
Gipan 4. 2019. 106-116.

BUILDING A NATURAL SOUNDING TEXT-TO-SPEECH SYSTEM FOR THE
NEPALI LANGUAGE: RESEARCH AND DEVELOPMENT CHALLENGES AND

SOLUTIONS

Roop Shree Ratna Bajracharya, Santosh Regmi, Bal Krishna Bal, Balaram Prasain

Text-to-Speech (TTS) synthesis has come far from its primitive synthetic monotone voices to more
natural and intelligible sounding voices. One of the direct applications of a natural sounding TTS
systems is the screen reader applications for the visually impaired and the blind community. The
Festival Speech Synthesis System uses a concatenative speech synthesis method together with the
unit selection process to generate a natural sounding voice. This work primarily gives an account
of the efforts put towards developing a Natural sounding TTS system for Nepali using the Festival
system. We also shed light on the issues faced and the solutions derived which can be quite
overlapping across other similar under-resourced languages in the region.

Keywords: Nepali Text-To-Speech, Festival Speech Synthesis, Unit Selection Speech Synthesis

1. Introduction

Text-To-Speech (TTS) system converts the given text to a spoken waveform through text
processing and speech generation processes. These processes are connected to linguistic
theory, models of speech production, and acoustic-phonetic characterization of language
(Klatt 1987). The text to speech synthesis process basically consists of two modules: a
Natural Language Processing (NLP) module that produces a phonetic transcription of the
input text with desired prosodic features and a Digital Signal Processing (DSP) module
that transforms the symbolic information received from the NLP module to speech
(Dutoit 1999).

There are three approaches to TTS system: 1) articulatory-model 2) parameter-based and
3) concatenation of stored speech (Klatt 1987). This project deals with the third approach
to concatenate stored speech segments (units).

1.1 Concatenative speech synthesis

A concatenative speech synthesis system produces sound by combining recorded sound
clips. The recorded speech can be further broken down into smaller components, so that it
can be used to make any spoken word. There are three main types of concatenative
synthesis (Kishor et al. 2002):
1. Unit selection synthesis that uses large databases of recorded speech and creates

database from recorded utterance.
2. Diphone synthesis that uses a minimal speech database containing all the diphones

(sound-to-sound transitions) occurring in a language.
3. Domain-specific synthesis which concatenates prerecorded words and phrases to

create complete utterances. This approach is useful for limited domain applications
like talking clocks, station announcement systems which can be implemented by using
only a small number of unique recorded speech.

Bajracharya et al. / 107

We have used the unit selection method for this project as it produces the most natural
speech output.

1.2 Unit selection speech synthesis

A unit selection model for speech synthesis heavily depends upon a well-organized unit
database. The database contains the speech units from a large corpus that includes variety
of phonetic and prosodic variants of each unit (Dong et al. 2008). Each instance of a unit
in the speech database is described by a vector of features which may be a discrete or
continuous value. These features of the unit are used for selecting the correct unit that
meets the segmental requirement. Various factors like distance between the selected unit
and the desired unit, degree of continuity between the selected units are checked before
selecting the units of speech (Dong et al. 2008).

The best unit that phonetically and prosodically match the target units is selected based
upon:
1. The appropriateness of the candidate unit compared with target unit.
2. The smoothness between the selected units to be connected.

1.3 Architecture of Nepali TTS engine

The voice synthesis architecture includes mainly three phases: data preparation phase,
model building phase, and testing phase. Figure 1 shows the major components of this
process (Kishore et al. 2002).

After the voice has been synthesized, we port it to Non-Visual Desktop Access (NVDA)
screen reading software using the Festival Add-on available for NVDA.

1.4 Other existing Nepali TTS systems

Currently the only other Nepali TTS system being used in NVDA is eSpeak which uses
formant synthesis method and has a small memory footprint. But it is not as natural and
smooth as the speech synthesizers based on human speech recordings. Apart from this,
there has been a number of research and study conducted in the field of Nepali TTS using
concatenative speech synthesis approach (Ghimire and Bal, 2017; Chettri and Sah, 2013).

2. Voice building process

2.1 Data creation and preparation

2.1.1 Corpus building

The data was preliminarily selected as a subset of the Nepali National Corpus (NNC)
developed by the Bhasha Sanchar project and later on owned by the Language
Technology Kendra. Around 5000 sentences with maximum of 10 words per sentence
were selected and analyzed for maximum coverage of all the Nepali phones. Since the
randomly selected sentences did not cover the entire diphone coverage, 394 manually
constructed sentences were added to fill the missing phones. Therefore, in total we based
our analysis on 5394 sentences for the first phase. For the second phase, with an aim to

108 / Building a natural...

further increase the size of the database, we obtained the random text from different
sources and selected around 4241 more sentences. Each of the selected sentences were
manually checked for standard spellings, date, time, number, and then normalized and
finally recorded.

2.1.2 Recording of the corpus

The prepared sentences were then recorded in a quiet studio setting with the voice of a
professional Nepali speaker. The recordings were recorded in 16 KHz bitrate and in mono
channel Black and Lenzo 2014).

2.1.3. Verification of recording

The recorded sentences were further analyzed by manually listening to it for
mispronunciations and the data was edited accordingly.

Figure 1: Voice synthesis using Festival and Festvox

2.2 Model building phase

2.2.1 Text processing

The text processing stage includes preprocessing of text to produce the text corpus in the
suitable format as required by the Festival System.

2.2.1.1 Transliteration of sentences

Since the Festival System only accepts ASCII code, we transliterated the text from
Devanagari Unicode to its corresponding English form. For this purpose, we used a
unique mapping for each Nepali phone to convert it into English as shown in Table 1.
Transliteration is carried in two levels, first transliteration of Devanagari symbols into

Bajracharya et al. / 109

ASCII followed by removing the unnecessary sequences created due to inherent vowel
and dependent vowels.

2.2.1.2 Syllabication of words

Syllabication is basically the separation of word into its syllables Treiman and Zukowski.
1990). Before we can build the voice from the given corpus, we need a database which
consists of unique words and its syllabified form. For this process, we used a python
library that syllabifies the words into its syllables using the sonority theory. This process
required us to separate the Nepali letters into following categories:
1. vowels: ax, axn, aa, aan, i, in, u, un, e, en, o, on, axj, axjn, aaj, aajn, ej, ejn, oj, ojn, uj,

ujn, aw, awn, aaw, aawn, ew, ewn, ow, own, iw, iwn
2. approximates: y, w
3. nasals: m, n, ng, nn
4. fricatives: s, h
5. affricates: ch, chh, jh, jhh
6. stops: k, kh, g, gh, t, tt, th, d, dd, dh, tth, ddh, p, ph, b, bh, r, l

After the first level of syllabication has been performed by the script, we manually
verified each syllabication to ensure accuracy. The syllabified words were converted into
proper LISP format required by the Festival System which is saved in the lexicon file.

("aabhaasaxmaa" n (((aa)1) ((bh aa s PAU) 0) ((m aa)0)))

2.2.2 Preparing resources

For building the voice, we used a number of scripts available in Festvox to setup the
voice directory and run the binaries of the Festival Speech Synthesis. The command for
creating the folders required for building the voice based on unit selection method in
Festival is as follows:

$FESTVOXDIR/src/unisel/setupclunits INST LANG VOX

Here INST is the institute building the language, e.g. ku for Kathmandu University,
LANG is the language parameter e.g. NE, EN etc. and VOX is speaker/style identifier e.g
kal, awb. This script creates all the necessary folders and files required for the voice
building process.

2.2.2.1 Defining phoneset

Phoneset is a set of smallest discrete segments of sound in a stream of speech. Each
language has its own phoneset or alternatively also may share phoneset with other similar
languages. To build a complete voice, we need corresponding mapping for each letter in
Nepali Devanagari to English as seen in the transliteration process. The phoneset should
also include phonetic features for each individual phone. The created phoneset was then
placed in the Festvox directory previously created by the above script.

110 / Building a natural...

2.2.2.2 Arranging other files

Apart from phoneset, we also arranged the main text data prepared for the recording in its
transliterated form. The data was numbered according to the wave recording filename and
complied into a single file named txt.done.data. We collected and included 9628
sentences for the full build. The line was arranged in the following format:

(arctic_1101000001 "mulyax saxtttthi ddaxlaxrax thiyo ")

The lexicon file was placed in the festvox folder.

Table 1: Transliteration mapping for Nepali phones
Nepali Trans-

literation
Nepali Trans-

literation
Nepali Trans-

literation
Nepali Trans-

literation
आइ aaj ◌ोऊ $ow क kax व wax

◌ाइ $aaj ◌ेइ $ej ख khax श sax

ओइ oj औ aw ग gax ष sax

◌ोइ $oj ◌ौ $aw ञ nax स sax

ओई oj आ aa ट ttax ह hax

◌ोई $oj ◌ा $aa ठ tthax ◌ ं m

एई ej इ i ड ddax ◌ ँ n

◌ेई $ej ि◌ $i ढ ddhax ◌ः

उइ uj ई i ण nnax ◌ ् $

◌ुइ $uj ◌ी $i त tax इउ iw

उई uj उ u थ thax ि◌उ $iw

◌ुई $uj ◌ ु $u द dax इऊ iw

आउ aaw ऊ u ध dhax ि◌ऊ $iw

◌ाउ $aaw ◌ ू $u न nax आई aaj

आऊ aaw ए e प pax ◌ाई $aaj

◌ाऊ $aaw ◌ े $e फ phax एइ ej

एउ ew ओ o ब bax घ ghax

◌ेउ $ew ◌ो $o भ bhax ङ Ngax

एऊ ew ऋ ri म max च Chax

◌ेऊ $ew ◌ ृ $ri य yax छ chhax

ओउ ow ऐ axj र rax ज Jhax

◌ोउ $ow ◌ ै $axj ल lax झ jhhax

ओऊ ow अ ax

 2.2.3 Building unit selection voices

Once all the necessary files were made ready, we worked on the build process (Levin and
Black 2018).

Bajracharya et al. / 111

2.2.3.1 Building the prompts

This step involves generating the prompts for aligning the speech data. This process uses
the lexicon files and wave files. All the unique words present in etc/txt.done.data needs to
be present in the lexicon file. Then we ran the following script to build the prompts.

./bin/do_build build_prompts

This built utterances for each sentence and saved waveforms and labels for aligning.

2.2.3.2 Aligning the prompts

The wave files of sentences were first placed in the recording's directory. Then we ran the
following script to convert the wave files into suitable format with correct bitrate and
channels by power normalizing the wave files.

./bin/get_wavs recordings/*.wav

Then we labeled each sentence with its corresponding wave files which determines the
segment of the wave file has which particular phone.

./bin/do_build label

Next, we took the phone labels and integrated them into the utterance structure that
identifies the words, syllables, and phones which is used to extract information for the
voice build (Levin and Black 2018). This is done using the following script:

./bin/do_build build_utts

2.2.3.3 Speech parameterization

The next step is to analyze the speech. We first found the pitch periods, which determines
when the glottis is opened and closed while speaking. Then we found the spectral
properties of the speech at each pitch period caused by the vocal tract shape. These step
were executed using the following scripts:

./bin/make_pm_wave wav/*.wav

./bin/make_pm_fix pm/*.pm

./bin/make_f0_pm wav/*.wav

./bin/make_mcep wav/*.wav

We used the following parameters for the pitchmarks settings:

FEMALE_ARGS='-min 0.00333 -max 0.0075 -def 0.006 -wave_end -lx_lf 220 -lx_lo 121 -lx_hf 80
-lx_ho 51 -med_o 0'

2.2.3.4 Building the cluster unit selection synthesizer

First we ensured that the phonetic features to be included during the voice building
process is in synchronization with the features used in the phoneset. This information is
included in the festival/clunits/all.desc file. Finally we build the voice using the script:

./bin/do_build build_clunits

112 / Building a natural...

This created a catalogue file that contains information about the location of each unit in
the wave file, its duration and its starting and end points along with prediction trees and
feature file. The information is arranged in the following format:

r_16286 arctic_1207005454 0.020000 0.100000 0.180000

The prediction trees generated for each phone determines which phone to pick based on
the result of the decision tree. The feature file contains the feature information for each
unit for each phone.

2.2.4 Additional steps

2.2.4.1 Building letter to sound rules

The generation of voice primarily depends upon the correct pronunciation of the words.
But it is not possible to incorporate all the words into the lexicon. Thus to tackle this
problem, letter to sound (LTS) rules are used to predict pronunciations for words that are
not in the lexicon (Black et al. 1998). Usually the words with the most non-standard
pronunciations, should be listed in the lexicon itself. By training the system with a good
amount of LTS rules, we can even reduce the size of the lexicon itself.

We trained the LTS rules using the existing lexicon dictionary and the tools available in
Festival and FestVox. Given below are the steps to build LTS rules Black and Lenzo,
2014):

1. Prepare the lexicon by removing syllables, part of speech tags and stress marks from
the normal lexicon file: ("horax" nil (h o r ax))

2. Iteratively create allowables.scm file by first including basic mapping for each letter
and then aligning each letter.

3. After the allowables.scm has been prepared, we run the following script to generate the
LTS rules.

$FESTVOXDIR/src/lts/build_lts

2.2.4.2 Building duration models

Duration models help to predict the multiplication factor for a segment in the input
sentence which determines how long the segment is stretched during the utterance of
speech. We can build a duration model by using zscores, which is number of standard
deviations from the mean (Black and Lenzo 2014). The duration model takes a CART
(Classification and Regression Trees) tree that returns zscores by calculating mean and
standard deviation from the data. The tree is later converted into absolute duration stretch
value and used during the voice synthesis. We can generate the duration model using
make_dur_models script available in Festival System.

Bajracharya et al. / 113

2.3 Testing phase

2.3.1 Running the voice

2.3.1.1 Running voice in Festival in Linux Machine

We tested the voice by first loading the voice’s clunit file named
INST_LANG_VOX_clunits.scm.

$festival/bin/festival –b festvox/ku_ne_nab_clunits.scm

Then in the Festival command line interface, we sequentially ran the following steps to
synthesize the voice and make it speak using the SayText function. Next, we provided the
transliterated version of the input text to the Festival System.

festival> (voice_ku_ne_nab_clunits)
festival> (SayText "Naxmaxste")
festival> (set! utt1 (SayText " Naxmaxste "))
festival> (utt.save.wave utt1 "out.wav")

2.3.1.2 Running the voice in NVDA using Festival add-on

After building the voice, we ported it to the Non-Visual Desktop Access (NVDA) screen
reading software using the Festival Add-on available for NVDA. But before we could use
our Nepali voice in default Festival Add-On we needed to make sure that the input text
gets transliterated accordingly. After this process, the NVDA handled all the input output
and provides Festival Engine with the text input, which our voice package synthesized
accordingly using the Festival DLL files

2.3.2 Benchmarking the generated speech

We tested a number of test sentences extracted from different Nepali news websites and
categorized the output speech into two classes: good and bad based upon the quality of
the speech. The percentage of each quality of sentence can be seen on Table 2. We further
classified the bad sentences into the type of problem as seen in Table 3.

Table 2: Percentage of generated sentences according to quality
Good Sentences Bad Sentences
84.21% 15.79%

Table 3: Percentage of classification of problems in sentences
Problems Percentage
Echoes 23.08%
Overlaps 30.77%
Mispronunciation 7.69%
Echoes/overlaps 38.46%

2.4 Voice synthesis process

When the SayText function is called in Festival first the system searches for the
corresponding pronunciation for each word separated by space in the lexicon dictionary.
The pronunciations for the words not available in the lexicon are generated by the use of

114 / Building a natural...

LTS rules. After this process, the system picks an appropriate unit from the speech
database for each individual phone using CART generated during the build process
(Edinburgh Speech Tools, December 2014). The question nodes use various features and
cost function included during the build process to form a decision tree. The values for the
features are obtained from the individual phone’s feature file.

When all the units have been picked along with their prosodic properties, the
corresponding utterance for each unit are picked from their corresponding wave files. The
index of each unit and its wave file along with the start and end point of that particular
unit are located in the catalogue file. These units are finally concatenated and speech is
synthesized through the speech output device or saved to a wave file according to the
configurations.

3. Challenges and solutions

3.1 Issue in voice building due to large amount of data

One of the major issues during the voice building process was the huge size of the speech
corpus. At the final stage we had a total of 9638 sentences. While building cluster units
during the final stage of voice building process, Festival creates distance tables to help in
calculating the cost functions that determines the appropriateness of a selected unit. These
distance tables require enormous amounts of space depending upon the number of units
of a single phone. This process requires huge amounts of RAM in the system during the
build process.

To tackle this issue, we arranged the units in the ascending order so that the phone with
largest number of units are processed at the last. Then we canceled the distance table
building and tree building process for these problematic units and used lesser data to
create trees for these selected few phones. This way we could build the voice using the
whole corpus.

3.2 Slow response time during speech synthesis

Because we used a large speech corpus in order to get more natural voice, it resulted in
the formation of a heavier CART. This caused voice loading time and synthesis time to
be relatively higher. (Kumar et al. 2013) suggests using CART pruning to reduce the
response time comparatively. We reduced the minimum cluster size to 8 and the
maximum number of units that will be in a cluster at a tree leaf to 2 to implement pruning
of CART. We received a gain of 0.6 seconds in response time after this implementation.
This also reduced the size of our trees by a small amount.

3.3 Other possible voice synthesis approaches

There are many other voice synthesis approaches within Festival voice synthesis
environment. But the unit selection method synthesizes the most natural sounding voice
among all the other approaches. This is why we chose this approach. Some of the other
possible approaches are explained below.

Bajracharya et al. / 115

3.3.1 Diphone based speech synthesis

Diphone synthesis is one of the most popular methods used for synthesizing voice from
recordings. This method can generate voice faster than the unit selection method and
requires less amount of data to train. But, the major defect of this kind of synthesis is that
the resulting voice is robotic.

The Diphone method uses two adjacent half-phones from words then, cuts the units at the
points of relative stability, rather than at the volatile phone-phone transition (Lenzo and
Black, 2000). Thus, with an n-phone inventory there can be (n * n) diphone inventory
which creates a synthesizer that can potentially speak anything.

3.3.2 Statistical parameterization based speech synthesis

Voices built from the Festival based unit selection synthesis can produce high quality
natural sounding synthetic speech. But these voices are bulky and requires large amounts
of space to store all the data and also have inflexible speech tempo. Statistical parametric
models for speech acts as an alternative method for speech synthesis to these kinds of
voices. This method is more robust to errors and allow for better modeling of variation
(Black, 2006). But these voices tend to produce somewhat robotic voices. The
CLUSTERGEN synthesizer is implemented within the Festival/FestVox voice building
environment using statistical parameterization technique. This method uses an average of
a number of units, rather than a set of instances for synthesizing the speech in the unit
selection.

4. Conclusion

In this work, various approaches of building a TTS and particularly the Festival system
was studied and analyzed in larger detail. We successfully built a Nepali voice that can be
used along with NVDA to read the Devanagari text displayed on the screen. However,
there are still a few issues of overlaps and echoes in the generated voice which we suspect
is due to the potential mislabeling between recorded speech phones and the corresponding
characters. We aim to improve on this in future.

Acknowledgements

This work was carried out at the Information and Language Processing Research Lab,
Kathmandu University in collaboration with the Nepal Association of Blind with the
support of the Kadoorie Charitable Foundation, Hong Kong.

References
Edinburgh Speech Tools, December 2014. http://www.cstr.ed.ac.uk/projects/festival/ [Accessed on

20 June 2018].
Black, Alan W. 2006. CLUSTERGEN: A Statistical Parametric Synthesizer using Trajectory

Modeling. INTERSPEECH 2006 - ICSLP. [http://festvox.org/bsv/c3174.html].
Black, Alan W. and Kevin Lenzo. 2014. Building Synthetic Voices. Language Technologies

Institute, Carnegie Mellon University. [http://festvox.org/bsv/].

116 / Building a natural...

Black, Alan W., Kevin Lenzo and Vincent Pagel. 1998. Issues in Building General Letter to Sound
Rules. The Third ESCA Workshop in Speech Synthesis.
[https://pdfs.semanticscholar.org/21d6/baca37dbcb35cf263dd93ce306f6013a1ff5.pdf].

Chettri, Bhusan and Krishna Bikram Shah. 2013. Nepali Text to Speech Synthesis System using
ESNOLA Method of Concatenation. International Journal of Computer Applications, 62. 24-
28. 10.5120/10053-4909.

Dong, Minghui, Kim, Teng Lua and Haizhou Li. 2008. A Unit Selection-based Speech Synthesis
Approach. Journal of Chines Language and Computing. 16. 135-144.

Dutoit, Thierry. 1999. A Short Introduction to Text-to-Speech Synthesis. [e-book:
http://www.bookmetrix.com/detail/book/d8f34e8a-ac30-4b57-bba2-c282685a5e90].

Ghimire, Rupak Raj and Bal Krishna Bal. 2017. Enhancing the quality of Nepali Text-to-Speech
Systems. In Kravets A., Shcherbakov M., Kultsova M., Groumpos P. (eds) Creativity in
Intelligent Technologies and Data Science [CIT&DS] 2017, vol. 754. 187-197.

Kishore, S. P., Rajeev Sangal and M. Srinivas. 2002. Building Hindi and Telugu Voices using
Festvox.[https://www.researchgate.net/publication/242083170_Building_Hindi_and_Telugu_V
oices_using_Festvox/link/5625f67708aeedae57db1004].

Klatt, Dennis. H. 1987. Review of text‐to‐speech conversion for English. The Journal of the
Acoustical Society of America, 82(3). 737-793.

Kumar, Pranaw, Gandhi Annamalai, Sajini T, Anand Konjengbam, Praveen M and Kasturi R. G.
2013. Seamless Integration of Common Framework Indian language TTSes in various
applications. [https://ieeexplore.ieee.org/document/6709873].

Lenzo, Kevin A. and Alan W. Black. 2000. Diphone Collection and Synthesis. ICSLP 2000.
[https://www.cs.cmu.edu/~awb/papers/ICSLP2000_diphone/index.html].

Levin, Lori and Alan W. Black. 2018. Building a Talking Clock. http://tts.speech.cs.cmu.edu/11-
823/hints/clock.html. [Accessed 20 June 2018].

Treiman, Rebecca and Andrea Zukowski. 1990. Toward an Understanding of English
Syllabification. Journal of Memory and Language, 26. 66-85.

