PREVALENCE AND CORRELATES OF VITAMIN B\textsubscript{12} DEFICIENCY AMONG DEPRESSIVE PATIENTS PRESENTING IN THE TERTIARY CARE HOSPITAL OF GANDAKI PROVINCE OF NEPAL

Khatri JB1*, Godar ST2, Subedi A3

ABSTRACT

Introduction
The prevalence of vitamin B\textsubscript{12} deficiency in depression is not clear and more research is needed.

Objectives
The objective of this study is to find the prevalence of deficiency of vitamin B\textsubscript{12} level in the depressed patient. The second objective is to find the prevalence of deficiency of vitamin B\textsubscript{12} according to different socio-demographic variables.

Methodology
The patients diagnosed as depressive episodes according to the International Classification of Disease – 10 Classification of Mental and Behavioural Disorders were selected from the Psychiatric Out-Patient Department of Manipal Teaching Hospital, Pokhara. The proforma was used to collect the socio-demographic profile of the patient. The serum sample of the 50 patients was sent for vitamin B\textsubscript{12} estimation. Serum concentrations less than 239 pg/ml was considered deficient in this study.

Result
The overall prevalence of vitamin B\textsubscript{12} deficiency was 22% in the depressed patients. The mean age of the total patients were 39.2 years with the standard deviation of 13.75 years. Vitamin B\textsubscript{12} deficiency was more prevalent in the socio-demographic variables like age above 61 years, Brahmin and Chhetri caste, female gender, unmarried groups, and in the patients living in the urban area as compared to other variables.

Conclusion
The result shows that vitamin B\textsubscript{12} deficiency is common in the patients with depression. Clinicians should be aware of the risk for vitamin B\textsubscript{12} deficiency in depressive patients. As this study was done in limited geographical area and sample size being small, further larger studies are needed before generalizing these results.

KEY WORDS
Deficiency, depression, Nepal, vitamin B\textsubscript{12}
INTRODUCTION

Pernicious anaemia is widely recognized to be associated with subacute combined degeneration of the cord but it may also be accompanied by abnormalities of the mental state. Vitamin B_12 deficiency accompanied by abnormalities of the mental state is widely recognized. The surveys which was conducted among the psychiatric populations have detected a large number of patients with low serum B_12 levels. The deficiency of vitamin B_12 can occur from inadequate intake, impaired absorption, vitamin B_12 degradation, increased requirement, or can be multifactorial. The association of affective disorders secondary to vitamin B_12 deficiency has been documented. Affective disorder, schizophrenia, paranoia, episodes of disorientation and delirium, and progressive dementia have been attributed directly to vitamin B_12 deficiency. The psychiatric manifestations due to vitamin B_12 may antedate by many years the first hematologic or neurologic symptoms, and this deficiency are completely reversible by etiological treatment.

The role of vitamin B_12 in the facilitation of monoamine transmitter release and the mechanism by which low levels may lead to depressed mood have generated renewed interest in the role of vitamin B_12 in the aetiology. Overall the evidence supporting an association between vitamin B_12 deficiency and depression remains quite sparse. Currently, there is no clear guideline for the screening of psychiatric patients with psychiatric manifestations for vitamin B_12 level. The objective was to study the prevalence of vitamin B_12 deficiency in the patients suffering from depressive episodes attending Psychiatry OPD of Manipal Teaching Hospital, Pokhara. The second objective was to find the prevalence of deficiency of vitamin B_12 in the different socio-demographic variables of the depressive patients.

METHODOLOGY

This cross sectional study was conducted in the Psychiatry OPD of Manipal Teaching Hospital. Manipal Teaching Hospital is situated in Pokhara, the capital of the Gandaki Province of Nepal. This hospital provides a teaching base for the Manipal College of Medical Sciences for all types of academic programs and also provides tertiary level of health services to the patients. The ethical clearance of the study was taken from Institutional Review Committee of Manipal College of Medical Sciences, Pokhara before the start of the study. The study was conducted for six months (from January 2019 to June 2019).

The total of 50 patients who had fulfilled the diagnostic criteria of depressive episode (single episode or recurrent episode) according to ICD-10 Classification of Mental and Behaviour Disorder Diagnostic Criteria for Research (ICD-10 DCR) were selected. The ICD-10 Diagnostic Criteria for Research (ICD-10 DCR) was developed by the Division of Mental Health of the World Health Organization. It gives operational criteria for the diagnosis of mental disorders. The Diagnostic Criteria for Research accompanying the ICD-10 are designed for use in research; their content is derived from the Glossary to the chapter on Mental and Behavioural Disorders in the ICD-10. They provide specific criteria for diagnoses contained in the “Clinical Descriptions and Diagnostic Guidelines” that have been produced for general clinical and educational use by psychiatrists and other mental health professionals.

The consent was taken from the patients. The patients who were diagnosed with bipolar affective disorder, comorbid medical/surgical conditions and the patient who had not given the informed consent were excluded from the study. Similarly, the patients who were taking any other drugs/ medicine on regular basis and any history of undergone gastrointestinal tract surgery in the past were also excluded from the study.

A self-designed proforma was used to record the socio demographic data of the patients which includes age, gender, caste, marital status and place of the respondents. The blood samples of all depressive patients were sent for vitamin B_12 estimation. Normal serum vitamin B_12 levels range between 239-931 pg/ml. Serum concentrations less than 239 pg/ml was considered deficient in this study. Data analysis was done in Epi-Info 7 version.

RESULT

Table 1 showed the vitamin B_12 level of the depressive patients. The overall prevalence of deficiency of vitamin B_12 was 22% in the patients diagnosed as depressive episodes according to ICD-10 DCR.

<table>
<thead>
<tr>
<th>Vitamin B_{12} level</th>
<th>Number</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficient</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>Sufficient</td>
<td>39</td>
<td>78</td>
</tr>
<tr>
<td>TOTAL</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2 showed socio-demographic variables and vitamin B_{12} level of the patients. The mean age of the patients was 39.2 years with the standard deviation of 13.75 years. The mean vitamin B_{12} level was deficient more in the patients aged above 61 years as compared to other age group patients. The Brahmin and Chhetri caste patients had more prevalent of deficiency as compared to other caste. In the gender distribution, the female gender had high prevalence as compared to male gender. The deficiency was also found more in the unmarried patients. The patients living in the urban area were found to have a high prevalence as compared to the patients living in the rural area. The relationship between the different socio-demographic variables and vitamin B_{12} level was not statistically significant.
The positive connection between vitamin B₁₂ deficiency and depression points to the possibility that vitamin B₁₂ deficiency is a significant risk factor of geriatric depression. The high proportion of deficiency in the elderly populations is mainly explained by the food-B₁₂ malabsorption seen in this group of population.

The prevalence of deficiency of vitamin B₁₂ was 25% in the female and 16.7% in the male in this study. There is no statistical significance relationship between gender and vitamin B₁₂ level in the present study. Some other studies also reported more prevalence of deficiency in the female gender, whereas, another study in Nepal reported more prevalence of deficiency in the male, but the association was not significant.

In our study, the prevalence of vitamin B₁₂ deficiency was higher in patients of urban area and in unmarried samples but in the insignificant way. Similar to our study, other study in India also found high prevalence of deficiency in the patients living in the urban areas. The relatively low level of vitamin B₁₂ in this sample of the populations might be attributed to vegetarianism.

The high proportion in the Brahmin and Chhetri caste in the present study might be explained by their dietary habits. The study conducted in India discussed that vegetarianism in India is multigenerational, lifelong and are based on religious and cultural belief. The socio-cultural similarity between India and Nepal might explain this high prevalence. These are just a possible explanation as our study had not taken into account the dietary habits of the patients. Further study is required to confirm this hypothesis in future.

The difference in the prevalence rates in the above studies might be due to difference in the nutritional status of the respondents. The different result of the different studies might be because these studies failed to consider other potential confounding factors such as depressive patients who had decreased appetite which might lead to low vitamin B₁₂ level. The study design, different cut-off values and confounding factors in various studies could lead to the different findings. The difference in the prevalence rates in the different studies is also explained by the low intake of B₁₂ rich foods of animal origin and possibly due to gastrointestinal infections and host-microbiota interactions.

CONCLUSION

The vitamin B₁₂ deficiency was noted in the 22% of the depressed patients. The deficiency was greater in the age above 61 years, Brahmin and Chhetri caste, female gender, unmarried samples and in the urban resident as compared to other variables. The identification of risk factor found in this study would be helpful in the prevention and management of depressive patients. The psychiatrist should keep high degree of index of suspicion in dealing with depressive patients for vitamin B₁₂ deficiency.

RECOMMENDATION

Screening for vitamin B₁₂ level should be the regular part of the holistic management in every depressive patient. The risk factors found in this study like the patient age above 61 years with standard deviation of 13.75 years * Odds ratio cannot be calculated

DISCUSSION

Deficiencies of vitamin B₁₂ are associated with a variety of neuropsychiatric manifestations. The vitamin B₁₂ plays a very important role in the mood and other brain functions. The low levels of vitamin B₁₂ may be highly prevalent and is linked to depression.

The overall prevalence of vitamin B₁₂ deficiency in this sample of the population was 22%. The prevalence of the deficiency in other study in Nepal was 53.6% by using cut off level of vitamin B₁₂ of 211 pg/ml. One Indian study found prevalence of 38% and 70% by using cut off level of 211 pg/ml and 350 pg/ml respectively. In other study, the prevalence of deficiency of Bhutanese refugees migrated to USA previously living as refugee in Nepal were 64%, 27% and 32% in three different settings. Epidemiological studies found that up to 31% of depressed patients have low serum vitamin B₁₂levels. Two other studies had also found vitamin B₁₂ deficiency in depressed patients. One comparative cross-sectional study showed that the patients who had a vitamin B₁₂ deficiency had higher Beck Depression Inventory scores than those who did not and vitamin B₁₂ deficiency can be correlated with depressive complaints. It is found that the higher vitamin B₁₂ levels are thought to be associated with a more favorable outcome in depression.

The mean age of the patients in the current sample was 39.2 years with standard deviation of 13.75 years. The other study done in Nepal found mean age of 46.81 years with standard deviation of 11.26 years. In our study, the mean age of the patients in the current sample was 39.2 ± 13.75 years (n=50). The other study conducted in Nepal also found mean age of 46.8 ± 13.75 years. The other study done in Nepal found mean age of 46.8 ± 13.75 years with standard deviation of 13.75 years. The other study conducted in Nepal found mean age of 46.8 ± 13.75 years with standard deviation of 13.75 years.

The vitamin B₁₂ deficiency was noted in the 22% of the depressed patients. The deficiency was greater in the age above 61 years, Brahmin and Chhetri caste, female gender, unmarried samples and in the urban resident as compared to other variables. The identification of risk factor found in this study would be helpful in the prevention and management of depressive patients. The psychiatrist should keep high degree of index of suspicion in dealing with depressive patients for vitamin B₁₂ deficiency.

RECOMMENDATION

Screening for vitamin B₁₂ level should be the regular part of the holistic management in every depressive patient. The risk factors found in this study like the patient age above 61

Table 2: Socio-demographic profile and vitamin B₁₂ level of the patients. (n=50)

<table>
<thead>
<tr>
<th>Socio-demographic variables</th>
<th>Deficiency Level (n=151) (%)</th>
<th>Sufficient Level (n=392) (%)</th>
<th>Total (n=543) (%)</th>
<th>Odds Ratio</th>
<th>95% Confidence Interval</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age Groups</td>
<td>22-40</td>
<td>7 (7.9)</td>
<td>3 (0.7)</td>
<td>12 (2.2)</td>
<td>0.04</td>
<td>0.885</td>
</tr>
<tr>
<td></td>
<td>41-60</td>
<td>2 (1.3)</td>
<td>1 (0.2)</td>
<td>3 (0.5)</td>
<td>0.04</td>
<td>0.836</td>
</tr>
<tr>
<td></td>
<td>>61</td>
<td>2 (4.0)</td>
<td>1 (0.2)</td>
<td>3 (0.5)</td>
<td>0.04</td>
<td>0.836</td>
</tr>
<tr>
<td>Caste</td>
<td>Brahmin/ Chhetri</td>
<td>7 (5.9)</td>
<td>5 (4.1)</td>
<td>12 (2.2)</td>
<td>0.06</td>
<td>0.712</td>
</tr>
<tr>
<td></td>
<td>Mongoloids</td>
<td>1 (1.0)</td>
<td>3 (2.5)</td>
<td>4 (0.7)</td>
<td>0.04</td>
<td>0.836</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>9 (5.5)</td>
<td>3 (2.5)</td>
<td>12 (2.2)</td>
<td>0.06</td>
<td>0.712</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>1 (0.9)</td>
<td>3 (2.5)</td>
<td>4 (0.7)</td>
<td>0.04</td>
<td>0.836</td>
</tr>
<tr>
<td>Gender</td>
<td>Female</td>
<td>6 (8.5)</td>
<td>7 (10.1)</td>
<td>13 (5.3)</td>
<td>0.04</td>
<td>0.836</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>6 (8.5)</td>
<td>7 (10.1)</td>
<td>13 (5.3)</td>
<td>0.04</td>
<td>0.836</td>
</tr>
<tr>
<td>Married Status</td>
<td>Married</td>
<td>6 (15.7)</td>
<td>13 (30.3)</td>
<td>19 (38.0)</td>
<td>0.06</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>Unmarried</td>
<td>3 (12.5)</td>
<td>2 (8.0)</td>
<td>5 (20.0)</td>
<td>0.06</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>Separated</td>
<td>1 (2.5)</td>
<td>2 (8.0)</td>
<td>3 (12.5)</td>
<td>0.06</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>Widowed</td>
<td>3 (12.5)</td>
<td>4 (16.0)</td>
<td>7 (28.0)</td>
<td>0.06</td>
<td>0.52</td>
</tr>
<tr>
<td>Residence</td>
<td>Urban</td>
<td>8 (28.1)</td>
<td>20 (71.9)</td>
<td>28 (51.8)</td>
<td>2.50</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>Rural</td>
<td>3 (11.1)</td>
<td>19 (68.9)</td>
<td>22 (44.2)</td>
<td>0.39</td>
<td>0.712</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>11 (39)</td>
<td>39 (130)</td>
<td>50 (92)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean age ± SD = 39.2 ± 13.75 years

Odds ratio cannot be calculated
years, Brahmin and Chhetri caste, female gender, unmarried samples and in the resident living in the urban areas should be given special attention while searching for vitamin B12 deficiency. This study highlights the importance aspects of screening vitamin B12 deficiency in the patients suffering from depressive episodes.

LIMITATIONS OF THE STUDY

The cross-sectional nature of this study is obvious limitation of this study. Therefore, the cause and effect relationship could not be estimated. Hence, it is not known whether low vitamin B12 leads to depression or vice versa. But from the mental health perspective, the prevalence of vitamin B12 deficiency was a matter of high concern. The second limitation was assessing dietary habit of the depressive patients was not done in this study which might provide insight into the dietary factors associated with low serum vitamin B12 level. Another limitation is that this study was done in limited geographical area and in small sample size. So, further larger scale studies are needed before generalizing these results.

CONFLICT OF INTEREST

None

FINANCIAL DISCLOSURE

None

REFERENCES

4. Richmond J, Davidson S. Subacute combined degeneration of the spinal cord in non addisonian megaloblastic anemia. QJM 1958; 27(10):517-31. PMID: 13602059

Khatri JB et al