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Abstract
This research assesses the results of a landslide susceptibility analysis employing 
frequency ratios (FR). It was conducted in collaboration between CNES/Airbus and 
Maxar Technologies using Google Earth. Landslides in the Thungsingdanda-Bandipur 
area were identified through imagery with a 50 cm spatial resolution. A comprehensive 
dataset for training and testing was established based on the landslide inventory. Nine 
causative variables: slope, aspect, relief, distance from the stream, distance from the 
road, curvature, distance from the thrust, geology, and land use were used. FR ratings 
were assigned to these causative variables based on training events. The resultant 
landslide susceptibility map was generated by integrating causative variables with 
their respective FR ratings. The validation rate, determined using the ROC-AUC curve, 
was found to be 82.2 percent. Notably, distance from the thrust (MBT), land use, and 
distance from the road emerged as the more influential factors among the nine causative 
variables in landslide occurrences.
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INTRODUCTION
Nepal's hilly regions are characterized by rugged topography, frequent seismic activity, 
and seasonal monsoon rains, rendering them susceptible to various geohazards. Among 
these, landslides pose a significant and dynamic threat in steep terrains, with potentially 
far-reaching and lasting socioeconomic implications. The prevalence of deep and steep 
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river valleys in central Nepal can be attributed primarily to the geomorphic and tectonic 
history of the Nepal Himalayas (Hasegawa et al., 2008). Numerous landslides, both 
large and small in scale, have taken place in these regions. The long-term stability of 
the slopes could be at risk, particularly in seismic-prone areas such as Nepal, due to 
earthquakes (Taylor & Burns, 2005). 

Figure 1
Location map - Thungsingdanda-Bandipur section
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The main boundary thrust region in Nepal is the prime region of landslides and is 
highly susceptible to landslides. The selected research site, Thungsingdanda-Bandipur, 
is situated on the border of Nepal's Nawalparasi and Palpa districts (see Figure 1). This 
area is predisposed to landslides due to its rugged and dissected topography, coupled 
with the presence of a master thrust of the Himalaya, the Main Boundary Thrust (MBT). 
The elevation within the region varies from 336 m to a maximum of 1500 m, covering 
a total study area of 61.48 sq. km. The geographical boundaries of the study area extend 
from 493153.13m to 521097.54m East and 3071653.18m to 3066618.07m North. Local 
roads connected to Mahendra Rajmarg provide access to the study area. Owing to the 
presence of the MBT, steep slopes, rugged topography, and fragile rock conditions, the 
Thungsingdanda-Bandipur region is susceptible to various types of slope instability.

Methodology
In the process of mapping landslide susceptibility, it is crucial to recognize that factors 
contributing to landslides significantly impact the spatial occurrence of such events. 
Moreover, the inference is that future landslides are likely to occur under conditions like 
those that led to past landslides (Lee & Talib, 2005). In this study, Frequency Ratio (FR) 
method was employed to delineate the susceptibility of the area to landslides.

Over the past few decades, numerous scholars have developed effective techniques 
for producing precise landslide susceptibility maps. Examples of these approaches 
include frequency ratio (Goetz et al., 2015; Budha et al., 2016; Hong et al., 2016; Lee 
et al., 2016; Paudyal & Maharjan, 2022; (Neupane et al., 2023), logistic regression 
(Chen et al., 2017; Steger et al., 2016); decision trees (Lee & Park, 2013; Pradhan, 
2013; Tsangaratos & Ilia, 2016); fuzzy logic (Feizizadeh et al., 2014; Park et al., 2014; 
Pradhan, 2011), neurofuzzy systems (Pradhan, 2013; Aghdam et al., 2016; Lee et al., 
2015); support vector machines (Pradhan, 2013; Peng et al., 2014; Lee et al., 2017; 
Tien Bui et al., 2017); artificial neural networks (Conforti et al., 2014; Pradhan & Lee, 
2010; Tsangaratos & Benardos, 2014); and multimethod approaches (Althuwaynee et 
al., 2016; Pham et al., 2016; Pradhan, 2010; Yalcin et al., 2011). In this study, the 
effectiveness of the landslide susceptibility assessment was evaluated using the 
frequency ratio (FR) method. The FR model offers the advantage of ranking causative 
variables based on their potential to trigger landslides. Additionally, it enables the 
assessment of whether a specific combination of causative factor values could pose a 
risk in the event of a landslide (Kannan et al., 2013). The occurrence of landslides and 
debris flows is influenced by a multitude of variables. During intense rainfall, when 
soil moisture is high and soil strength is diminished, shallow landslides become more 
probable (Montgomery & Dietrich, 1994).
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Figure 2 
The approach employed in the analysis of landslide susceptibility mapping using FR 
method.
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The process of creating a landslide inventory involved manually digitizing aerial 
photographs/satellite images having imagery resolution ranges from 15 meters of 
resolution to 15 centimeters (Landsat / Copernicus)from the Google Earth image 
dated March 2020, resulting in the identification of 104 landslides. This inventory was 
subsequently split into training (70% - 73%) and testing (30% - 31%) samples. The 
training sample was employed in developing the Landslide Susceptibility Index (LSI) 
model, while the testing sample was utilized to validate the model through the Receiver 
Operating Characteristic-Area Under the Curve (ROC-AUC) analysis in SPSS. The 
detailed methodology applied in the analysis is illustrated in Figure 2.

To conduct landslide susceptibility mapping, the creation of thematic data layers is 
essential (Camarinha et al., 2014). Therefore, nine thematic layers, namely geology, 
slope, aspect, plan curvature, distance from the stream, distance from the thrust (MBT), 
distance from the road, relief, and land use and land cover, all with a resolution of 20m x 
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20m cells, were employed. A digital elevation model (DEM) derived from a triangulated 
irregular network (TIN) surface was utilized to generate topographic and hydrologic 
factors. The TIN was produced using ArcMap 10.4.1 and contour lines at 20m intervals 
from digital topographic maps. Various topographic and hydrologic factors, such as 
slope gradient, plan curvature, slope aspect, relief, and distance from the stream, were 
considered in the assessment of landslide susceptibility. The Land Use / Land Cover 
(LULC) map was crafted by digitizing the Google Earth imagery in ArcMap 10.4.1. 
Geological information and the location of the thrust (MBT) in the area were extracted 
from petroleum block data (Department of Mines &Geology, Government of Nepal). 
Additionally, a distance to MBT map was generated using the Euclidean distance 
algorithm.

Upon the completion of all nine-factor maps, the landslide inventory map was overlaid 
with each factor map, and tabulated data were generated. Subsequently, landslide 
susceptibility map was prepared through the application of the frequency ratio method 
(FR). The resultant Landslide Susceptibility Index (LSI) map was then classified into 
three zones: stable, quasi-stable, and unstable zones.

Frequency ratio method
To evaluate the potential for landslides, a comprehensive understanding of the distinct 
physical characteristics and mechanisms triggering landslides in each area is crucial. 
The frequency ratio serves as a quantitative approach for assessing landslide risk, 
employing GIS and geographical data (Lee & Talib, 2005; Chen et al., 2016a, 2016b; 
Ding et al., 2017). Widely utilized in landslide susceptibility mapping (Yilmaz, 2009; 
Reis et al., 2012; Umar et al., 2014; Chen et al., 2016a; Wu et al., 2016; Wang & Li, 
2017), the frequency ratio (FR) technique establishes a quantified relationship between 
the landslide inventory and causative factors (Reis et al., 2012). The derivation of the 
frequency ratio (FR) for each class of causative factors involves combining the landslide 
inventory map with the factor map using Eq. (1) (Mondal & Maiti, 2013; Fayez et al., 
2018).

( ) ( )
( ) ( )
1 /  2
3 /  4

Npix Npix
FR

Npix Npix
=
∑ ∑

 ------------------------------------------------------------Eq. (1)

Where,
Npix(1) = The number of pixels containing landslide in a class
Npix(2) = Total number of pixels of each class in the whole area.
Npix(3) = Total number of pixels in a class of a parameter.
Npix(4) = Total number of pixels in the study area.
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The accumulated frequency ratio is utilized to generate a Landslide Susceptibility Index 
(LSI) map, employing the formula presented in Eq. (2) (Lee & Talib, 2005).

LSI = FR1 + FR2 + FR3 + FR4 + . . . . . . . . . + FRn------------------------------------- Eq. (2)

Results
Landslide inventory
Based on the Landsat images freely available on Google Earth and field visits, 104 
landslides were mapped with a total area of 0.665 km2 (Figure 3).During field visit, 
about 50 landslides were observed and verified the position, dimension, types, and 
causative factors.

Figure 3
Landslide inventory map showing both training & testing datasets

Landslide influencing factors
Land use land cover
The land cover map, depicted in Figure 4, was generated using an image classification 
tool. As illustrated in Table 1, the distribution of land cover in the Thungsingdanda-
Bandipur region indicates that forests encompass 57.1% of the total area, agricultural 
land covers 14.06%, barren land occupies 0.4%, bushes account for 27.3%, rivers 
constitute 0.1%, and sand comprises 0.5% of the entire area. Analyzing the intersection 
of Land Use Land Cover (LULC) data with the current landslide occurrences reveals 
that 46.5% of the total landslides occur in forested areas, 33.4% in bush-covered regions, 
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11.1% in barren lands, 8.5% in agricultural areas, 0.5% in sandy areas, and none in river 
regions (Table 1).However, the density of landslide is high in the barren land of the 
study area.

In the land-use land cover category (refer to Table 2), the frequency ratio highlights 
that barren land exhibits a notably high susceptibility to landslides, with a substantial 
frequency ratio value of 30.38. In contrast, other classes such as forest (0.81), bushes 
(1.22), sand (1.07), agricultural land (0.58), and river (0) demonstrate comparatively 
lower frequency ratio values, with river having the least FR among them (Table 2).

Figure 4
Land-use map of the study area

Geology
The geological map, sourced from the Department of Mines and Geology and illustrated 
in Figure 5, delineates the study area into eight major geological groups/units: Siwalik 
Group, Ramkot Formation/Surie Formation, Dhading Dolomite, Gawar Formation, 
and Amdanda Phyllite. According to Table 1, the Siwalik Group predominates in the 
study area, covering 58% of the total area, while exhibiting a landslide occurrence of 
48.1%, with a corresponding frequency ratio (FR) of 0.83. The Ramkot Formation/Surie 
Formation, encompassing 37.6% of the area, displays a landslide occurrence of 51.2% 
and an FR value of 1.36. Dhading Dolomite, covering 1.1% of the total area, has an FR 
value of 0.55, constituting 0.6% of the total landslides. Amdanda Phyllite and Gawar 
Formation exhibit the lowest frequency ratios, with values of 0.07 and 0, respectively. 
These formations cover only 1.7% and 1.6% of the total study area and experience 
almost no landslides in the vicinity. This shows that there is strong lithological control 
on landslide initiation (Anup & Paudyal, 2020; Paudyal et. al, 2021). 
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Figure 5
Geological map of the Thungsingdanda-Bandipur

Distance to thrust (MBT)
This study incorporates the extrinsic parameter known as Distance to Thrust (MBT). 
The information on MBT from petroleum block no. 5 was acquired from the Department 
of Mines and Geology, Government of Nepal. Subsequently, the block underwent 
georeferencing, and the MBT location was delineated based on the map. 

Utilizing the MBT and the Euclidean distance tool, the distance to thrust map (refer to 
Figure 6) was generated, illustrating the relationship of each cell to a source or set of 
sources based on straight-line distance. The map was then segmented into five distinct 
divisions.

Figure 6
Distance from thrust map of the study area
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The investigation revealed that the most vulnerable zones to landslides were the nearest 
distances, i.e., 0 – 500m and 1000-1500m, as they accumulated the maximum percentage 
of all landslides (30.35% and 34.37%, respectively). This observation is substantiated 
by the Frequency Ratio table, indicating that these zones have the highest FR values of 
1.12 and 1.52, respectively. Additionally, it was observed that there were no landslides 
at a distance of 2.5km from the thrust, with an associated FR value of 0.

Slope
The slope map (Figure 7) was created using a 20×20 Digital Elevation Model (DEM) 
through the Surface-Spatial Analyst Tool algorithm in ArcMap. The slope angles were 
categorized into eight classes using the equal interval classification method. As shown 
in Table 1, slope angles ranging from 00-100, 100–200, 200–300, 300–400, 400–500, 
500–600, 600–700, and 700–820 constitute 4.94%, 14.64%, 31.39%, 35.32%, 12.81%, 
0.94%, 0.08%, and 0.09% of the total study area, respectively. The corresponding 
landslide percentages in these slope categories are 1.9%, 10.1%, 28.3%, 41.8%, 16.3%, 
1.6%, 0%, and 0%, respectively. 

Terrain with a slope of 500–600 and 400–500 is identified as highly susceptible to 
landslides, with frequency ratios of 1.73 and 1.27, respectively. Conversely, terrain with 
a slope gradient of 00–100 is least prone to landslides, exhibiting a frequency ratio of 
0.38 (Table 1). This is attributed to the lower incidence of landslides in that particular 
slope category.

Figure 7
Slope map of the Thungsingdanda-Bandipur

Aspect map
The aspect map (Figure 8) was generated using a 20×20 Digital Elevation Model 
(DEM) through the Surface-Spatial Analyst Tool algorithm in ArcMap. The aspect was 
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categorized into eight classes, as illustrated in Table 1. The study area is characterized 
by a prevalence of south-facing slopes, covering 18.6% of the total study area. The 
second and third most dominant aspects are southwest and southeast facing, respectively. 
Notably, a significant proportion of landslides were observed in these aspects, with 
percentages of 16.14% for southeast, 21.66% for south, 29.15% for southwest, and 
13.32% for west.

Figure 8
Aspect map of the Thungsingdanda-Bandipur region

According to the frequency ratio indicated in Table 1, the southwest, west, south, and 
southeast aspects exhibit the highest frequency ratio values of 1.84, 1.20, 1.16, and 
1.07, respectively. This implies that these aspects are comparatively more susceptible 
to landslides.

Figure 9
Relief map of the Thungsingdanda-Bandipur
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Relief map
The relief map, or elevation map, of the study area (Figure 9) was produced using 
a 20×20 m Digital Elevation Model (DEM). The lowest elevation recorded is 255m, 
while the highest elevation is 1760m. The relief map underwent classification into four 
classes via the natural break algorithm, as outlined in Table 1. Notably, the elevation 
range of 792 – 981m covers 25.7% of the total study area and is associated with 64.2% 
of total landslides, featuring the highest frequency ratio of 2.5.

Distance from stream
The proximity to streams is a significant factor in landslide susceptibility mapping, 
as areas near streams are more susceptible to landslides. Therefore, a distance to the 
stream map (illustrated in Figure 10) was generated using the Euclidean distance tool, 
which defines each cell's relationship to a source or set of sources based on straight-line 
distance. The map is classified into five interval classes. As indicated in Table 1, the area 
within the range of 0 to 50m constitutes 10.4% of the total study area and accounts for 
6.3% of total landslides. Additionally, the region within a distance of 300–500m from 
the streams exhibits a high frequency ratio of 1.31, indicating a susceptibility to future 
landslides. This suggests that the "distance from stream" layer has a lesser impact on 
landslide occurrences around the streams.

Figure 10
Distance to stream map of the Thungsingdanda-Bandipur

Curvature
Curvature, as depicted in Figure 11, represents the extent to which a curve deviates from 
being a straight line or a surface deviates from being a plane. The curvature map was 
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created using a 20×20 m Digital Elevation Model (DEM) through the aspect algorithm 
of the Surface-Spatial Analyst Tool in ArcMap. Curvature is classified into concave, 
linear, and convex surfaces, as illustrated in Figure 10. According to Table 1, the study 
area exhibits a predominantly concave nature, covering 49.25% of the total area, while 
50.09% of the area is characterized by convex topography, and the remaining 0.66% 
forms a linear or plane surface. Notably, the majority of landslides occurred in convex 
surfaces, with 50.1% of total landslides occurring in this zone. As the Frequency Ratio 
(FR) value for convex curvature (1.01) is higher than that of concave curvature (0.99), 
it is inferred that convex surfaces are more susceptible to landslides.

Figure 11
Curvature map of the Thungsingdanda-Bandipur

Distance from the road

The distance from the road map (depicted in Figure 12) was created using linear road 
data from the study area. The map illustrating the distance to the road (also Figure 12) 
was generated using the Euclidean distance tool, which outlines each cell's relationship 
to a source or set of sources based on straight-line distance. The distance from the 
road was classified into six groups: 0-50m, 50–150m, 150–300m, 300–500m, 500–
1000m, and 1000–5663m. As indicated in Table 1, the area within the range of 0 to 
50m constitutes 3.9% of the total study area and encompasses 1.3% of total landslides. 
Additionally, the region within distances of 150–300m and 300–500m from the road 
exhibits high frequency ratios of 1.40 and 1.30, respectively, indicating a susceptibility 
to future landslides. This suggests that the layer "distance from road" contributes less to 
landslides around constructed roads.
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Figure 12
Distance from road map of the Thungsingdanda-Bandipur

Lanslide susceptibility analysis
Landslide susceptibility Index map (LSI) was generated by combining all nine factor 
maps (Figure 13).

Final LSI = PRd1*FR1 + PRd2*FR2 + PRd3*FR3 + PRd4*FR4 + . . . .  . + PRdn*FRn----Eq.(3)

Were,

PR = Predictive ratio of each domain.

FR = Frequency ratio of each class of a domain (Influencing Factors).

Here the predictive ratio (PR) (Table 3) is the weight given to the domain or the 
influencing factor from table 1 which is calculated as in equation. 4 below:

PR = (Max RF – Min RF)/ (Min RF of Max RF – Min RF) - - - - - - - - - - - - - - Eq. (4)

Where RF stands for relative frequency. It is the ratio of FR of a class of a domain to 
total FR of the domain.
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Table 1
Tabulation of domain with landslide inventory showing area coverage.

Domain Class
Class 
Pixel

Area (sq. 
km)

% Class 
pixel

Landslide 
pixel

Area (sq. 
km)

% Landslide 
pixel

Slope

0 - 10 13708 5.48 4.92 31 0.012 1.86
10 - 20 40293 16.12 14.46 169 0.068 10.14
20 - 30 87463 34.99 31.39 471 0.188 28.25
30 - 40 98440 39.38 35.32 697 0.279 41.81
40 - 50 35693 14.28 12.81 272 0.109 16.32
50 - 60 2611 1.04 0.94 27 0.011 1.62
60 - 70 215 0.09 0.08 0 0.000 0.00
70 - 82 251 0.10 0.09 0 0.000 0.00

Total 278674 111.47 100.00 1667 0.667 100.00

Distance to
Thrust (MBT)

0 - 500m 75643 30.26 27.14 506 0.202 30.35
500 - 1000m 67641 27.06 24.27 319 0.128 19.14
1000 - 1500m 63038 25.22 22.62 573 0.229 34.37
1500 - 2500m 65900 26.36 23.65 269 0.108 16.14
2500 - 3692m 6454 2.58 2.32 0 0.000 0.00

Total 278676 111.47 100.00 1667 0.667 100.00

Land-use

Forest 159100 63.64 57.09 775 0.310 46.49
Barren Land 1018 0.41 0.37 185 0.074 11.10
Agricultural Land 40769 16.31 14.63 142 0.057 8.52
Sand 1409 0.56 0.51 9 0.004 0.54
Bushes 76185 30.47 27.34 556 0.222 33.35
River 196 0.08 0.07 0 0.000 0.00

Total 278677 111.47 100.00 1667 0.667 100.00

Geology

Siwalik Group 161706 64.68 58.03 801 0.320 48.05
Ramkot FM/Surie Formation 104894 41.96 37.64 854 0.342 51.23
Dhading Dolomite 3027 1.21 1.09 10 0.004 0.60
Gawar Formation 4374 1.75 1.57 0 0.000 0.00
AmdandaPhyllite 4675 1.87 1.68 2 0.001 0.12

Total 278676 111.47 100.00 1667 0.667 100.00

Distance 
to Stream

0 - 50m 29120 11.65 10.45 105 0.042 6.30
50 - 150m 49619 19.85 17.81 208 0.083 12.48
150 - 300m 67476 26.99 24.21 419 0.168 25.13
300 - 500m 64913 25.97 23.29 509 0.204 30.53
500 - 1564m 67548 27.02 24.24 426 0.170 25.55

Total 278676 111.47 100.00 1667 0.667 100.00

Curvature
Concave 138857 55.54 49.83 821 0.328 49.25
Linear 1790 0.72 0.64 11 0.004 0.66
Convex 138026 55.21 49.53 835 0.334 50.09

Total 278673 111.47 100.00 1667 0.667 100.00

Aspect

North (0-22.5) 31816 12.73 11.42 27 0.011 1.62
Northeast (22.5-67.5) 22341 8.94 8.02 96 0.038 5.76
East (67.5-112.5) 29019 11.61 10.41 140 0.056 8.40
Southeast (112.5-157.5) 42197 16.88 15.14 269 0.108 16.14
South (157.5-202.5) 51910 20.76 18.63 361 0.144 21.66
Southwest (202.5-247.5) 44095 17.64 15.82 486 0.194 29.15
West (247.5-292.5) 30947 12.38 11.11 222 0.089 13.32
Northwest (292.5-337.5) 26349 10.54 9.46 66 0.026 3.96

Total 278674 111.47 100.00 1667 0.667 100.00

Relief

255 - 598 50505 20.20 18.12 75 0.030 4.50
598 - 792 83701 33.48 30.04 272 0.109 16.32
792 - 981 71482 28.59 25.65 1070 0.428 64.19
981 - 1,205 49329 19.73 17.70 195 0.078 11.70
1,205 - 1,760 23657 9.46 8.49 55 0.022 3.30

Total 278674 111.47 100.00 1667 0.667 100.00

Distance 
from Road

0 -50m 10846 4.34 3.89 22 0.009 1.32
50 - 150m 18789 7.52 6.74 76 0.030 4.56
150 - 300m 26825 10.73 9.63 224 0.090 13.44
300 - 500m 31715 12.69 11.38 246 0.098 14.76
500 - 1000m 65247 26.10 23.41 331 0.132 19.86
1000 - 5663m 125254 50.10 44.95 768 0.307 46.07

Total 278676 111.47 100.00 1667 0.667 100.00
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Table 2
Frequency ratio of each class.
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Slope

0 - 10 13708 4.92 31 1.9 0.38 0.06 6.13

0.06 0.21 0.15 11.31

10 - 20 40293 14.46 169 10.1 0.70 0.11 11.37
20 - 30 87463 31.39 471 28.3 0.90 0.15 14.60
30 - 40 98440 35.32 697 41.8 1.18 0.19 19.20
40 - 50 35693 12.81 272 16.3 1.27 0.21 20.66
50 - 60 2611 0.94 27 1.6 1.73 0.28 28.04
60 - 70 215 0.08 0 0.0 0.00 0.00 0.00
70 - 82 251 0.09 0 0.0 0.00 0.00 0.00

Total 278674 100.0 1667 100.0 6.17 1.00 100.00

Distance 
to

Thrust 
(MBT)

0 - 500m 75643 27.1 506 30.35 1.12 0.27 27.22

0.00 0.37 0.37 28.78

500 - 1000m 67641 24.3 319 19.14 0.79 0.19 19.19
1000 - 1500m 63038 22.6 573 34.37 1.52 0.37 36.98
1500 - 2500m 65900 23.6 269 16.14 0.68 0.17 16.61
2500 - 3692m 6454 2.3 0 0.00 0.00 0.00 0.00

Total 278676 100.0 1667 100 4.11 1.00 100

Land-use

Forest 159100 57.1 775 46.5 0.81 0.02 2.39

0.00 0.89 0.89 69.40

Barren Land 1018 0.4 185 11.1 30.38 0.89 89.18
Agricultural Land 40769 14.6 142 8.5 0.58 0.02 1.71

Sand 1409 0.5 9 0.5 1.07 0.03 3.13
Bushes 76185 27.3 556 33.4 1.22 0.04 3.58
River 196 0.1 0 0.0 0.00 0.00 0.00

Total 278677 100.0 1667 100 34.06 1.00 100

Geology

Siwalik Group 161706 58.0 801 48.1 0.83 0.29 29.44

0.00 0.48 0.48 37.65

Ramkot FM/Surie 
Formation 104894 37.6 854 51.2 1.36 0.48 48.39

Dhading Dolomite 3027 1.1 10 0.6 0.55 0.20 19.63 0.01
Gawar Formation 4374 1.6 0 0.0 0.00 0.00 0.00
AmdandaPhyllite 4675 1.7 2 0.1 0.07 0.03 2.54
Total 278676 100.0 1667 100.0 2.81 1.00 100.00

Distance
to Stream

0 - 50m 29120 10.4 105 6.3 0.60 0.13 12.81

0.13 0.28 0.15 11.71

50 - 150m 49619 17.8 208 12.5 0.70 0.15 14.89
150 - 300m 67476 24.2 419 25.1 1.04 0.22 22.05
300 - 500m 64913 23.3 509 30.5 1.31 0.28 27.85

500 - 1564m 67548 24.2 426 25.6 1.05 0.22 22.40
Total 278676 100.0 1667 100 4.71 1.00 100

Curvature
Concave 138857 49.8 821 49.3 0.99 0.327 32.65

0.33 0.34 0.01 1.00Linear 1790 0.6 11 0.7 1.03 0.339 33.94
Convex 138026 49.5 835 50.1 1.01 0.334 33.41

Total 278673 100.0 1667 100.0 3.03 1.00 100.00

Aspect

North (0-22.5) 31816 11.4 27 1.62 0.1 0.02 1.93

0.02 0.25 0.23 17.99

Northeast (22.5-67.5) 22341 8.0 96 5.76 0.7 0.10 9.77
East (67.5-112.5) 29019 10.4 140 8.40 0.81 0.11 10.96

Southeast (112.5-157.5) 42197 15.1 269 16.14 1.07 0.14 14.49
South (157.5-202.5) 51910 18.6 361 21.66 1.16 0.16 15.81

Southwest (202.5-247.5) 44095 15.8 486 29.15 1.84 0.25 25.05
West (247.5-292.5) 30947 11.1 222 13.32 1.20 0.16 16.30

Northwest (292.5-337.5) 26349 9.5 66 3.96 0.4 0.06 5.69
Total 278674 100.0 1667 100.00 7 1.00 100.00

Relief

255 - 598 50505 18.1 75 4.5 0.25 0.06 5.72

0.06 0.58 0.52 40.39598 - 792 83701 30.0 272 16.3 0.54 0.13 12.51
792 - 981 71482 25.7 1070 64.2 2.50 0.58 57.61

981 - 1,205 49329 17.7 195 11.7 0.66 0.15 15.21
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Table 3
Weight of individual factor

Domain/Factor PR Weight
Curvature 1.00 100

Slope 11.31 1131
Distance to stream 11.71 1171
Distance to Road 14.74 1474

Aspect 17.99 1799
Distance to Thrust 28.78 2878

Geology 37.65 3765
Relief 40.39 4039

Landuse 69.40 6940

Figure 13
Landslide susceptibility Index map of the study area

The Landslide Susceptibility Index (LSI) was developed employing Equation (2). For 
the classification of LSI data, the ROC/AUC curve was utilized. To assess the predictive 
capability of the proposed frequency method for identifying potential landslide zones, 
the LSI (landslide susceptibility index) underwent qualitative examination through 
success rate curves in IBM-SPSS Statistics 20. In the diagram above (refer to Figure 
14), the area under the success rate curve (ROC/AUC) measures 0.796, signifying 
a prediction rate of 78.7% with an upper bound of 79.8%, validating the analysis. 
Regarding landslide potential, the success rate indicates that in 20% of the study area, 
there is a high rank, accounting for 65% of the total landslides in that area. Similarly, 
proposed GWP values of 40% and 50% can explain approximately 81% and 86% of all 
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existing landslides, respectively. Consequently, three Groundwater Potential classes are 
established: stable zone (greater than 40%), quasi-stable zone (20-40%), and unstable 
zone (0-20%). Using these classes, the final landslide susceptibility map is generated, 
with LSI classified into three susceptibility zones—stable zone, quasi-stable zone, and 
unstable zone—with threshold values for the respective classes set at 41.09, 52.15, 
and 126.37, as indicated in Table 5, and the resulting final landslide susceptibility map 
depicted in Figure 15.

Figure 14
ROC/AUC curve of Thungsingdanda-Bandipur
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Table 4
Case processing summary

Slide Valid N (listwise)
Positivea 1667
Negative 278023

Larger values of the test result variable(s) indicate stronger evidence for a positive actual state.
a. The positive actual state is 1.

Area Under the Curve
Test Result Variable(s): LSI

Area Std. 
Errora

Asymptotic 
Sig.b

Asymptotic 95% Confidence Interval
Lower 
Bound Upper Bound

.787 .006 .000 .776 .798
The test result variable(s): LSI has at least one tie between the positive actual state group and 
the negative actual state group. Statistics may be biased.
a. Under the nonparametric assumption
b. Null hypothesis: true area = 0.5

Table 5
Boundary value set for different susceptibility classes

Cumulative % Class Name LSI
Upper Bound

60% Stable Zone 41.09

80% Quasi Stable Zone 52.15

100% Unstable Zone 126.37

Table 6
Area coverage by different landslide susceptibility class.

Landslide Susceptibility Classification Method
Class Count Area (sq. km) Area %
Stable 166792 66.72 59.99% ROC/AUC Curve

Quasi Stable 55650 22.26 20.02%
Unstable 55581 22.23 19.99%

Total 278023 111.21 100%
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Figure 15
Landslide susceptibility map of the Thungsingdanda-Bandipur

Figure 16
Bar-diagram showing the percentage of final susceptibility class in Thungsingdanda-
Bandipur

The outcome of the final susceptibility map (depicted in Figure 15), derived from the 
amalgamation of nine influencing factor maps, indicates that Bandipur, Nayachhap, 
Kumsot, Pangre, Charghare, Namjikot, Damargaun, Birkharka, and Thungsingdanda 
villages are situated in the unstable zone, rendering them prone to landslides. Radhitar, 
Rumlabas, Japdanda, Keuradhap, Kurgantar, Ramjikot, Khadathumki, and Adhmara 
fall within the quasi-stable zone. The remaining villages are classified as the stable zone. 
Among the total study area, 59.99% is designated as stable, encompassing villages such 
as Kirtipur, Dhokreghat Dhode, Pangreghat, Dhawal Baseni, Kutiya, Rumse, Pokhari, 
Chihandanda, Maulathar, Hupsekot, Dhakrebas, and Bekhachhap. Approximately 
20.02% is identified as quasi-stable, while 19.99% of the study area is deemed unstable. 
Notably, one region is assessed as highly prone to landslides (refer to Table 6).
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Discussion
Landslide causative factors
In this study, the selection of contributing factors was based on their presence or 
absence and their relative importance. The landslide conditioning factors encompassed 
geomorphological, anthropogenic, and extrinsic elements. Nine conditioning factors 
were considered to create the landslide susceptibility map: distance from thrust (MBT), 
aspect, slope, land use land cover, relief, distance from the stream, geology, distance 
from the road, and curvature. Table 1 provides the assigned weights for each class of 
causative factors. Geological structure and lithological factors have the most significant 
role to cause the landslide as in the other parts of the Nepal Himalaya (Acharya et al, 
2023; K.C. et al, 2018). 

The weights derived through the frequency ratio method highlight the significant impact 
of terrain slope on landslide distribution. Generally, landslide occurrences increase with 
an increase in terrain gradient (Paudyal & Maharjan, 2022). However, in our study 
area, many landslides are concentrated in the range of 50o - 60o, resulting in a high-
frequency ratio of 1.73 and indicating heightened susceptibility to landslides (Table 
1). Regions with slopes of 60o - 70o and 70o - 82o cover minimal areas and show no 
landslide presence, yielding respective FR values of 0.

According to (Chen et al., 2017; Devkota et al., 2013; Hong et al., 2016) most of the 
landslides occurred on the slopes facing south and southeast. The frequency ratio for 
the aspect map indicates that southwest, south, west, and southeast-facing aspects have 
the highest frequency ratio values (Table 2) and are considered as prone to landslides 
in the study area. The southwest aspect boasts the maximum FR of 1.84, followed by 
the west with 1.20, and the west slope has an FR value of 1.16 (Table 1). Areas within 
the range of 0 – 50 m and 300 – 500 m from streams exhibit high frequency ratios 
of 0.6 and 1.31, respectively. This suggests that streams contribute less to landslide 
events in the study area. Among the land use land cover types, barren land has the 
highest FR of 30.38. Observing Table 1, it is evident that convex curvature surfaces in 
the study area are more susceptible to landslides, as they exhibit a high frequency of 
landslide occurrences with an FR value of 1.01. Furthermore, it was observed that most 
landslides occur in the Ramkot Formation, with an FR value of 1.36, followed by the 
Siwalik Group (Anup & Paudyal, 2020; Dahal & Paudyal, 2022) and Dhading Dolomite 
with FR values of 0.83 and 0.55, respectively. The distance from the road suggests that 
regions within 150–300 m are more susceptible to landslides, as the FR value is 1.40, 
compared to regions within the distance of 0–50 m (0.34). This contradicts with the 
previous study (Ayalew & Yamagishi, 2005) where they found that the effect of the 
road on landslides varies according to its role in the study area. while some researchers 
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(Seda, 2023)  encountered landslides in areas up to 300 m, while other researchers found 
the most landslides occurred between 40 and 80 m .

Finally, the nearest distance from the thrust (MBT) has the second-highest percentage 
of landslides, with a frequency ratio value of 1.12 (ref to Paudyal & Maharjan, 2023). 
Consequently, the zone within the 0 – 500 m distance is the second most vulnerable to 
landslides, while the region within the distance of 1 km to 1.5 km is the most prone to 
landslides. This indicates that MBT has a moderate influence on triggering landslides 
in the study area.

Topographic parameters
The utilization of the Digital Elevation Model (DEM) is crucial in earthquake-induced 
landslide studies, as demonstrated by previous research (Kamp et al., 2008; Wang et al., 
2015). While there is no direct correlation between elevation and landslide occurrence 
(Ercanoglu et al., 2004), studies indicate an elevated probability of landslides at higher 
elevations. In this study, landslide concentration was most pronounced within the 
elevation range of 792m to 981m. Steepness of the slope stands as another significant 
topographic factor explored in landslide susceptibility studies (Wang et al., 2015; Kamp 
et al., 2008; Regmi et al., 2016; Regmi et al., 2010; Pradhan & Lee, 2010).The slope 
ranges from 0° to 82°.The highest landslide concentration was observed along the slope 
angle ranging 50° - 60° (Figure 7).

The aspect of the slope, influencing moisture retention and rock formation, is a critical 
factor in slope material properties and susceptibility to failure (Dai et al., 2001). This 
association is often observed due to the prevalent river segment trends in the SW-SE 
direction, resulting in numerous landslides on slopes facing the river.

Surface undulation on the slope plays a pivotal role in triggering landslides, exerting a 
substantial influence on slope instability. In terms of curvatures, landslides are commonly 
distributed in both convex and concave slopes (Figure 11). Convex slopes, in particular, 
are prone to earthquake-induced landslides (Reneau & Dietrich, 1987). Moreover, the 
region within 150 – 300m from the road exhibits heightened susceptibility to landslides.

Anthropogenic factor
Land use is recognized as a significant factor in landslide conditioning, as changes in 
land-use patterns can impact vegetation cover, thereby influencing mechanical factors 
(such as soil strength and slope behavior) and hydrological factors (Greenway, 1987; 
van Westen et al., 2003; Reichenbach et al., 2014). Variations in land use distribution 
can stem from natural processes, human activities, or a combination of both. According 
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to frequency ratio weight values, the association with barren land, which holds a weight 
of 30.38, is more pronounced compared to other land use classes. Our findings align 
with this correlation.

Conclusion
In this investigation, a Frequency Ratio model based on statistical methods was 
employed to assess the spatial likelihood of landslide occurrence, assigning weights to 
each factor layer based on their impact on landslides. The model efficiently predicted 
the probability of landslides, a conclusion substantiated by positive correlations between 
field conditions and model results. A total of 104 landslides were identified in the study.

The analysis revealed that land-use patterns, particularly the distance from these land use 
patterns, exert a significant influence on landslide occurrences. The geology factor map 
indicated a higher incidence of landslides in the Ramkot Formation and Siwalik Group. 
The Slope map highlighted a concentration of landslides in slope angles between 500 to 
600, indicating a preference for higher slopes or increased relief. Slope angles less than 
100 exhibited minimal contribution to landslide initiation. The results further indicated 
a prevalence of landslides on slopes facing south, southwest, and west, as suggested 
by the aspect map. This could be because these slope aspects face the sunlight directly 
which cause heating effect while at night same aspects has cooling effect making these 
slope weaker in long run resulting in landslide. The Curvature map emphasized the role 
of convex curvature in predicting landslides.

Examining the Relief map revealed an increase in landslide frequency up to an elevation 
of 981m, followed by a decline in the percentage of landslide-affected areas. Despite the 
dominance of agricultural and forested areas in the Thungsingdanda-Bandipur region, 
the susceptibility analysis pointed to barren land (land where plant growth may be 
sparse, stunted, or contains limited biodiversity)as more vulnerable to landslides.

The study also identified a direct correlation between distance from the thrust and 
landslide events. The area around the Main Boundary Thrust (MBT) zone within the 
0 – 500m distance range accounted for 30.5% of total landslides. Statistical analysis 
of the susceptibility map, generated using the Frequency Ratio model, emphasized that 
the maximum landslide distribution occurred in the distance from the road range of 
150 – 300m, suggesting a limited contribution of roads to landslide occurrence in the 
study area. Among the factors analyzed, land use, relief, and distance to the thrust were 
identified as major contributors to landslide initiation in the Thungsingdanda-Bandipur 
region.
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The research study on landslide susceptibility mapping at Thungsingdanda-
Bandipur region carries significant implications for risk management and sustainable 
development. The identification of high susceptibility areas provides a foundation for 
targeted mitigation strategies, guiding interventions such as slope stabilization and 
vegetation cover enhancement to minimize potential damage. The findings inform 
land use planning, influencing zoning regulations and development plans, while also 
contributing to the establishment of early warning systems for timely evacuation and 
risk reduction. Engineers and planners can utilize the susceptibility mapping to design 
resilient infrastructure, taking into account factors like slope stability. Moreover, the 
study emphasizes the importance of environmental conservation in mitigating landslide 
risks, promoting sustainable land management practices. Community awareness and 
education efforts can be tailored based on the research, empowering residents to take 
preventive measures. The findings are also valuable for insurance companies and risk 
assessors, aiding in the development of accurate risk models that influence premiums 
and coverage. The research informs government policies related to land use, construction 
standards, and disaster management, shaping regulations that enhance regional 
resilience. It highlights the need for continued research and monitoring, addressing 
knowledge gaps and guiding future initiatives. Additionally, the study's international 
relevance fosters collaboration, sharing knowledge and best practices with other regions 
facing similar challenges.
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