

Exploration अन्वेषण

A Peer-Reviewed Multidisciplinary Journal

ISSN 2542-2944 (Print)

Published by the Research Management Cell

Darchula Multiple Campus, Khalanga, Darchula

Far Western University, Nepal

Artificial Intelligence: A Catalyst for Sustainable Development Goals of Health Care, Quality Education and Climate Action

Nandini Banerjee, PhD, Assistant Professor

Kazi Nazrul University, India

nandinibanerjee11@gmail.com

Susmita Rakshit, PhD Scholar

Kazi Nazrul University, India

s.rakshitj7@gmail.com

Abstract

Artificial Intelligence (AI) has become an avant-garde with high potential to guide, monitor and accelerate the fulfilment of Sustainable Development Goals (SDGs). The considerable role of AI to achieve three significant SDGs: SDG 3 (Good Health and Well-being), SDG 4 (Quality Education) and SDG 13 (Climate Action) are comprehensively explored by this study. This study employs a systematic thematic analysis of relevant literature reviews on the role of AI in healthcare, quality education, and climate action taken from different academic databases. Strict inclusion criteria were included to prioritise the studies. Non-academic, technical and irrelevant studies were not taken into account. A total of 25 studies are thoroughly examined to identify the main patterns, themes and trends. The review follows systematic steps, which include repeated familiarisation with the literature, coding, refinement, and synthesis. Finally, the report highlights how AI incorporation increases the quality of healthcare, education and climate activities. This would raise awareness the learners and commoners about the ethical use of artificial intelligence, highlighting health care, quality education, and climate action. The appropriate use of AI should remove the barrier of the digital divide to let all learners access the AI tools. Proper utilisation of the same should focus on the most beneficial way of medical care. It should not cause damage to the environment.

Keywords: Artificial intelligence, climate action, good health, quality education,

Copyright 2026 ©Author(s) This open-access article is distributed under the [Creative Commons](https://creativecommons.org/licenses/by-nc/4.0/)

[Attribution-NonCommercial 4.0 International License \(CC BY-NC 4.0\).](https://creativecommons.org/licenses/by-nc/4.0/)

Introduction

Critical problems such as progress of urbanisation, social inequality, resource depletion, and changing motion of climate disturb the world continuously nowadays. The immediate urge to solve those problems relies on the achievement of the goals of sustainable development. In this crucial situation, artificial intelligence (AI) has turned into a saviour to the world in such a way as to change the outlook of several fields related to achieving Sustainable Development Goals (SDGs). The United Nations gives importance to the role of artificial intelligence to smoothly follow the instructions of sustainable development. AI's fruitful contributions to the various aspects of SDGs are thoroughly recognised. It is positively changing the political, economic and social circle of this universe. To increase this positive outcome, the implementation of AI in various perspectives relevant to SDGs is really necessary.

AI's capacities to handle a large volume of data, identify specific patterns and make decision-making procedures and predict future outcomes become an important pillar to channelise processing of any complicated issue and increase sustainability and inclusiveness of any crucial problem like SDGs. The inclusion of AI is multifunctional. Its range varies from making learning personalised and developing healthcare programs to graphing up the efficiency of resources and graphing down the use of energy. Artificial intelligence can turn into a helpline to solve difficult global problems like the reduction of poverty, the impact of inequality and environmental decay, with the help of automating tasks automatically done, environmental change prediction and increasing the improvement of the policies regarding these things. The ladder of AI, if tied to the principles of sustainability, can lead our society to use technological power to increase economic growth while fully protecting the world. These SDG aims are connected to different aspects of environmental consideration and human progress, which are inseparably linked to the incorporation of AI in these aims.

In the case of SDG 3, the contribution of AI gives importance to the management of illness, procedures of treatment and diagnosis in the industry of healthcare industry. Increasing the resources of the healthcare sector, fast recognition of disease, and effective therapy with the appropriate use of large data analysis and machine learning algorithms become the main objective of artificial intelligence in SDG 3. AI also plays a significant role in improving patient conditions, in positively handling emergencies of health emergencies, and in giving access to health support in remote areas. In connection with SDG 4, the quality of education is improved, and resources for learning are distributed equally by artificial intelligence. Natural language processing tools provide all the pupils in the world with individualised instruction, tutoring patterns powered by AI and learning platforms which are adaptive. Specially-abled students and the disciples of underprivileged locations benefit from the special study material, improving the technical skills of the teachers through AI. Thus, AI is trying to fulfil the learning gap in education. For achieving SDG 13 goals, AI is upgrading itself more frequently. Environmental models of artificial intelligence act as the optimiser of energy and predictors of weather.

Real-time data analysis connected to AI activity portrays the battlefield against climate change. It acts as a catalyst to support disaster prohibition, monitoring of carbon emissions and environmental-AI integration policymaking. Stakeholders may break down conventional obstacles, scale effective solutions and propel sustainable development at a never-before-seen rate by incorporating AI into efforts for these SDGs. AI has the ability to not only speed up development but also guarantee that the advantages are fair and inclusive, making the world healthier, more knowledgeable and more ecologically robust as it develops.

Nasr et al. (2021) examine the state-of-the-art smart healthcare systems that are recently in use, emphasising key areas such as machine learning for disease diagnosis, wearable and smartphone devices for health monitoring and assistive frameworks, such as social robots created for ambient assisted living environments (Nasr et al. 2021, p. 145250). The study also presents software integration designs that are important for developing intelligent healthcare systems that easily include data analytics and other AI capabilities (Nasr et al. 2021, p. 145248). In order to attain an ideal world, a research project by Lukova (2021) is to examine the significance and impact of artificial intelligence on global health policy and alignment with the United Nations' 2015 sustainable development goals (Lukova 2021, p. 1). Saini et al. (2023) assess the current status of many programs the Indian government has put in place to help achieve the goals of high-quality education (Saini et al. 2023, p. 2044). Another study by Leal Filho et al. (2022) demonstrates how AI can aid with climate change research in a variety of geographical areas and aid with adaptation efforts (Filho et al. 2022, p. 1).

Existing studies often examine AI in healthcare, education, and climate research separately, but there is still no systematic review that connects AI's contributions to SDG 3, SDG 4, and SDG 13, leaving a clear gap in understanding how these areas intersect. This study addresses that gap by examining AI as a transformative force that can strengthen health systems, improve the quality and accessibility of education, and support climate resilience. It looks at how AI aids disease detection, healthcare decision-making, and data ethics and security, while also exploring its role in enhancing teaching, personalising learning, and widening access to educational opportunities. The study further reviews how AI supports climate action through environmental monitoring and the promotion of renewable energy solutions. It also considers the limitations and risks of AI in advancing these SDGs, including ethical issues, infrastructure constraints, and environmental concerns. Guided by the problem statement "Artificial Intelligence: A Catalyst for Sustainable Development Goals of Health Care, Quality Education and Climate Action," the research aims to analyse AI's role in disease prevention and diagnostics, its integration into education for sustainable development, its application in climate monitoring and adaptation, and the challenges that emerge when AI and SDGs converge.

Methods and Procedures

The study employs a qualitative thematic analysis of relevant literature studies on the application of AI in healthcare, quality education, and climate action taken into account from different academic databases and conditioning strict inclusion criteria prioritising

the studies, peer-reviewed and focused on the relationship of AI and the health system, education and climate activities. Non-academic, technical and irrelevant studies were excluded. A total of 25 studies are thoroughly examined for identifying the main patterns, themes and trends. The review followed systematic steps, i.e., repeated familiarisation with the literature, coding, refinement, and synthesis. Finally, the report showed how AI integration strengthens the quality of healthcare, education and climate activities.

Results and Discussion

This section discusses the focal arguments interconnected to the implementation of artificial intelligence in achieving good health and well-being (SDG 3), quality education (SDG 4), and climate action (SDG 13).

Application of AI in Good Health and Well-being (SDG 3)

SDG 3 provides detailed information on health issues and aims to ensure healthy lives. Well-being for people belonging to all ages is encouraged by this goal. This particular aim needs some initiatives, programs concerned with health problems, diagnostics and proper treatment. SDG 3, thus, improves accessibility to healthcare by promoting health assurance to all levels of mankind. In this context, AI plays a major role in addressing these health barriers to contribute to the aims of SDG 3; this has been sketched in this portion.

Health and well-being are discussed in SDG 3. Artificial intelligence acts as a catalyst to improve the medical sector (Hameed et al., 2024). Diagnostics in medicine are the most intriguing possibilities. In order to identify diseases like cancer in their earliest stages, machine learning models of AI have been trained to examine enormous volumes of medical data, including X-ray, MRI and CT scan pictures (Fernandez 2020, p. 215; Hameed et al. 2024, p. 22). The success of treatment and patient survival depend on early identification. Wearable technology with AI capabilities also assists in monitoring patients' vital signs and alerting medical professionals before a potential health problem worsens. By utilising Natural Language Processing technologies, virtual health assistants may handle patient records, schedule appointments and offer healthcare advice, greatly improving the efficiency and accessibility of healthcare services (Rane et al. 2024, p. 80). AI can assist in addressing some of the most significant issues facing society, such as those related to health and well-being. AI greatly enhances diagnoses and preventative healthcare initiatives, resulting in new scientific discoveries (Wahl et al. 2018, p. 4).

As an illustration, billions of mobile devices equipped with cameras, microphones and motion sensors are utilised for distant healthcare and the management of chronic illnesses, diabetes and cancer. AI has improved patient-healthcare provider contact and the identification of prevalent eye problems in Egypt and Kenya, among other places (Owoyemi et al. 2020, p. 1). AI is now being piloted and used more frequently in many African nations, including South Africa, Nigeria and Rwanda, to address health and well-being-related issues. Robots have been employed in Rwanda to combat the COVID-19 infection rates among medical personnel who treat COVID-19 patients. The robots employ AI to read other vital indicators and undertake temperature checks.

Additionally, they send video messages to medical professionals and identify individuals who are not wearing masks, telling them to do so or, if they are not, how to do it correctly (World Health Organisation, Rwanda, 2020). AI has been implemented in South Africa to assist in organising the effective distribution of health workers throughout the healthcare industry (Moyo et al. 2018, p. 9), while in Nigeria, it has been used to improve the diagnosis of infant asphyxia in poor areas. In India, NITI Aayog suggests generating “Big Data” datasets of AI interlinking medical care. Those who are new to this field, such as Indian AI developers, may then use this. The Department of Biotechnology is also helping to put solutions in place for the quick introduction of AI in Indian healthcare (Mahajan et al. 2019, p. 186).

AI Potentialities in Achieving Quality Education (SDG 4)

Educational institutions can leverage the advantages of AI technology to improve learning outcomes by creating an atmosphere that promotes the appropriate use of AI while reiterating the significance of academic integrity. SDG 4 objectives are supported by AI empowerment on the ladder of high-quality education, a technologically progressive classroom environment and students’ holistic educational development. Stakeholders related to educational upliftment should have a clear indication and direction towards the ethics of AI usage. AI is currently working forward to address key subtasks of SDG 4 that are Quality Education, Teaching, Learning and Educational Opportunities and Inequalities (Pedro et al. 2019, p. 23; Zdravkova 2023, p. 3; Klašnja-Milićević & Ivanović 2021, p. 1).

SDG 4 highlights the importance of inclusive, egalitarian, high-quality education in order to give everyone, especially those from underprivileged backgrounds, opportunities for lifelong learning. Since education is a fundamental instrument for both individual and societal improvement, achieving this goal is essential for promoting social mobility and economic development. AI makes high-quality education more accessible to all. Platforms for adaptive learning meet the demands of each learner, increasing engagement and results (Strielkowski et al. 2024, p. 21748). Language boundaries are broken by AI-powered solutions, providing access to worldwide educational materials (Karakas 2023, p. 228). AI helps teachers by delivering data-driven insights into student performance and automating administrative work (Owan et al. 2023, p. 3).

Real-time data analytics with the software of personalised learning motivates every student to learn freely. The development of each pupil and their curious mentality receives food for thought through the empowerment of learning systems. Thus, individualised instruction is generated by artificial intelligence (Chen et al. 2020, p. 75275). Moreover, these AI technologies facilitate distant learning, removing geographical limitations and enabling high-quality instruction to reach students anywhere (Zdravkova 2023, p. 1).

AI learning tools such as ChatGPT help the disciples to solve their homework and write their assignments more easily, but this AI-created work generally does not portray the true knowledge and capacity of the students (Rasul et al. 2023, p. 10). This situation damages the fairness of academic ethics, and as a result, the assessment becomes difficult. Students’ dependence on such AI tools makes the education system artificial and machine-centric. The development of problem-solving capacity and critical thinking is

the primary objective of education. Students' excessive reliance on technology to make learning assignments ready-made overlooks this basic need of education.

The swift growth of AI technology also presents a problem for teachers, who must modify their methods of instruction and evaluation in order to preserve academic integrity. In order to tackle academic dishonesty, new tactics and technologies must be developed, as traditional plagiarism detection methods might not be adequate to detect AI-generated content (Chaka 2024, p. 122). Establishing precise rules for the moral application of AI tools is the responsibility of educational institutions in order to make sure that disciples are conscious of the limits of appropriate use. To do this, faculty and staff must receive continual training so they can stay up to date on the newest advancements in AI and how they affect academic integrity.

AI Empowerment in Climate Action (SDG 13)

AI, along with the mechanism of machine learning, has a significant influence on climate modelling and environmental monitoring for SDG 13 (Kumari & Pandey, 2023, p. 293). Deforestation can be measured and detected, weather patterns can be predicted, and the effects of climate change can be quantified using the data collected by satellites, scientists and AI-powered systems. It creates effective resource conservation and carbon footprint reduction plans using machine learning techniques. It supports the worldwide effort to prevent climate change, enables more tangible and prompt solutions to climate-induced issues and aids in global climate adaptation (Rane et al. 2024, p. 84). It would be possible to expand the incentive to include "games" between various developers. A point-based system, an essential pillar of sustainable development, can be used to achieve SDGs more smoothly. Algorithmic efficiency would be helpful to achieve the goals in the context of resources of energy resources (Raper et al. 2022, p. 1).

The effect and effects of climate change can be easily understood with the help of AI. Artificial intelligence technologies can also turn helpful to improve the process of environmental adaptation by the act of identification of problematic communities and regions. Besides, the formulation of useful policies and appropriate recommendations to deal with the change of environmental impact is assisted by the models of AI. The effect of climate change on several areas becomes more familiar to the common man based on the analysis of AI's large datasets. This knowledge makes us capable of identifying vulnerable areas and taking action according to need, with a focus on mitigation and adaptation procedures. The remote sensing data, satellite imagery and climate models are carefully associated with the monitoring of environmental factors, including the rise of sea-level, degradation of land and deforestation, with conscious efficiency (Bianchi & Putro 2024, p. 93). The systems empowered by AI can accelerate the adaptation process with the integration linked to the risk management planning and the development of weak infrastructure.

The prediction of future envisioning on the consequences of climate damage and the in-depth analysis of trends of climate data acts as a catalyst to design climate-resistant apartments, urban instructional programs and systems of transportation. Shortage of supply can be managed by the algorithms of AI in the time of extreme change of weather

change with no harm to mankind and the infrastructural pattern. The development of policy regarding of careful use of AI and a proper framework relevant to it can be intensified by artificial intelligence (Elshaikh et al. 2024, p. 77). AI can assess loads of climate-concerning data, analyse the fruits of present policies and implement more expert technologies for mitigation and adaptation.

AI can also visualise some activities, such as monitoring climate regulations and changing them to make them serve their best. Climate regulations, including setting up emissions standards and the target of renewable energy and certifications of sustainability, can be strictly observed and recorded by the technologies of AI. They can also portray data transparency and data security settings related to artificial intelligence. This activity can also graph up equality by allowing easy access to AI knowledge and AI tools, pointing to the vulnerable communities and developing countries, which are considerably affected by climate change. The collaboration of artificial intelligence algorithms and SDG 13 aims at climate action, relying on its power to improve the planning and programs of adaptation with an eye on the ethical usage of AI applications working on environmental impact.

AI also takes part in the prevention of climate change obstacles. Red-alert areas and vulnerable populations can be saved by modern AI models from the violent disaster, thus moving towards a climate-friendly, sustainable future. Risks, patterns and trends of climate control can be analysed by AI. The policymaker and the people working on climate change can make their choice on the basis of the facts of scientific forecasts (Kashik 2023, p. 5). On the other hand, a real-time data and climate risk assessment system relying on AI technologies can enhance the efforts of climate adaptation. The monitoring processing driven by AI can point out environmental hazards, identify changes in climate trends and assess vulnerabilities across several areas. This information helps to guide the improvement of adaptation strategies by giving the right direction to the ecosystems and human race to adapt to the change of climate in the most suitable manner. The smart sensor usage by AI climate models gives rise to proper identification of vulnerable ecosystems and communities (Bhavani & Gajendra, 2024, p. 17).

The analysis of effective geographic factors, climate predictions and socio-economic data by artificial intelligence can guide the identification of highly impacted areas by climate change (Jain et al. 2023, p. 2). This knowledge can lead to the benefit of policymakers in the way of designing planned interventions by allocation of resources for protecting and giving support to the vulnerable populations. Most importantly, the ethical and responsible use of AI with consideration of its legal perspective should necessarily be an essential focus of the target in the context of climate action. The accountability, transparency and unbiasedness in the processing of AI data should be safeguarded to maintain confidentiality of proper AI use.

Educational Implications of AI and Sustainable Development

Individualised learning and creative teaching-learning methodologies promoted by AI in the arena of education occupy a significant position in achieving sustainable development goals. Education envisions and tries to execute a sustainable future where people are conscious and aware of sustainable development. The learner and the teacher

should make an effort to integrate AI in education in connection with the achievement of sustainable development aims.

Individualised and Inclusive Education

Individual learning experiences of every student with the inclusiveness of AI learning tool activities accelerate the need fulfilment of them (Shireesha & Jeevan, 2024, p. 21746). By analysing learners' skills and interests, AI systems can provide individualised content and pacing. Language barriers are broken by AI-powered systems that provide instructional materials in different languages, fostering inclusivity worldwide. Through interactive learning environments, adaptive tools and speech-to-text applications, AI enables students with disabilities.

Developing SDG Consciousness

AI in the educational field can assist students in becoming more aware of and knowledgeable about the SDGs. Through AI-powered simulations, students can investigate scenarios pertaining to biodiversity, climate change and sustainable urban development. By incorporating sustainability themes into games, AI makes education interesting and applicable. AI tools give classroom discussions access to current economic, social and environmental data.

Teacher Empowerment

Teachers' abilities are improved by AI, enabling them to concentrate on significant interactions. By automating report generation, attendance tracking and grading, AI lessens the strain for educators (Luckin et al. 2022, p. 3). To assist teachers in identifying learning gaps and modifying their teaching methods, AI evaluates student performance data. AI-powered systems provide educators with individualised training and materials to keep them up to date on sustainability-related subjects and instructional strategies.

Lifelong Learning and Reskilling

By making reskilling and upskilling efficient and accessible, AI promotes lifelong learning. AI predicts future labour needs and offers specialised training in fields that are in line with sustainability, like green manufacturing and renewable energy. AI makes it attainable for students of all ages and locations to access instructional materials whenever they choose. AI tutors in Massive Open Online Courses (MOOCs) guarantee continual and reasonably priced learning opportunities (Zhou et al. 2021, 80).

Encouraging Problem-Solving and Critical Thinking

Students are inspired to use critical thinking skills and create answers for long-term problems using AI. Students can work on real-world issues like resource optimisation and pollution trend analysis with the aid of AI. AI helps students grasp sustainability

holistically by integrating science, technology, economics and social sciences.

Education Accessibility in Outer Locations

AI improves access to education in remote and impoverished areas. By enabling virtual instruction in places with a shortage of trained teachers, AI helps close the gap between educators and students. Interactive chatbots give users immediate access to educational resources and learning aids. AI facilitates the distribution of educational materials, including books and digital tools, to the most underserved places.

Sustainable and Ethical AI Application

Students need to be prepared by their educational institutions to use AI responsibly and ethically (Nguyen et al. 2023, p. 4229). Offering courses on sustainability and AI ethics guarantees that students comprehend how technology affects both the environment and society. Future innovators are more environmentally conscious when energy-efficient AI systems are encouraged to be developed.

Challenges of incorporating AI into SDGs' implementation

Although sustainable development could undergo a seismic shift with the advent of artificial intelligence, a number of obstacles stand in the way of its full potential. The digital gap, which causes differences in developed and developing nations' access to and advantages from AI, is one of the biggest problems (Pigola et al. 2021, p. 3). Many low-income nations lack the computer power and high-speed internet infrastructure needed to implement AI technologies successfully. Expert AI technologists, who are capable of creating, maintaining and using AI, are in short supply. This stands as a potential challenge by preventing the community from using AI programs to achieve SDGs such as climate action, quality education and decreasing poverty. Violation of data ethics, data security and responsible use of AI becomes another barrier (Carmody et al. 2021, p. 492) in sustainable development. Personal data misuse can be a threat posed by the application of AI technology. Weak security gives rise to illegal surveillance, data breaches, even if AI-powered methods try only to achieve positive results.

Thus, public trust can be broken by these damages to personal data security, which becomes an essential challenge to implementing artificial intelligence. An AI system-generated processing makes unwanted inequality and bias. If AI large datasets, which channelise the AI-generated results, fall into the risk of bias in the data, it may result in creating biased outputs (Roselli et al. 2019, p. 542). This means the justice and inclusivity, a basic foundation of sustainable development goals, are violated by economic and social inequalities. Both individuals and institutions must make significant investments in education and training in order to make the switch to AI-powered systems. Many workers, legislators and educators are ill-equipped to integrate AI into their daily operations, which might result in opposition or underimplementation of the technology. This lack of preparedness limits AI's ability to significantly transform industries that are essential to sustainable development, such as healthcare (Pagallo et al. 2024, p. 3),

education and environment.

The risk associated with using AI to achieve SDG 3 and possibly most of the SDGs is not the obsolescence of old talents and the creation of new ones per se, but rather the rate at which this is occurring and the unequal gains and losses that arise from it. AI raises several concerns about trust and responsibility, even though it may be utilised to optimise logistical issues or solve complex medical and health problems, as well as to address some of the most urgent health issues in the least developed nations (Wakunuma et al. 2020, p. 100006). In the least developed nations, where there is a lack of knowledge to comprehend and communicate to the general public how AI-based judgments are made, these concerns are heightened. Socio-economic barriers and a growing illiteracy rate stand as another problem in implementing AI. Thus, AI creates a digital divide.

The effect of artificial intelligence on the environment is itself a challenge. Loads of resources, maintenance and infrastructure are needed to work with AI. This may increase energy use, a threat to the near future. Machine learning models increase the emission of carbon emissions and electricity usage. Non-renewable energy is needed to run these AI models. This huge need for energy makes a controversy of how AI wants to achieve environmental awareness goals and how AI technologies use the fuels, creating a threat to the environment. These obstacles can be overpowered by a properly developed plan. The digital divide can be closed by the evolution of infrastructure, budget and the elimination of algorithmic bias with the agenda of reducing the AI effect on the environment. The organisation of government, business structure and international programs should work together to create moral initiatives and standards for using AI.

Future Research Scope of AI and Sustainable Development

Future research scope of artificial intelligence and sustainable development goals possesses huge potential. AI's power to solve all the critical problems associated with health care, quality education and climate action around the world has the capacity to be explored by in-depth analysis. Medical use of artificial intelligence has a great scope for future research. Medical consultations, an all-time support system of critical patients and quick diagnosis of crucial diseases can be accelerated by AI chatbots. Virtual care systems are also improved by AI. AI can also make decision-support technologies with the help of telemedicine communication that can examine the history of the patients for recommending proper diagnosis and treatment planning. Disease symptoms presented by videos or photos can be scanned through AI medical tools that contribute to the upliftment of AI healthcare use by increasing remote diagnosis. Clinicians can obtain extensive patient data through these systems' seamless integration with telehealth platforms, which improves virtual consultations.

Research on AI's potential to mitigate climate change is necessary, including improving AI structure to forecast climate change effects like rising sea levels, harsh weather and biodiversity loss more accurately, optimising carbon dioxide capture and storage technology with artificial intelligence and creating AI-powered solutions to balance urbanisation, conservation and agricultural productivity. AI possesses the capacity to change education to more effectively accomplish sustainability objectives. Systems of

personalised learning can be accelerated by investigating AI resources for sustainability literacy programs and investigating AI-powered tools to incorporate sustainability lessons into curricula around the world that can adjust to various learning requirements and styles. AI planning and methodologies to increase the upgradation of skills in the educational sector can be stimulated by lifelong learning.

Conclusion

Artificial intelligence turns out to be a great catalyst for achieving the goals of sustainable development. Its role is really appreciable in healthcare improvement, to promote high-quality education, and to take climate action to have a positive impact on the environment. The global health, the main SDG 3 goal, is ensured by all the AI activities, like the prevention of sickness with an accurate diagnosis, along with proper treatment. AI learning tools assist personalised learning programs with an eye to the individual needs of the students. AI also helps to fulfil the shortage of learning resources. Thus, inclusion, flexibility and quality of education could be achieved by artificial intelligence. On the other hand, appropriate environmental monitoring, which includes the prediction power of catastrophe management and increased renewable energy use, becomes the turning point in the role of AI in climate action. In spite of these numerous problems, considered to be strong barriers to implementing artificial intelligence in the agenda of achieving the objectives of SDG 3, SDG 4, and SDG 13, arise as crucial obstacles. For the promotion of ethical instructions related to artificial intelligence, the AI-users should make efficient use of it, keeping an eye on improving algorithmic bias, data privacy, and weak economic infrastructure to maintain AI models. Widening accessibility can stand as a solution to prevent the digital divide. The future research, hopefully, would throw light on much progressive exploration on achieving sustainable developmental goals. This study contributes to societal good by the incorporation of the role of artificial intelligence in the health system, quality education and climate action. It points out the need for inclusive, sustainable and ethical AI integration for ensuring that technological improvement makes all sections of society beneficiaries.

References

Bhavani, K., & Gajendra, N. (2024). Smart data-driven sensing: New opportunities to combat environmental problems. In *Bio-Inspired Data-driven Distributed Energy in Robotics and Enabling Technologies* (pp. 17-47). CRC Press. <https://www.taylorfrancis.com/chapters/edit/10.1201/9781003530077-2/smart-data-driven-sensing-bhavani-nagaraj-gajendra>

Bianchi, O., & Putro, H. P. (2024). Artificial Intelligence in Environmental Monitoring: Predicting and Managing Climate Change Impacts. *International Transactions on Artificial Intelligence*, 3(1), 85-96. <https://doi.org/10.33050/italic.v3i1.650>

Carmody, J., Shringarpure, S., & Van de Venter, G. (2021). AI and privacy concerns: a smart meter case study. *Journal of Information, Communication and Ethics in Society*, 19(4), 492-505. <https://doi.org/10.1108/JICES-04-2021-0042>

Chaka, C. (2024). Reviewing the performance of AI detection tools in differentiating between AI-generated and human-written texts: A literature and integrative hybrid review. *Journal of Applied Learning and Teaching*, 7(1). <https://doi.org/10.37074/jalt.2024.7.1.14>

Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. *IEEE Access*, 8, 75264-75278. <https://doi.org/10.1109/ACCESS.2020.2988510>

Elshaikh, A., Mabrouki, J., & Azrour, M. (2024). Intelligent climate solutions: Navigating the future with AI technologies. In *Smart Internet of Things for Environment and Healthcare* (pp. 77-95). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-70102-3_6

Fernandez, R.M. (2020). SDG3: Good health and well-being: Integration and connection with other SDGs. In: Leal Filho, W., Wall, T., Azul, A.M., Brandli, L., Özuyar, P.G. (eds) *Good Health and Well-Being. Encyclopedia of the UN Sustainable Development Goals*. Springer, Cham. https://doi.org/10.1007/978-3-319-95681-7_64

Hameed, K., Naha, R., & Hameed, F. (2024). Digital transformation for sustainable health and well-being: a review and future research directions. *Discover Sustainability*, 5(1), 104. <https://doi.org/10.1007/s43621-024-00273-8>

Jain, H., Dhupper, R., Shrivastava, A., Kumar, D., & Kumari, M. (2023). AI-enabled strategies for climate change adaptation: protecting communities, infrastructure, and businesses from the impacts of climate change. *Computational Urban Science*, 3(1), 25. <https://doi.org/10.1007/s43762-023-00100-2>

Karakas, A. (2023). Breaking down barriers with artificial intelligence (AI): cross-cultural communication in foreign language education. In *Transforming the Language Teaching Experience in the Age of AI* (pp. 215-233). IGI Global. <https://doi.org/10.4018/978-1-6684-9893-4.ch012>

Kashik, K. (2023). *Navigating the Future: India's Strategic Approach to Artificial Intelligence Regulations* (Doctoral Dissertation, Faculty of Law, University of Delhi).

Klašnja-Milićević, A., & Ivanović, M. (2021). E-learning personalization systems and sustainable education. *Sustainability*, 13(12), 6713. <https://doi.org/10.3390/su13126713>

Kumari, N., & Pandey, S. (2023). Application of artificial intelligence in environmental sustainability and climate change. In *Visualization techniques for climate change with machine learning and artificial intelligence* (pp. 293-316). Elsevier. <https://doi.org/10.1016/B978-0-323-99714-0.00018-2>

Leal Filho, W., Wall, T., Mucova, S. A. R., Nagy, G. J., Balogun, A. L., Luetz, J. M., ... & Gandhi, O. (2022). Deploying artificial intelligence for climate change adaptation. *Technological Forecasting and Social Change*, 180, 121662. <https://doi.org/10.1016/j.techfore.2022.121662>

Luckin, R., Cukurova, M., Kent, C., & Du Boulay, B. (2022). Empowering educators to

be AI-ready. *Computers and Education: Artificial Intelligence*, 3, 100076. <https://doi.org/10.1016/j.caai.2022.100076>

Lukova, N. V. (2021). *The Influence of AI in Global Health: the Pathways to Achieve SDG 3* (Master's Thesis, Hamad Bin Khalifa University (Qatar)). <https://www.proquest.com/openview/3759fab55ef292dca04d7971be0ffcc9/1?pq-origsite=gscholar&cbl=2026366&diss=y>

Mahajan, A., Vaidya, T., Gupta, A., Rane, S., & Gupta, S. (2019). Artificial intelligence in healthcare in developing nations: The beginning of a transformative journey. *Cancer Research, Statistics, and Treatment*, 2(2), 182-189. https://doi.org/10.4103/CRST.CRST_50_19

Moyo, S., Doan, T. N., Yun, J. A., & Tshuma, N. (2018). Application of machine learning models in predicting length of stay among healthcare workers in underserved communities in South Africa. *Human resources for health*, 16, 1-9. <https://doi.org/10.1186/s12960-018-0329-1>

Nasr, M., Islam, M. M., Shehata, S., Karray, F., & Quintana, Y. (2021). Smart healthcare in the age of AI: recent advances, challenges, and prospects. *IEEE Access*, 9, 145248-145270. <https://doi.org/10.1109/ACCESS.2021.3118960>

Nguyen, A., Ngo, H. N., Hong, Y., Dang, B., & Nguyen, B. P. T. (2023). Ethical principles for artificial intelligence in education. *Education and Information Technologies*, 28(4), 4221-4241. <https://doi.org/10.1007/s10639-022-11316-w>

Owan, V. J., Abang, K. B., Idika, D. O., Etta, E. O., & Bassey, B. A. (2023). Exploring the potential of artificial intelligence tools in educational measurement and assessment. *Eurasia Journal of Mathematics, Science and Technology Education*, 19(8), em2307. <https://doi.org/10.29333/ejmste/13428>

Owoyemi, A., Owoyemi, J., Osiyemi, A., & Boyd, A. (2020). Artificial intelligence for healthcare in Africa. *Frontiers in Digital Health*, 2(6). <https://doi.org/10.3389/fdgh.2020.00006>

Pagallo, U., O'Sullivan, S., Nevejans, N., Holzinger, A., Friebe, M., Jeanquartier, F., & Miernik, A. (2024). The underuse of AI in the health sector: Opportunity costs, success stories, risks and recommendations. *Health and Technology*, 14(1), 1-14. <https://doi.org/10.1007/s12553-023-00806-7>

Pedro, F., Subosa, M., Rivas, A., & Valverde, P. (2019). Artificial intelligence in education: Challenges and opportunities for sustainable development. <https://hdl.handle.net/20.500.12799/6533>

Pigola, A., da Costa, P. R., Carvalho, L. C., Silva, L. F. D., Kniess, C. T., & Maccari, E. A. (2021). Artificial intelligence-driven digital technologies for the implementation of the sustainable development goals: A perspective from Brazil and Portugal. *Sustainability*, 13(24), 13669. <https://doi.org/10.3390/su132413669>

Rane, N. L., Kaya, O., & Rane, J. (2024). Advancing the Sustainable Development Goals (SDGs) through artificial intelligence, machine learning, and deep learning. In *Artificial Intelligence, Machine Learning, and Deep Learning for Sustainable*

Industry 5.0 (pp. 73-93). Deep Science Publishing. https://doi.org/10.70593/978-81-981271-8-1_4

Raper, R., Boeddinghaus, J., Coeckelbergh, M., Gross, W., Campigotto, P., & Lincoln, C. N. (2022). Sustainability budgets: A practical management and governance method for achieving Goal 13 of the Sustainable Development Goals for AI development. *Sustainability*, 14(7), 4019, 2-11. <https://doi.org/10.3390/su14074019>

Rasul, T., Nair, S., Kalendra, D., Robin, M., de Oliveira Santini, F., Ladeira, W. J., ... & Heathcote, L. (2023). The role of ChatGPT in higher education: Benefits, challenges, and future research directions. *Journal of Applied Learning and Teaching*, 6(1), 41-56. <https://doi.org/10.37074/jalt.2023.6.1.29>

Roselli, D., Matthews, J., & Talagala, N. (2019). Managing bias in AI. In *Companion proceedings of the 2019 world wide web conference* (pp. 539-544). <https://doi.org/10.1145/3308560.3317590>

Saini, M., Sengupta, E., Singh, M., Singh, H., & Singh, J. (2023). Sustainable Development Goal for Quality Education (SDG 4): A study on SDG 4 to extract the pattern of association among the indicators of SDG 4 employing a genetic algorithm. *Education and Information Technologies*, 28(2), 2031-2069. <https://doi.org/10.1007/s10639-022-11265-4>

Shireesha, M., & Jeevan, J. (2024). The role of artificial intelligence in personalised learning: A pathway to inclusive education. *Library Progress International*, 44(3), 21746-21752. <https://bpasjournals.com/library-science/index.php/journal/article/view/2813>

Strielkowski, W., Grebennikova, V., Lisovskiy, A., Rakhimova, G., & Vasileva, T. (2024). AI-driven adaptive learning for sustainable educational transformation. *Sustainable Development*. <https://doi.org/10.1002/sd.3221>

Wahl, B., Cossy-Gantner, A., Germann, S., & Schwalbe, N. R. (2018). Artificial intelligence (AI) and global health: how can AI contribute to health in resource-poor settings?. *BMJ Global Health*, 3(4), e000798. <https://doi.org/10.1136/bmigh-2018-000798>

Wakunuma, K., Jiya, T., & Aliyu, S. (2020). Socio-ethical implications of using AI in accelerating SDG3 in Least Developed Countries. *Journal of Responsible Technology*, 4, 100006. <https://doi.org/10.1016/j.jrt.2020.100006>

World Health Organisation, Rwanda (2020). Robots use in Rwanda to fight against COVID-19. <https://www.afro.who.int/news/robots-use-rwanda-fight-against-covid-19>

Zdravkova, K. (2023). Personalized education for sustainable development. *Sustainability*, 15(8), 1-13. <https://doi.org/10.3390/su15086901>

Zhou, X., Tong, Y., Lan, X., Zheng, K., & Zhan, Z. (2021). AI education in massive open online courses: A content analysis. In *2021 3rd International Conference on Computer Science and Technologies in Education (CSTE)* (pp. 80-85). IEEE. <https://doi.org/10.1109/CSTE53634.2021.00023>