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The Chure mountain range of Nepal is witnessing rapid changes in land use and land
cover (LULC) due to increasing anthropogenic pressures, with significant
implications for forest carbon storage. This study assesses the impact of the LULC
changes on forest carbon in Raktamala Community Forest (CF), Saptari, using remote
sensing, Geographic Information System and field-based methods. A total of 56
circular plots, with radii of 12.61 m for trees, 2.82 m for saplings and 1.87 m for soil,
were established in the field. Tree diameter at breast height and height were
measured, and carbon was estimated for aboveground biomass, belowground roots,
saplings and soil. The results indicated a decline in forest cover from 54% in 2000 to
52% in 2022. The average carbon stock in 2022 was 156.60 = 13.42 t ha™!. Under a
business-as-usual scenario, the estimated total forest carbon and CO, equivalents for
2000 and 2010 were 28,537.52 t (104,447.3 t CO;) and 27,962.5 t (102,342.7 t CO3)
respectively. These findings support the development of the Reducing Emissions
from Deforestation and Forest Degradation baselines and sustainable forest
management.

emissions (IPCC, 2021), monitoring the LULC change

INTRODUCTION

Land use and land cover (LULC) change is a major
global environmental challenge that influences the
ecosystem structure, biodiversity and the terrestrial
carbon (C) cycle. While land cover describes the
physical features of the earth's surface, land use
reflects the ways humans utilize these resources
(Dimyati et al.,, 1996). Changes in LULC alter soil
processes, hydrological systems and atmospheric
conditions, thereby shaping whether ecosystems
function as carbon sinks or sources (Foley et al., 2005).
Forests are particularly important, storing large
proportions of terrestrial carbon, with recent
assessments estimating approximately 650 billion
tonnes stored globally (FAO, 2020; Pan et al., 2011). As
deforestation and forest degradation contribute
roughly 10-12% of annual anthropogenic CO,
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remains essential for climate mitigation efforts,
including Intergovernmental Panel on Climate Change-
aligned national greenhouse gas reporting and
Reducing Emissions from Deforestation and Forest
Degradation (REDD+) initiatives.

Recent advancements in remote sensing and
geographic information systems have improved the
accuracy of land cover mapping and biomass
estimation (Chuvieco et al., 2019). These tools are
increasingly used across South Asia, where population
growth, agricultural expansion and resource extraction
continue to reshape landscapes (Lamichhane et al.,
2021). In Nepal, forests cover approximately 43.38% of
the country's land area, with Other Wooded Land
contributing an additional 2.70% (FRTC, 2024).
However, the Chure mountain range, geologically
young and erosion-prone, remains highly susceptible
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to degradation (Pokhrel, 2013; Thapa et al.,, 2023).
Human pressures, including overgrazing, sand and
gravel extraction, unplanned -cultivation, road
construction and forest fires, have accelerated soil
erosion and reduced forest carbon stocks (Dudhaura et
al.,, 2015; Lamichhane et al., 2021). Strengthening
spatially explicit assessments in this region is crucial
for guiding interventions under national and provincial
conservation programmes, including the President
Chure-Terai Madhesh Conservation Project.

Although several studies in Nepal have examined land
cover dynamics using satellite imagery (eg Shrestha et
al., 2021) or quantified forest carbon stocks through
field-based inventories (eg Gautam et al., 2022), very
few have integrated both approaches to understand
how spatiotemporal LULC change influences forest
carbon dynamics. This gap is particularly notable in
community forests (CFs), which represent one of
Nepal's most significant forest management systems
(DFRS, 2015). To address this research gap, the present
study analyses LULC change and associated carbon
storage dynamics over a 22-year period (2000-2022) in
Raktamala Community Forest (CF) in Nepal's Chure
region. By combining multi-temporal satellite imagery
with field-based biomass data, this study aims to
generate evidence that strengthens community-based
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forest management, informs REDD+ readiness, and
supports policy interventions in carbon-sensitive and
erosion-prone landscapes.

MATERIALS AND METHODS
Study area

Raktamala CF (latitude: 26° 44'31.84" N and longitude:
86° 55' 12.33" E) lies in Saptakoshi Municipality in
Saptari District, Nepal, and covers 374.42 ha of forest
area (Figure 2). The CF is situated in the northern part
of the district within the Chure mountains, where the
soil contains small rock pebbles, stones and sand (DFO
Saptari, 2019). The topography of the study area shows
little variation, with elevations ranging between 115 m
and 300 m above mean sea level (DFO Saptari, 2019).
The highest temperatures, between 30 °C and 46 °C,
occur from February to July, while the average winter
temperature ranges from 15 °C to 18 °C, with a
minimum of 7 °C (DFO Saptari, 2019). The dominant
species in the region, based on the terrain, include
Shorea robusta, Syzygium cumini, Lagerstroemia
parviflora, Mallotus philippinensis and Anogeissus
latifolia.

Raktamala CF was selected for this study because it is
representative of the Chure region’s forest ecosystem,

Legend 5
.‘ml’.»!'-‘. \’
D Raktamala Community Forest

Madhesh Province

Legend .
D Raktamala Community Forest

Madhesh Province

3 0 04 08 1.6 Kilometers| 0 150 300 600 Kil 1
\:| MadheshProvince Lt 1 1 1 11 1 | l ! ! ! | ! ! | J ===
- 86°53'30"E 86°54'30"E 86°55'30"E 86°56'30"E 86°57'30"E
o N
Lo 7 ” - -
o
9 Legend ¥ |z
i D Raktamala Community Forest _8
~
©
Z |0 9 180 360 Kilometers N
(o D TN T TN TN Y T O S |
< - <
g
© T T T T T T
N 86°53'30"E 86°54'30"E 86°55'30"E 86°56'30"E 86°57'30"E

Figure 1: Location map of the study area
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is easily accessible for field data collection and has an
active community management programme that
facilitates participatory research and validation of field
observations.

Satellite data

Landsat 7 and Landsat 8 satellite imagery for 2000,
2010 and 2022 was used to analyse the LULC changes
(Figure 2). Images were sourced from USGS
(https://earthexplorer.usgs.gov/), selecting data with
< 20% cloud cover, and all images were from Landsat
Collection 1 Level 1, which provides geometrically and
radiometrically calibrated data.

Table 1: Specifications of the Landsat data
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WRS Scene ID Sensor Spatial Acquired

(Path/Row) Resolution Date

Path=140 LE71400 Enhanced 30*30 2000/03/

Row= 41 41200006  Thematic 04
4SGS00 Mapper (ETM)

Path=140 LE71400 Enhanced 30*30 2010/02/

Row= 41 41201005 Thematic 28
9SGS00 Mapper (ETM)

Path=140 LC81400 Operational 30*30 2022/02/

Row= 41 41202205 Land Imager 21
2LGNOO and Thermal

Infrared Sensor
(OLI_TIRS)

Sampling design and sample plot layout

Field data for vegetation and carbon measurements
were collected during the third week of March 2023
over a period of seven days, during the dry season, to
ensure comparability with the satellite imagery
acquisition period. Systematic random sampling
stratified the forest into regeneration, poles and trees
(Cochran, 1977; Krebs, 1999). Circular plots were used
to minimize edge effects and adapt to sloping terrain
(Boon, 1966). The sampling intensity was 1%, with 53
final sample plots established using ArcGIS 10.5. Plots
of 500 m? (radius 12.61 m) were used for trees (= 5 cm
DBH), nested plots of 25 m? (radius 2.82 m) for saplings
(1-5 cm DBH) and 1 m? plots for seedlings (< 1 cm
DBH). Soil samples were collected from 1.87 m radius
subplots.

Aboveground tree biomass (AGTB) and belowground
biomass (BGB)

Tree DBH and height were measured using a diameter
tape and a rangefinder. Biomass was calculated using
allometric equations (Chave et al., 2005). Sapling
biomass was estimated from national allometric tables
(Tamrakar, 2000). Deadwood, litter and leaves were
excluded due to local collection practices (Adhikari et
al., 2004). Root biomass was estimated using a root:
shoot ratio of 0.125, as recommended for tropical
forests (IPCC, 2006).

Soil

Soil samples were collected from a depth of 0-30 cm at
each plot, using a metal corer. Sampling was
conducted at a single depth to maintain consistency in
the soil organic carbon (SOC) analysis. At each plot, a
single soil core was collected, as composite sampling
was not applied in this study. A total of 53 soil samples
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were collected from circular subplots, with a radius of
1.87 m established across the study area. The samples
were placed in labelled sample bags (Gautam, 2020)
and transported to the laboratory. The SOC of soil
samples was analysed using the Walkley-Black
method (Walkley & Black, 1934) in the laboratory. Bulk
density was estimated by ovendrying the samples at
105 °C (De Vos et al., 2007).

Data analysis
Image processing and classification

Atmospheric correction was performed using the USGS
Surface Reflectance products for both Landsat 7 and
Landsat 8 imagery. To minimize radiometric
differences between Landsat 7 and Landsat 8 images,
histogram matching was applied over invariant target
areas. For LULC classification, a total of 140 training
samples (20 samples per class for 7 classes) were
used, and 30% of these training samples were
randomly selected for validation. The classification
utilized the Blue, Green, Red, NIR, SWIR1 and SWIR2
bands, along with NDVI, to improve vegetation and
land cover discrimination. A supervised classification
approach using the Maximum Likelihood Classifier
was applied, utilizing training samples from six LULC
categories: Waterbody, Built-up Area, Forest,
Riverbed, Grassland, Cropland and Other Wooded
Land (OWL) (Sisodia et al., 2014).

LULC Change Detection and Accuracy Assessment

Post-classification comparison was used to detect the
LULC changes between 2000 and 2022, and the total
LULC change was calculated using equation (1).
Kappa coefficient values were interpreted using
standard thresholds, where < 0.20 indicates poor
agreement, 0.21-0.40 fair, 0.41-0.60 moderate, 0.61—
0.80 substantial and > 0.80 represents almost perfect
agreement. Kappa statistic (lAc) computed
(equation 2) according to Salih (1983).

was

Percentage of LULC
__Area of final year — Area of the initial year

Area of the initial year
*100eqn (1)

NYio1 Xii — 2ie1 Kig - X4i)
N2 =¥ (Xiy - X4i)

where, r = number of rows in the error matrix, xi =
number of observations in row i and column i (on the
major diagonal), x; + = total of observations in row i
(shown as marginal total to the right of the matrix), x +
1 = total of observations in column i (shown as marginal
total at bottom of the matrix), N= total number of
observations included in the matrix

]’é:

n(2)

Biomass and carbon estimation

Above-ground tree biomass (AGTB): Estimated using
Chave et al. (2005) (equation 3)

AGTB = 0.0509 X pD?H eqn ( 3)

Where, AGTB = aboveground tree biomass (kg), p =
dry wood density (—3), D = tree diameter at breast

g
cm

height (cm), H = tree height (m)
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Above-ground sapling biomass (AGSB): Derived from
DFRS and TISC allometric tables (Tamrakar, 2000).

Ln (AGSB) =a + bIn (D) eqn (4)

Where, Ln = Natural log; (dimensionless), AGSB =
Aboveground sapling biomass; (kg), a = Intercept of
allometric relationship for saplings; (dimensionless),
b= Slope algometric relationship for saplings;
(dimensionless), D = Over bark diameter measured at
breast height; (cm)

Below-ground biomass (BGB): Estimated using IPCC’s
(2006) root-to-shoot ratio of 0.125.

Conversion to carbon: Biomass converted to carbon
using a factor of 0.47 (Andreae & Merlet, 2001).

SOC: Estimated via the Walkley—Black method (1958),
incorporating bulk density and carbon concentration
(Equation 5).

SOC = Organic carbon content percentage
. . 8
* soil bulk density (Cm—3)
* thickness of soil horizon eqn( 5)

Where, SOC = Soil Organic Carbon stock per unit area
(th™), % Carbon = Carbon concentration, p = soil bulk
density (g/cms3), d = total depth (cm)

Total Carbon Calculation

The total carbon stock was calculated using (Equation
6).

C (TB) = C (AGTB) + C (AGSB) + C (BB) + SOC eqn(6)

Where, C (TB) = Total Carbon Stock Biomass (t C h?),
C (ABTG) = Carbon in aboveground tree biomass (t C
h'), C (AGSB) Carbon in aboveground sapling
biomass (t C h'), C (BB) = Carbon in belowground
biomass (t C h!), SOC = Soil Organic Carbon (t C h?).

Uncertainty Estimation

Uncertainty was expressed as mean *+ SD. Standard
measurement errors (DBH * 0.5 cm, height = 0.2 m,
wood density *= 10%) were used and propagated
through allometric equations. Carbon component
uncertainties were assumed as *+ 10% (AGTC, BGRC),
*+ 20% (AGSC) and = 15% (SOC), with total carbon

uncertainty derived by combining component
variances.
Forest Carbon Estimation and LULC Impact

Due to the absence of field data for 2000 and 2010,
forest carbon stocks for these years were estimated
under a business-as-usual scenario based on the 2022
field-measured values and corresponding LULC
proportions (Equations 7, 8, 9 and 10).

Carbon stock of 2000

Carbon stock of 2000 = Carbon stock t h™! 0f 2022 =
forest area of 2000 eqn(7)

CO; equivalent of 2000 = Carbon stock of 2000 * 44/
12 (IPCC,2006) eqn(8)

Carbon Stock of 2010

Carbon stock of 2010 = Carbon stock th™! of 2022 x
forest area of 2010 eqn( 9)
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CO; equivalent of 2010 = Carbon stock of 2010 * 44/
12 (IPCC, 2006) eqn( 10)

To assess the impact of the LULC changes on forest
carbon stock, this study applied equations 11 and 12 to
estimate carbon stock changes for 2000, 2010 and 2022.
This method, based on Houghton (2003) and Brown &
Gaston (1995), enables direct comparison of carbon
stocks across time, and is widely used in carbon
budget assessments (Harris et al.,, 2012; Pan et al,,
2011).

AC2000-2022 = C2022-C2000 €qn (11)
AC2010-2022 = C2022-C2010 €qn (12)

Whereas, C,022, C2000: C2010 represent the total carbon
stock in the forest for the years 2022, 2000 and 2010
respectively.

ACy000-2022 TEPIEsents the total change in forest carbon
stock between 2000 and 2022.

AC5010-2022 rEPresents the total change in forest carbon
stock between 2010 and 2022.

The overall methodological flow chart outlines the
sequential steps undertaken, including satellite image
acquisition, LULC classification, field data collection,
carbon stock estimation and change analysis across
different periods (2000, 2010 and 2022) (Figure 2).
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Figure 2: Methodological flow chart
RESULTS

Analysis of land use and land cover classes for 2000,
2010 and 2022

The LULC maps for 2000, 2010 and 2022 demonstrate
the spatial dynamics of land cover changes over the
study period within the boundary of Raktamala CF
(Figure 3). In 2000, LULC was dominated by forests
(54.25%), followed by riverbed (18.55%), grassland
(10.97%), cropland (9.02%), waterbody (4.94%), OWL
(1.33%), and built-up area (0.94%) (Table 2). By 2010, the
forest remained the major land cover type (53.15%),
with riverbed (12.23%), grassland (12.23%), cropland
(9.55%), waterbody (4.32%), built-up area (1.19%), and
OWL (1.12%) showing slight changes (Table 2). In 2022,
forest cover continued to decline (51.60%), while
riverbed (16.52%), grassland (11.86%), cropland (8.40%),
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waterbody (6.81%), OWL (3.05%), and built-up area
(1.77%) showed varying trends.
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Figure 3: LULC map of 2000, 2010, and 2022
Table 2: Area statistics of different LULC classes
LULC type 2000 2010 2022
Area (ha) Proportion (%) Area (ha) Proportion (%) Area (ha) Proportion (%)
Waterbody 18.43 4.94% 16.12 4.32% 25.43 6.81%
Forest 202.48 54.25% 198.40 53.15% 192.67 51.60%
Riverbed 69.25 18.55% 68.82 18.44% 61.68 16.52%
Built-up area 3.50 0.94% 4.46 1.19% 6.62 1.77%
Cropland 33.65 9.02% 35.64 9.55% 31.36 8.40%
Grassland 40.95 10.97% 45.66 12.23% 44.28 11.86%
OWL 4.98 1.33% 4.19 1.12% 11.38 3.05%
Total 373.24 100.00% 373.24 100.00% 373.24 100.00%
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Accuracy Assessment

For accuracy assessment, we generated reference
points through visual interpretation of the high-
resolution Google Earth imagery corresponding to the
same time period of the Landsat scenes. These
reference samples were used to prepare the confusion
matrix and compute overall accuracy, user's accuracy
and producer’s accuracy. The classification accuracies
of LULC for 2000, 2010 and 2022 were evaluated,
yielding kappa coefficients of 0.91, 0.90 and 0.86
respectively, with overall accuracies of 90%, 90% and
88%.

Table 3: Accuracy assessment of LULC classification
for 2000, 2010 and 2022, including producer's accuracy,
user's accuracy, overall classification accuracy and
Kappa statistics for each LULC class

2000 2010 2022
LULC Class

PA UA PA UA PA UA
Waterbody 094 090 094 085 089 0.85
Forest 1.00 095 086 095 094 0.85
Riverbed 086 095 082 085 080 0.85
Built-uparea 1.00 095 1.00 090 0.94 0.90
Cropland 090 090 090 090 090 0.9
Grassland 085 090 1.00 090 0.81 0.9
OWL 095 095 090 095 090 0.9
Year 2000 2010 2022
Overall
Classification 90.00% 90.00% 88.00%
Accuracy
Overall,
Kappa 0.91 0.90 0.86
Statistics

Table 4: Transition matrix from 2000 to 2022
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LULC status analysis

The LULC classes that had consistently increased
were built up, while forest and riverbed areas were
constantly decreased. Forest (54-52%) and riverbed
(19-17%) covers have decreased between 2000 and
2022. The built-up area has increased from 0.94% to
1.77% between 2000 and 2022. Cropland and grassland
areas experienced fluctuations over the years (2000-
2022). Between 2000 and 2022, the waterbody and
OWL expanded by 1.87% and 1.72% respectively.

Land use and land cover change transition matrix
from 2000 to 2022

The Sankey diagram illustrates the LULC transitions
from 2000 to 2022, showing directional changes in
forest, grassland, cropland and riverbed (Figure 4). The
largest transition occurred from riverbed to waterbody,
accounting for 15.96 ha (Table 4). Forest land
experienced a conversion of 7.65 ha into built-up areas,
while cropland underwent a notable transition of 2.60
ha into built-up areas. Grassland transitioned into
forest land, covering 3.15 ha. Moreover, a greater
extent of cropland (3.33 ha) transitioned to built-up
areas compared to forest land.

. Forest_2000 =

Grassland_2000

OwWL_2000

Figure 4: LULC change dynamics from 2000 to 2022
depicted in a Sankey diagram

LULC_2022 (ha)
. Other

LULC 2000 (ha) | BWE-UP Croplan g st Grassland wooded Riverbed Waterbody O ond

- area d Total

land
Built-up area 3.33 0.08 0 0 0 0 0.07 3.48
Cropland 2.60 30.03 0 0.10 0.22 0.13 0.54 33.62
Forest 7.65 0 ;88'4 6.15 0 0 0 202.22
Grassland 0.40 0.19 3.15 34.60 2.54 0 0 40.88
OWL 0 0 058  1.94 2.47 0 0 4.99
Riverbed 0.23 0.43 0 0 52.33 15.96 68.95
Waterbody 0 0.63 0 0 0 9.04 8.73 18.4
192.1

Grand Total 14.21 31.36 : 42.79 5.23 615 25.3 374.52
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Biomass and carbon stock of Raktamala CF
Biomass stock

The estimated tree biomass in Raktamala CF was
175.14 + 18.76 t ha™!, representing the largest share of
the total biomass (Figure 5). In contrast, sapling
biomass was much smaller, contributing only 0.36 *
0.08 t ha™'. The BGB, including roots and other
subterranean components, was 21.93 = 2.19 t ha™.
Consequently, the total biomass, comprising both AGB
and BGB, amounted to 197.43 =+ 1992 t ha™.

200 —
180 175.14
. 160
= 140
<120
2 100
£ 80
2 60
;3 1876 7 21.93 -
4 i 0.36 0.08 B
Below-ground Sapling biomass Tree biomass

biomass

m Mean Value (t/ha) ®SD (%)

Biomass components
Figure 5: Biomass distribution in Raktamala CF

Carbon stock

The carbon stock in Raktamala CF was quantified
for wvarious components (Figure 6). The
aboveground tree carbon (AGTC) stock was 82.32
+ 8.23 t ha™!, indicating a major contribution to the
forest’s total carbon pool. The aboveground sapling
carbon (AGSC) stock, although smaller, was 0.17 *=
0.03 t ha™!. The belowground root carbon (BGRC)
stock accounted for 10.31 = 1.03 t ha™t. The SOC
stock was 63.80 = 9.57 t ha™!, representing the
carbon stored in the top 30 cm of forest soil, based
on laboratory analysis. Collectively, the total
ecosystem carbon stock of the forest, combining all
components, was 156.60 = 13.42 t ha™1.

Impact of LULC Change on Forest Carbon
Forest Area over Time

The forest area has steadily decreased from 202.48 ha
in 2000 to 198.40 ha in 2010 and further to 192.67 ha in
2022 (Table 2). This signifies a net loss of about 10 ha
between 2000 and 2022.
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Figure 6: Total carbon stock in Raktamala CF
Note: AGSC: Aboveground Sapling Carbon, AGTC:
Aboveground Tree Carbon, BGRC: Belowground Root
Carbon, SOC: Soil Organic Carbon

Total Carbon Storage

The reduction across all scenarios indicates a general
decline in carbon sequestration over time (2000-2022).
In the business-as-usual scenario, total carbon storage
decreased from 31,708.36 t in 2000 to 30,172.12 t in
2022, representing a 5% reduction (Table 5). Similarly,
the scenario assuming a 5% reduction in carbon shows
a decrease from 30,122.94 t in 2000 to 28,663.51 t in
2022. In the scenario with a 10% reduction, total carbon
dropped from 28,537.52 t in 2000 to 27,154.91 t in 2022.
The reduction across all scenarios indicates a general
decline in carbon sequestration over time (Table b5).

CO, Equivalent of Forest Carbon Stock

The trends demonstrate a consistent decline in total
CO, equivalent values derived from forest carbon stock
estimates under a business-as-usual scenario over
twenty-two years (2000-2022) (Table 5). This indicates
a gradual reduction in the forest's carbon storage
potential rather than a decrease in actual CO,
emissions. Under the business-as-usual scenario, the
CO, equivalent value decreased from 116,264.01 t in
2000 to 110,631.11 t in 2022. In the 5% reduction
scenario, CO, equivalents declined from 110,450.78 t to
105,099.55 t over the same period. Similarly, under the
10% reduction scenario, CO, equivalent values
dropped from 104,447.30 t in 2000 to 99,386.96 t in 2022.
These results reflect a steady loss in the forest's
capacity to sequester and store CO, over time.

Year Forest Business- Business-as- Total Total CO, | Total Total CO,
Area (ha) as-usual usual Total CO, | carbon (t) equivalent (t) | carbon (t) | equivalent (t)

Total carbon | equivalent (t)

(t)

Business-as-usual scenario Assuming 5% less carbon Assuming 10% less carbon
2000 202.48 31708.36 116264.01 30122.94 110450.78 28537.52 104447.3
2010 198.40 31069.44 113921.28 29515.96 108225.21 27962.5 102342.7
2022 192.67 30172.12 110631.11 28663.51 105099.55 27154.91 99386.96
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DISCUSSION
Land use land cover change dynamics

Between 2000 and 2022, Raktamala CF experienced a
4.84% decline in forest cover (Table 2), primarily due to
its conversion into built-up areas and grasslands,
mirroring regional forest loss patterns in Nepal's Chure
mountains (FAO, 2012; DFRS, 2015). The decline in
forest cover is primarily driven by local pressures such
as intensive grazing, sand and gravel mining, and
recurring forest fires, which suppress natural
regeneration, accelerate erosion and reduce biomass
(Acharya et al., 2019; Joshi et al., 2024). These localized
disturbances are key drivers of forest degradation in
Raktamala CF and provide an essential context before
broader regional and global comparisons. Such
deforestation reduces carbon storage and contributes
to increased CO, emissions (Houghton, 2003),
highlighting the need for sustainable land use (Lambin
& Meyfroidt, 2011).

In Raktamala CF, built-up areas increased by 89.14%
(Table 4), with 7.65 ha of forest and 2.60 ha of cropland
converted into settlements, reflecting rising
development pressures. This transformation, including
small-scale structures, like huts and internal paths, led
to habitat fragmentation and forest degradation.
Similar unplanned urbanization trends across Nepal
have intensified ecological stress (Pantha et al., 2024;
Thapa & Murayama, 2011), reinforcing calls for
environmentally-sound urban planning.

Cropland decreased by 6.81%, with agricultural
displacement promoting forest encroachment—
consistent with global interactions among urban
expansion, agriculture and forests (Lamichhane et al.,
2021). Such transitions often lead to biodiversity loss
and reductions in ecosystem services, such as carbon
storage (Geist & Lambin, 2001; Houghton, 2012).

Hydrological changes and grassland expansion in
Raktamala CF reflect combined land-use pressures,
driven Dby deforestation, erosion and human
disturbances. Riverbeds and waterbodies increased by
61.5 ha and 18.4 ha respectively (Table 4), mainly due
to forest loss, sediment deposition and sand mining
(Acharya & Paudel, 2022; Mishra et al., 2020).
Grasslands similarly expanded through conversions of
forest (6.15 ha) and cropland (0.10 ha), indicating
reduced regeneration and intensified grazing pressure
(FAO, 2020; Chaudhary et al.,, 2017). Conversions of
forest and cropland into riverbeds, waterbodies and
grasslands (Gautam et al., 2023; Shrestha et al., 2019)
highlight landscape instability, declining carbon
storage capacity and weakening hydrological
functions. Although transitions to OWL indicate some
community-based restoration efforts (Shrestha et al.,
2018), sustained measures, such as riparian
rehabilitation, erosion control and regulated grazing,
are essential to maintain ecosystem services (Lambin
& Meyfroidt, 2011; Sharma & Pandey, 2022).

Transitions to OWL further suggest ongoing
reforestation and community forestry initiatives.
However, continued management is required to
balance ecological integrity with socioeconomic needs.
OWL and grassland ecosystems are vital for grazing,
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biodiversity support and carbon storage. Controlled
grazing, integrated land-use planning and sound
community-based forest management practices are
essential to maintaining long-term ecosystem
resilience (Chaudhary et al., 2017).

Carbon stock

The average carbon stock in Raktamala CF was 156.60
+ 13.42 t ha™ (Figure 6), slightly below the national
average of 203 t ha™! for Nepal (FAO, 2012). This
variation can be attributed to differences in species
composition, tree size and density (Gautam, 2020).
Larger trees and denser forests typically store more
carbon (Brown and Gaston, 1995), and management
practices, including selective logging and grazing, can
influence forest carbon stocks (Lamsal et al.,, 2023).
Additionally, regional factors such as soil fertility,
climate and disturbance history further contribute to
carbon variability across Nepal's diverse topography
(Acharya et al., 2011).

The SOC stock in Raktamala CF was estimated at 63.8
+ 9.567 t ha™ (Figure 6), highlighting the critical role of
forest ecosystems in carbon sequestration. This value
is consistent with the SOC stocks reported in other CF's
in the Chure mountains, which range from 50 to 80 t
ha™ (Shrestha et al., 2020). However, it is lower than
the values found in the Terai and mid-hills of Nepal,
where SOC stocks can exceed 100 t ha™! (Bhandari et
al., 2021). Several factors influence the SOC levels,
including dense vegetation, climatic conditions and
land-use change (Johnson et al., 2019; Kumar & Singh,
2020). SOC is also affected by forest cover, with higher
concentrations beneath  tree-dominated areas
(Edmondson et al., 2014).

Impact of forest cover on forest carbon

Between 2000 and 2022, forest carbon stocks in
Raktamala CF declined by 4.84% (Table 5), highlighting
the impact of LULC changes on forest carbon
sequestration. This decline aligns with global and
regional findings on deforestation-driven carbon loss
(Baccini et al., 2019; Houghton, 2005; Pan et al., 2011;
Pugh et al, 2019) and underscores the need for
sustainable land management (Lambin & Meyfroidt,
2011). The 1,536.24 t carbon loss (Table 5) shows that
even small-scale land conversions significantly affect
ecosystem function.

Despite management actions like afforestation, fire
control and sustainable harvesting, forest area and
carbon stocks continued to decline. Scenario analyses
further confirmed that the LULC change significantly
reduces carbon sequestration potential, with even 5—
10% stock losses affecting long-term carbon dynamics
(Erb et al., 2018; Grace et al., 2014). Similar reductions
due to land conversions have been documented in
Sikkim, India (Sharma & Rai, 2007), and the strong link
between forest cover and both aboveground and SOC
is well established (Edmondson et al.,, 2014). LULC-
driven tree cover loss has long-lasting impacts on
carbon storage (Woodbury et al.,, 2006), and ongoing
reductions contribute to rising atmospheric CO,,
intensifying climate change (IPCC, 2021). Biodiversity,
soil stabilization, water regulation and other
ecosystem services are also at risk (Haddad et al., 2015;
MEA, 2005). Although restoration efforts exist, their
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effectiveness is limited by slow forest regeneration and
persistent human pressure (Acharya et al, 2019).
Studies confirm that restored forests take decades to
regain significant carbon stocks (Silver et al., 2000;
Bonner et al, 2013), emphasizing the need for
sustained protection and community-based forest
governance.

Policy mplication

The LULC changes observed in Raktamala CF from
2000 to 2022 have direct implications for land
management and climate mitigation policies in Nepal.
Our findings support the National Land Use Policy
2019, which discourages conversion of ecologically
fragile land (Government of Nepal, 2019), and align
with the objectives of the Forest Policy 2019, which
promotes sustainable forest management and climate
change mitigation. Likewise, the Chure Conservation
Strategy emphasizes restoration and strict regulation
of land degradation in the Chure belt (President Chure—
Tarai Madhesh Conservation Development Board
2017), while Nepal's REDD + Strategy (2018)
encourages improved MRV systems to strengthen
carbon accounting (Government of Nepal, 2018).
Similar studies in Nepal and Asia have shown that
forest loss and agricultural expansion significantly
impact carbon storage (Gautam et al., 2021; Hirano et
al.,, 2014), consistent with our results. Therefore,
strengthening land use 2zoning, controlling the
conversion of forest margins and integrating CF plans
in national climate policies could help reduce carbon
loss and enhance forest-based climate benefits in the
Chure region.

CONCLUSION

This study shows that the LULC changes in Raktamala
CF have reduced forest cover and weakened carbon
storage, driven by expanding settlements, shifting
cropland and increasing landscape degradation. These
transitions highlight the strong link between forest
loss and declining carbon sequestration potential.
Even though some areas are regenerating, effective
community stewardship and improved land-use
decisions are still necessary to reduce future carbon
loss. Overall, the findings provide important baseline
insights that can guide policies that support forest
conservation, promote carbon-friendly management
and enhance ecosystem resilience in the Chure region.
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