectors-Aedes aegypti and Aedes albopictus mosquitoes are 
poikilothermal. Temperature influences mosquitoes’ key traits, including biting rate, 
oviposition rate, development rates of aquatic and adult stages, and lifespan. Rainfall in 
proper amounts, together with suitable temperatures, significantly supports egg 
hatching and growth of aquatic stage by creating breeding sites. In regions like Nepal, 
where seasonal variations in temperature and rainfall occur, mosquito population 
fluctuates seasonally, causing vector-borne diseases like dengue fever to similarly rise 
and fall. This paper develops a climate-sensitive mathematical model for dengue 
transmission in Sudurpashchim Province, Nepal, integrating effects of seasonal change 
in temperature and rainfall on mosquito life traits. We analyze the dengue dynamics 
model using symbolic and numerical tools to better understand disease patterns. 
Numerical simulations indicate that increasing mosquito mortality and reducing carrying 
capacity of environment to limit aquatic phase population are effective strategies for 
controlling and diminishing dengue outbreaks. 

 

1.  INTRODUCTION 

Vector-borne diseases such as dengue, Zika, and chikungunya 
continue to pose significant public health challenges globally, 
especially in tropical and subtropical regions. Among these, dengue 
is currently the most threatening vector-borne disease affecting 
human populations, imposing an estimated yearly infection burden 
of up to 400 million [1, 2]. Dengue fever is caused by the dengue 
virus, which exists in four serotypes (DENV1–DENV4), and is 
transmitted principally by Aedes aegypti and, less commonly, Aedes 
albopictus [3]. The transmission cycle follows a “human–mosquito–
human” pattern primarily driven by mosquito bites. Dengue 
transmission is strongly influenced by climatic factors such as 
temperature and rainfall, which affect mosquito breeding, survival, 
and biting behavior. Although dengue transmission is mostly 
seasonal due to weather conditions, Aedes aegypti can sustain 
populations even in dry seasons under suitable temperatures, 
leading to potential year-round transmission. 

 Mathematical models have become invaluable tools in studying 
the transmission dynamics of vector-borne diseases and designing 
effective intervention strategies. Compartmental models, such as 
the SEIR–SEI frameworks developed by Esteva and Vargas [4] and 
Yang and Ferreira [5], form the foundation of vector-borne disease 
modeling by capturing host–vector interactions and human 
demography. Subsequent studies have extended these frameworks 
to incorporate environmental effects, particularly climate variables, 
to improve realism. For instance, Barsante et al. [6] developed and 
validated a rainfall driven model of Aedes aegypti populations, 
noting that additional climatic factors such as temperature and 
humidity should be included for better predictive performance. 
Johanson et al. [7] analyzed 20 years of data from Puerto Rico to 

show significant associations between temperature, precipitation, 
and dengue transmission, while Morin et al. [8] developed a 
framework to model mosquito growth under climatic influences. 
Hii et al. [9] used weekly temperature and rainfall data for dengue 
forecasting. Furthermore, temperature-dependent mosquito traits 
like development and biting rates have been modeled using the 
Brière function [10] and quadratic functions [11, 12]. Vaidya and 
Wang [13] incorporated both seasonal and daily temperature 
variations in their biologically realistic model.  

Motivated by these studies, our work aims to integrate both 
temperature and rainfall into a mathematical model to capture 
realistic mosquito population dynamics and dengue transmission 
patterns. We also focus on accounting for the under-reporting of 
infections, which remains a significant issue in dengue surveillance. 
In Nepal, over 90% of dengue cases go unreported due to 
asymptomatic infections or reporting barriers. In this paper, we 
formulate a model that incorporates the impacts of summer and 
rainy seasons on mosquito traits, as well as the phenomenon of 
under-reported dengue cases. The model is fitted to monthly 
dengue case data from 2024 in the Sudurpashchim Province of 
Nepal to estimate key epidemiological parameters and better 
understand local dengue dynamics. 

2. METHODOLOGY 

    2.1 Data and Tools  

We use demographic and epidemiological data, and climate 
information to formulate and analyze the SIR–SI dengue model 
with reported and non-reported infections. We manage raw case 
counts and climatic averages in Microsoft Excel. We perform 

https://creativecommons.org/licenses/by-nc/4.0/
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symbolic derivations, including the disease-free equilibrium, the 
basic reproduction number (𝑅0), and stability conditions, in 
Mathematica. We run numerical solutions, simulations, and plots 
in Python to solve the nonlinear differential equations and assess 
seasonal effects on dengue spread. We obtain monthly dengue 
case data from the Epidemiology and Disease Control Division 
(EDCD) of Nepal, demographic information from the 2021 Nepal 
Census, and climate data (temperature and rainfall) from the 
Department of Hydrology and Meteorology. These datasets 
provide the basis for model parameterization.  

2.2 Mathematical Model 

We formulate the SIR–SI compartmental model by dividing the 
human population into four compartments: susceptible humans 
(𝑆ℎ), reported infectious humans (𝐼ℎ𝑟), non-reported infectious 
humans (𝐼ℎ𝑛), and recovered humans (𝑅ℎ). The mosquito 
population is split into susceptible vectors (𝑆𝑣) and infected vectors 
(𝐼𝑣). We express the dynamics through a system of nonlinear 
ordinary differential equations, where climate-dependent 
functions adjust key  

Fig. 1: Periodic pattern of temperature and rainfall in 
Sudurpashchim. 

transmission and growth parameters. The model serves as the main 
research tool to study unreported infections, determine threshold 
conditions for disease persistence, and evaluate control strategies. 
Modeling climatic impacts dengue transmission is highly sensitive 
to environmental factors such as temperature and rainfall, which 
directly affect mosquito population dynamics and virus incubation 
times. To understand the climatic context of Sudurpashchim 
Province, we observed the pattern made by ten years of weekly 
meteorological data (2014–2023), specifically weekly average 
temperatures and total weekly rainfall. 

Fig. 1 reveals a clear periodic pattern in both temperature and 
rainfall, with a one-year cycle. Significant rainfall is concentrated 
during the monsoon months (June to August), while summer 
months (April to September) exhibit high temperatures favorable 
for mosquito development, feeding frequency, and viral 
replication. This seasonal fluctuation in climatic variables directly 
motivates our inclusion of periodic effects in the transmission 
model. In particular, high summer temperatures enhance mosquito 
biting rate, survival, and viral transmission efficiency while 
monsoon rainfall increases mosquito breeding sites, thus 
temporarily boosting the vector carrying capacity. 

To further support this, we analyzed the 2022 weekly data of 
temperature, rainfall, and reported dengue cases in  

Sudurpashchim.  

 
Fig. 2: Dengue trend in 2022 with respect to temperature and 
rainfall. 

As shown in Fig. 2, dengue incidence in 2022 increased sharply 
starting mid-summer and peaked several weeks after the end of the 
monsoon season. This lag between rainfall and dengue outbreak is 
a typical pattern in dengue epidemiology and reflects the life cycle 
delay between vector proliferation and disease transmission.  

These climatic realities of Sudurashchim strongly support the 
necessity of incorporating seasonal variation in temperature into 
the vector growth rate 𝑟, the transmission rates 𝛽ℎ  (from vector to 
human) and 𝛽𝑣  (from human to vector), and the seasonality of 
rainfall on the carrying capacity 𝐾𝑣 in our mathematical model. 
Thus, we introduce seasonally modulated parameters using scaling 
factors to better capture the climatic influence on dengue 
dynamics. Let 𝛽ℎ0, 𝛽𝑣0 and 𝑟0 be baseline values of 𝛽ℎ, 𝛽𝑣  and 𝑟, 
respectively, for off-summer season. Now, we define  

𝛽ℎ = (1 + 𝜂1) 𝛽ℎ0,    𝛽𝑣 = (1 + 𝜂2)𝛽𝑣0, 𝑟 = (1 + 𝜂3)𝑟0  (2.1) 

where 𝜂1, 𝜂2, 𝜂3 = 0 for off-summer time and are some positive 
constants scales to the rates respectively in average due to 
warmth in summer. Similarly, we define  

𝐾𝑣 = (1 + 𝛼)𝐾𝑣0,                                              (2.2) 

where 𝐾𝑣0 denotes off-monsoon carrying capacity (indicating 
overall space including breeding sites during aquatic stages) and 𝛼 
is additional positive scale to the carrying capacity due to rainfall. 
Other parameters used in the model are defined as follows. The 
symbol Λℎ  represents the recruitment rate of humans, while 𝜇ℎ 
and 𝜇𝑣 denote the natural death rates of humans and vectors, 
respectively. The parameter 𝛾ℎ stands for the human recovery rate 
(Fig. 3). The transmission rate from vector to human is represented 
by 𝛽ℎ, and the transmission rate from human to vector is denoted 
by 𝛽𝑣. The symbol 𝜃 indicates the proportion of reported infections, 
𝑟 represents the mosquito growth rate, and 𝐾𝑣 denotes the 
carrying capacity for vectors. 

Model Equations 

𝑑𝑆ℎ

𝑑𝑡
=  Λℎ − 

𝛽ℎ𝐼𝑣

𝑁ℎ
 𝑆ℎ − 𝜇ℎ𝑆ℎ    (2.3) 

𝑑𝐼ℎ𝑟

𝑑𝑡
= 𝜃 

𝛽ℎ𝐼𝑣

𝑁ℎ
 𝑆ℎ − 𝛾ℎ𝐼ℎ𝑟 − 𝜇ℎ𝐼ℎ𝑟   (2.4) 
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Fig. 3: SIR-SI dengue model with temperature and rainfall impacts. 

𝑑𝐼ℎ𝑛

𝑑𝑡
= (1 − 𝜃) 

𝛽ℎ𝐼𝑣

𝑁ℎ
 𝑆ℎ − 𝛾ℎ𝐼ℎ𝑛 − 𝜇ℎ𝐼ℎ𝑛  (2.5) 

𝑑𝑅ℎ

𝑑𝑡
= 𝛾ℎ(𝐼ℎ𝑟 + 𝐼ℎ𝑛) − 𝜇ℎ𝑅ℎ   (2.6) 

𝑑𝑆𝑣

𝑑𝑡
= 𝑟 (1 −

𝑁𝑣

𝐾𝑣
)𝑁𝑣 − 

𝛽𝑣(𝐼ℎ𝑟+𝐼ℎ𝑛)

𝑁ℎ
𝑆𝑣 − 𝜇𝑣𝑆𝑣  (2.7) 

𝑑𝐼𝑣

𝑑𝑡
=
𝛽𝑣(𝐼ℎ𝑟+𝐼ℎ𝑛)

𝑁ℎ
𝑆𝑣 − 𝜇𝑣𝐼𝑣    (2.8) 

where 𝑁ℎ = 𝑆ℎ + 𝐼ℎ𝑟 + 𝐼ℎ𝑛 + 𝑅ℎ and 𝑁𝑣 = 𝑆𝑣 + 𝐼𝑣.  

2.3 Mathematical Analysis  

To understand the qualitative behavior of the proposed model, we 
perform mathematical analysis involving well-posedness, 
equilibrium analysis, and stability. We use standard techniques 
from dynamical systems and epidemiological modeling as discussed 
in [14, 15, 16].  

Uniqueness and Existence of Solution  

The model equations represent a system of ordinary differential 
equations (ODEs) with continuously differentiable right-hand sides. 
By the Picard–Lindelöf theorem [14], there exists a unique solution 
for given initial conditions in a suitable domain.  

Positivity and Boundedness of Solutions 

Let all initial values be non-negative. The model ensures that all 
state variables remain non-negative for all 𝑡 >  0. This can be 
shown by contradiction: if any variable reaches zero, its derivative 
is non-negative or bounded below, preventing it from becoming 
negative. We define the total human and mosquito populations: 

𝑁ℎ(𝑡)  =  𝑆ℎ  +  𝐼ℎ𝑟  +  𝐼ℎ𝑛  +  𝑅ℎ and 𝑁𝑣(𝑡)  =  𝑆𝑣  +  𝐼𝑣.  

Summing the human equations yields: 

𝑑𝑁ℎ
𝑑𝑡

 =  𝛬ℎ  −  µℎ𝑁ℎ  ⇒  𝑁ℎ(𝑡) ≤
𝛬ℎ
µℎ
, 

which ensures boundedness. Similarly, mosquito population 𝑁𝑣 is 
regulated by logistic growth, bounded above by 𝐾𝑣. Disease-Free 
Equilibrium (DFE) The disease-free equilibrium (DFE) corresponds 
to the state where no infection is present in the population, i.e., 
𝐼ℎ𝑟
∗  =  𝐼ℎ𝑛

∗  =  𝑅ℎ
∗  =  𝐼𝑣

∗  =  0. The human susceptible class at DFE 

satisfies: 
𝑑𝑆ℎ

𝑑𝑡
 =  𝛬ℎ − µℎ𝑆ℎ  ⇒  𝑆ℎ

∗  =
𝛬ℎ

µℎ
 . For the mosquito 

population, we consider logistic growth given by:      

 
𝑑𝑁𝑣

𝑑𝑡
 =  𝑟𝑁𝑣 (1 −

𝑁𝑣

𝐾𝑣
)  −  µ𝑣𝑁𝑣.  

At DFE, all vectors are susceptible, so 𝑁𝑣  =  𝑆𝑣. Setting the 
derivative to zero: 

0 =  𝑟𝑆𝑣 (1 −
𝑆𝑣
𝐾𝑣
) − µ𝑣𝑆𝑣    

⇒ 
𝑆𝑣
𝐾𝑣
 =  1 −

µ𝑣
𝑟
   ⇒  𝑆𝑣

∗ =  𝐾𝑣 (1 −
µ𝑣
𝑟
). 

This shows that the mosquito population at DFE is strictly less than 
the carrying capacity, unless µ𝑣 ≪ 𝑟. This expression is derived 
from logistic growth dynamics, as supported in [17]. Thus, the 

disease-free equilibrium is: 𝐸∗ = (
𝛬ℎ

µℎ
 , 0, 0, 0, 𝐾𝑣 (1 −

µ𝑣

𝑟
) , 0) . 

Basic Reproduction Number (𝑅0) 

We compute 𝑅0 using the next generation matrix (NGM) approach 
[15]. Take as infected compartments 𝑥 =  (𝐼ℎ𝑟 , 𝐼ℎ𝑛, 𝐼𝑣)

⊤. Write the 

system for these compartments in the form 
𝑑𝑥

𝑑𝑡
 = 𝐅(𝑥) − 𝐕(𝑥) 

where 𝐅 contains new infection terms and 𝐕 contains transition 
terms. From the model, the new infection terms are  

𝐹1  =  𝜃
𝛽ℎ𝐼𝑣
𝑁ℎ

𝑆ℎ,              𝐹2  =
(1 −  𝜃)𝛽ℎ𝐼𝑣

𝑁ℎ
 𝑆ℎ,    

𝐹3  =
𝛽𝑣(𝐼ℎ𝑟  + 𝐼ℎ𝑛)

𝑁ℎ
𝑆𝑣 

and the remaining transition terms are 

𝑉1 = (𝛾ℎ + µℎ)𝐼ℎ𝑟 ,          𝑉2 = (𝛾ℎ + µℎ)𝐼ℎ𝑛,           𝑉3 = µ𝑣𝐼𝑣. 

We compute the Jacobians 𝐹 and 𝑉 of (𝐹1,  𝐹2,  𝐹3)
⊤ and 

(𝑉1, 𝑉2, 𝑉3)
⊤ at the 𝐸∗. Since at the DFE, 𝑆ℎ

∗ = 𝑁ℎ
∗  and 𝑆𝑣

∗ = 𝑁𝑣
∗ , we 

obtain 
   

𝐹 =

(

  
 

0 0
𝜃𝛽ℎ𝑆ℎ

∗

𝑁ℎ
∗

0 0 (1 − 𝜃)
𝛽ℎ𝑆ℎ

∗

𝑁ℎ
∗

𝛽𝑣𝑆𝑣
∗

𝑁ℎ
∗

𝛽𝑣𝑆𝑣
∗

𝑁ℎ
∗ 0

)

  
 

, 𝑉 = (
𝛾ℎ + 𝜇ℎ 0 0
0 𝛾ℎ + 𝜇ℎ 0
0 0 𝜇𝑣

). 

The next-generation matrix is 𝐾 = 𝐹𝑉−1.  
Computing 𝑉−1 = diag((𝛾ℎ + 𝜇ℎ)

−1, (𝛾ℎ + 𝜇ℎ)
−1, 𝜇𝑣

−1) , we get 

𝐾 =

(

 
 
 
 

0 0
𝜃𝛽ℎ𝑆ℎ

∗

𝑁ℎ
∗𝜇𝑣

0 0 (1 − 𝜃)
𝛽ℎ𝑆ℎ

∗

𝑁ℎ
∗𝜇𝑣

𝛽𝑣𝑆𝑣
∗

𝑁ℎ
∗(𝛾ℎ + 𝜇ℎ)

𝛽𝑣𝑆𝑣
∗

𝑁ℎ
∗(𝛾ℎ + 𝜇ℎ)

0
)

 
 
 
 

 

Let 
𝜃𝛽ℎ𝑆ℎ

∗

𝑁ℎ
∗𝜇𝑣

= 𝑎, (1 − 𝜃)
𝛽ℎ𝑆ℎ

∗

𝑁ℎ
∗𝜇𝑣
= 𝑏 and 

𝛽𝑣𝑆𝑣
∗

𝑁ℎ
∗(𝛾ℎ+𝜇ℎ)

= 𝑐 .  

Then 𝐾 = (
0 0 𝑎
0 0 𝑏
𝑐 𝑐 0

).  

The characteristic polynomial of 𝐾 can be computed as:  

det(𝐾 − 𝜆𝐼) =  −𝜆3 + 𝜆𝑐(𝑎 + 𝑏) = −𝜆(𝜆2 − 𝑐(𝑎 + 𝑏)).  
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Thus, the eigenvalues are 𝜆 = 0 and 𝜆 = ±√𝑐(𝑎 + 𝑏) .  

The spectral radius is 𝜌(𝐾) = √𝑐(𝑎 + 𝑏). 

Now, substituting the values of 𝑎 + 𝑏, 𝑐 and hence using values at 
DFE, we obtain the formula,  

𝑅0 = 𝜌(𝐹𝑉
−1) = √

(1+𝜂1)𝛽ℎ0(1+𝜂2)𝛽𝑣0(1+𝛼)𝐾𝑣0(1−
𝜇𝑣

(1+𝜂3)𝑟0
)

𝜇𝑣(𝛾ℎ+𝜇ℎ)𝑁ℎ
∗ .  (2.9) 

Stability of Disease-Free Equilibrium 

On the basis of the theory about the spectral radius of the next-
generation matrix [15], we note the following. If 𝑅0 <  1, then all 
eigenvalues of the linearization at 𝐸∗ have negative real parts and 
hence 𝐸∗ is locally asymptotically stable. If 𝑅0 >  1, the 
linearization at 𝐸∗ has an eigenvalue with positive real part since 
𝑅0 − 1 = 𝜌(𝐾) − 1 > 0 gives a real positive root of the 
characteristic equation, hence 𝐸∗ is unstable. 

3.  RESULTS AND DISCUSSION  

3.1 Parameter Estimation and Model Calibration  

To conduct numerical simulations and reproduce realistic dengue 
transmission dynamics, model parameters were estimated using a 
combination of methods:  

Calculated Parameters: Demographic parameters such as human 
recruitment rate (𝛬ℎ) and natural death rate (µℎ) were computed 
using census data (CBS, 2021) and the average life expectancy in 
Nepal. 

 

Fig. 4: Fitting the Dengue Model vs Real Time Dengue Data 2024 
Sudurpashchim. 

Data-Driven Fitting: Monthly new dengue cases of 2024 reported 
in Sudurpashchim Province was obtained from the Epidemiology 
and Disease Control Division (EDCD), Nepal. Parameters such as the 
transmission rate from vector to human (𝛽ℎ) and human to vector 
(𝛽𝑣), reporting proportion (𝜃), the vector carrying capacity 𝐾𝑣, 
mosquito death rate (µ𝑣), mosquito growth rate (𝑟), and human 
recovery rate (𝛾ℎ) were calibrated by minimizing the sum of 

squared errors between observed and predicted monthly new 
infections. Here, the initial intervals for values of the fitted 
parameters during optimization were assumed being based on 
ranges reported in peer-reviewed literature [4, 18, 19]. Reasonable 
ranges were selected to reflect the local climatic and 
epidemiological context of Nepal. 

This parameter estimation process ensures the model captures key 
biological, epidemiological, and environmental factors influencing 
dengue dynamics in Sudurpahschim.  

Table 1: Estimated Parameters: Source and description. 

Param
- eter 

Estimated 
Value 

Source Parameter Estimated 
Value 

Λℎ  130 calculated 𝑟 1.4 
𝜇ℎ 0.00119 calculated 𝐾𝑣 4976640 
𝛽ℎ  2.79 data fitting 𝜃 0.11225 
𝛽𝑣  2.77 data fitting 𝛼 2.81 
𝛾ℎ 2.15827 data fitting 𝜂1, 𝜂2, 𝜂3 1.5 
𝜇𝑣 1.80723 data fitting 𝑅0 1.9499 

                                            (Source: Data fitting) 

3.2 Sensitivity Analysis 

Each of the parameters 𝜂𝑖  =  𝜂, 𝑖 =  1, 2, 3 and 𝛼 was varied from 
75% to 150% of its baseline value. Plots were generated showing 
the sensitivity of 𝑅0 with respect to key parameters 𝛼, 𝛾ℎ, 𝜂 and µ𝑣 
are presented in Fig. 5 (a). The resulting value of 𝑅0 was computed 
and heatmap is plotted as shown in Fig. 5 (b). 

 

           Fig. 5: Sensitivity analysis of the basic reproduction number   
           and heat-map. 

These results help to identify which parameters are critical for 
control strategies (e.g., vector control, sanitation, or public 
awareness). Sensitivity analysis supports the design of robust, data-
informed intervention policies.  

Fig. 5 illustrates the sensitivity of dengue outbreak dynamics to key 
model parameters: mosquito mortality rate (µ𝑣), initial susceptible 



Pant et al./ Api Journal of Science: Vol 2(1) (2025) 77-82 

 

81 
 

vector population (𝑆𝑣
0), transmission rates 𝛽ℎ  and 𝛽𝑣, and human 

recovery rate (𝛾ℎ). Each subplot reveals how changes in these 
parameters influence the total number of new dengue cases, peak 
infection size, and timing of the epidemic peak.  

Increment in the mosquito mortality rate µ𝑣 results in a significantly 
delayed and reduced epidemic peak. Even modest increments in µ𝑣 
lead to substantial reductions in disease burden, highlighting the 
critical role of adult mosquito control (e.g., safe use of insecticides, 
environmental management). This finding aligns with biological 
expectations, as higher mosquito death rates limit the infectious 
lifespan and overall vector population.  

Similarly, reduction in the initial susceptible vector population 𝑆𝑣
0—

which can be interpreted as lowering the vector carrying capacity 
via reduced breeding sites (e.g., eliminating stagnant water, waste 
management)—also results in a notably lower and delayed peak. 
This supports the effectiveness of pre-monsoon vector source 
reduction programs in tropical regions like Sudur Pashchim, where 
vector populations rise with rainfall (Fig.6). 

 

Fig. 6: Impact of some parameters in the peak time and size of 
infections. 

Higher transmission rates 𝛽ℎ  and 𝛽𝑣  naturally increase the outbreak 
size and cause earlier peaks, underscoring the importance of 
reducing human-vector contact. Use of mosquito repellents, 
protective clothing, and awareness campaigns could help reduce 
effective transmission. In contrast, increasing the human recovery 
rate (𝛾ℎ) shortens infection duration and dampens the outbreak 
peak, though this may depend on treatment access and public 
health response. 

4. CONCLUSION AND RECOMMENDATION 

Mathematical model for dengue transmission dynamics is 
constructed, analyzed and fitted with monthly dengue cases of one 
year reported in Sudur Pashchim province of Nepal. Our model 
incorporates with the impacts of key climatic factors temperature 
and rainfall which are periodic in the region. Our model simply 
includes parameters for average increment in mosquito growth 
rate, transmission rates, mosquito mortality due to the warm 
temperature of summer period. Also, the average impact of rainy 
season over carrying capacity of environment for mosquito 
population is involved in the model. These parameters make the 
model more realistic than usual deterministic models employed in 
other studies in Nepal and better describing the seasonality of 

dengue in the reasons like Nepal. The small reported proportion 
and only monthly data availability (not strong) are limitations of our 
study. If the data were a bit richer (e.g. weekly and well reported) 
and parameters were time dependent as temperature and rainfall 
(instead of the impacts in average) the model could do still better. 

Based on the findings of our study, we recommend integrated 
vector management focusing on strategies.  

Mosquito mortality increase: Promote safe insecticide use and 
larvicide treatment to moderately raise µ𝑣 , which simulations show 
can significantly flatten and delay epidemic peaks. 

Source reduction: Reduce 𝑆𝑣
0 by targeting breeding sites before and 

during monsoon, as this greatly lowers transmission potential. 

Transmission reduction: Encourage personal protection measures 
to reduce 𝛽ℎ  and 𝛽𝑣 , especially during the summer and post-
monsoon months.  

Case management: Improve healthcare access and early diagnosis 
to increase 𝛾ℎ, reducing infectious periods and secondary 
transmissions. These interventions, especially when coordinated 
and seasonally timed, could significantly mitigate dengue burden in 
Sudurpaschim and similar regions. 
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