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Abstract
Diffraction phenomenon occurs when the wavelength of the wave is comparable to the size of the 
obstacle. Tunneling through a barrier occurs when the particle size is comparable to the width of 
the barrier. The Transmission probability versus potential energy curve is hyperbolic in nature. This 
main aim of this article is to show that there is no probability of penetrating the particle through the 
barrier if barrier width is extremely larger and extremely smaller than the particle size. The condition 
for tunneling is similar to the necessary and sufficient condition for diffraction to occur. The various 
examples presented here shows that the penetration of the particle through the barrier is only possible 
when the size of the particle is comparable to the size of the barrier height. This article shows that 
probability occurrence, Wave-particle duality and uncertainty of a particle exists only when there is 
comparable size between the particle and its barrier width.
Key words: Diffraction, tunneling, potential barrier, Transmission probability.

Introduction
Wave particle duality, Heisenberg’s uncertainty principle and probability have a key role in 
tunneling phenomenon (Gasiorowicz, 2007). Probability occurrence is independent of time 
(Griffiths, 2008). During tunneling, the particle shows a wave behavior. A particle shows 
reflection, refraction, diffraction, interference and polarization phenomenon which is confirmed 
by Davisson and Germer experiment (Murugeshan, 1997). The wave shows particle behavior 
during photoelectric effect (Zettili, 2009). The Schrodinger time independent equation is 
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=+− Where, u(x) represents the wave function. E(x)  

represents the total energy of the particle,  V(x) represents the potential energy of the particle 
(Zettili, 2009). The wave function gives the particle behavior.  

According to the classical theory, an alpha particle cannot escape from the potential well due 
to its insufficient energy. The barrier height is in the order of 30 Mev and the decayed alpha 
particles have energies only in the range 4 to 9 Mev (Gamow, 1928). This energy range from 4 
to 9 Mev is very small, but the half-lives of the radioactive alpha emitters range from  ~10-7 s to 
10-8 s, while the energy changes by a factor of 2, the change in the half –lives is about 25 orders 
of magnitude. Classical arguments fail to account for alpha decay, but quantum mechanics 
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provides a straight forward explanation based upon the concept of tunneling where a particle 
can be found in a classically forbidden region (Gamow, 1928). 

Laue and Bragg showed the diffraction of x-rays through a crystal (Fukamachi et.al., 2004). 
For diffraction phenomenon to take place, the wavelength of the wave should be Comparable 
to the size of the obstacle (Patterson, 1924). The size of the interatomic distance in a crystal is 
of the order of 1 A0. The wavelength of the x-ray varies from 1 A0 to 100 A0. So Laue used zinc 
sulphide crystal for the diffraction of x-rays (Patterson, 1939). 

The accepted evidence for wave –like behavior is the phenomenon of diffraction (Shvyd’ko 
et.al., 2006). The rainbow pattern of colours that we see when we look at the surface of a compact 
disk is caused by light waves diffracting from the regularly spaced bands of shiny material that 
make up the tracks (Bucksbaum, 2001). This effect can be seen because the wavelength of 
light, although small, is large enough to be comparable to the spaces between adjacent tracks 
(Bucksbaum, 2001). It is comparable with the diffraction phenomenon observed in single slit, 
and double slit. Double slit diffraction is a corner stone of Quantum mechanics (Roger et. al., 
2013). It illustrates key features of Quantum mechanics: Interference and the particle wave 
duality of matter. Richard Feynman presented a thought experiment to show these features 
(Roger et.al., 2013). The barrier potential energy is distributed to various levels. Similarly, 
the energy acquired by the electron also varies due to Heisenberg’s uncertainty principle and 
probabilistic distribution of energy (Sarkar and Bhattacharyya, 2008). The various planes in a 
crystal are compared to the distributed energy levels (energy band) of the barrier according to 
the quantum model.

Probability density is given by
                                           r = | j |2   (Agarwal, 2002)
Transmission probability is given by the ratio of the amplitude of the transmitted wave to the 
amplitude of the incident wave and is given by
 

aveincident w  theof Amplitude
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 The weak nuclear force is the second weakest force, after the force of gravity, and it’s the force 
with the shortest range (Rutherford, 1899).The alpha particle emits from the nucleus even if the 
alpha particle has less energy than the barrier potential inside the nucleus (Agarwal and Prakash, 
2002). Nucleus is considered as the well. The alpha particle bounces back and forth inside the 
nucleus. The cold emission of electron from the metal surface is also the case of tunneling 
(Mandel, 2015). Weak field is also responsible for the tunnel effect. Many physical, chemical and 
biological processes occur due to application of low field (Majumdar, 2011). The case of mutation 
in biological process is the cause of tunnel effect (Majumdar, 2011). The solar panel works due to 
the interaction of weak field. Many chemical reactions can be activated due to lower energy. The 
lower energy is responsible to emit the electrons from the metal surface (in case of solar panel) 
and the energy required to activate the reaction in case of chemical reaction (Majumdar, 2011). 
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The de – Broglie wavelength of the emitted wave is given by

  Wavelength (l)= 
3mKT

h

Where h is Planck’s constant, T is the temperature of the specimen, K is Boltzmann’s constant 
(Zettili, 2009).

An electron beam with energy of 600 eV, which corresponds to a de – Broglie wavelength 
of 50 pm, was generated with a thermionic tungsten filament and several electrostatic lenses 
(Roger, et.al., 2013). The wavelength of the emitted radiation depends upon the Temperature 
of the body (Singhal et.al., 1998). When the body is heated, it emits radiations. The intensity 
and the frequency of the emitted radiation depend upon the temperature of the heating body 
(Zettili, 2009). The color depends upon the temperature of the body (Zettili, 2009). Color of the 
radiation emitted by the heating body depends upon its wavelength.

Methods: The data used is arbitrary. The variation of transmission probability with E/V had 
been calculated earlier. The computer programming used here is Excel. In this work, the 
energy of the particle has kept constant. The potential energy is varied. The width of the barrier 
is also constant. The transmission probability for same particle with identical energy   has 
calculated. The equation of transmission probability is used, which is obtained from the case 
of the square potential barrier, when the width of the barrier is 2a and potential energy is of 
height ‘V. The square potential barrier is the particular case of the smooth potential barrier. The 
plot of transmission probability versus potential energy (barrier potential) is observed in two 
dimensional forms. 

Discussion and results:  The general equation for the transmission probability is  

 Kl sinh  V+E)-4E(V
E)-4E(VT 22=

  

2Kl-
2 e

V
E)-16E(VT ≈

As  Kl→∞ the transmission coefficient tends to zero which is in agreement with the classical 
result.
Similarly, when potential is infinite, the transmission probability is zero which is also in 
agreement with the classical result.
The transmission probability goes on decreasing when the width of the barrier goes on 
increasing. The slope of the curve goes on decreasing. The curve changes from discrete to 
continuous when the value of potential goes on increasing from its minimum to maximum 
value. Thus, the curve changes from quantum nature to classical nature if the value of potential 
keeps on increasing which is in accordance with Bohr’s correspondence principle. In the graph 
the discontinuous line falling downward represents the quantum behavior while the continuous 
line represents the classical nature.  
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Figure:  the variation of the transmission probability with the barrier height

At constant Energy of the particle, the potential energy of the barrier is increased from an arbitrary 
minimum value to maximum value of 5eV.The transmission probability of the particle through 
the barrier goes on decreasing as the particle passes through the barrier of increased energy. 
The variation of transmission probability and potential energy of the barrier shows hyperbolic in 
nature. The slope of the curve goes on decreasing. The slope indicates the number of oscillations. 
The decrease in slope indicates the decrease in the number of oscillations. At infinite potential, the 
particle tends to be at rest so the slope also tends to be zero. The particle also cannot be at rest due 
to Heisenberg’s uncertainty principle. So the infinite potential is also not possible.

Conclusion: The energy of the particle should be comparable with the barrier potential for the 
tunnel effect to occur. Diffraction and tunnel effect occurance requires identical condition in 
the sense that diffraction phenomenon is the sure case while tunnel effect is only probabilistic. 
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                    Figure:  the variation of the transmission probability with the barrier height

At constant Energy of the particle, the potential energy of the barrier is increased from an arbitrary 
minimum value to maximum value of 5eV.The transmission probability of the particle through the 
barrier goes on decreasing as the particle passes through the barrier of increased energy. The variation 
of transmission probability and potential energy of the barrier shows hyperbolic in nature. At

. The slope of the curve goes on decreasing. The slope indicates the number of oscillations. 
The decrease in slope indicates the decrease in the number of oscillations. At infinite potential, the 
particle tends to be at rest so the slope also tends to be zero. The particle also cannot be at rest due to 
Heisenberg’s uncertainty principle. So the infinite potential is also not possible. 
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