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Abstract 

Accurate short-term load forecasting (STLF) and optimal generation scheduling are essential 

for reliable and economic power system operation. This paper proposes a hybrid deep 

learning model combining Gated Recurrent Unit (GRU) and Long Short-Term Memory 

(LSTM) networks for STLF, integrated with a Genetic Algorithm (GA)-based Economic 

Dispatch (ED) framework. The model is trained and validated using the publicly available 

Panama Short-Term Load Forecasting dataset, which provides hourly electricity demand 

along with meteorological variables. Input features include temperature, wind speed, time of 

day, day of the week, and historical demand. Forecasting performance is evaluated using 

Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and the Coefficient of 

Determination (R²). Simulations on the IEEE 9-bus system demonstrate that the proposed 

GRU+LSTM model achieves superior performance compared to standalone GRU and 

LSTM, with an MSE of 0.0310, RMSE of 0.1760, and R² of 0.9670. Furthermore, the 

forecasted demand is used in the ED problem, formulated as a multi-objective function 

incorporating fuel cost, emission cost, and wind generation cost. Results confirm that the 

proposed integrated approach enhances forecasting accuracy and reduces operational costs, 

making it effective for data-driven power system operation. 
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1. Introduction 

The increasing integration of renewable energy sources into modern power systems has 

introduced both opportunities and challenges. Renewable energy sources such as wind and 

solar exhibit inherent variability and uncertainty, making it difficult to maintain grid 

stability and ensure reliable power generation. These fluctuations necessitate advanced 

management strategies to optimize economic dispatch (ED) while accommodating 

renewable generation constraints. Traditional economic dispatch models were designed for 

stable and predictable energy generation; however, the intermittent nature of renewable 

energy sources requires more flexible and adaptive approaches [1], [2],[3]. 
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Economic Dispatch (ED) plays a crucial role in power system management by determining 

the optimal distribution of generation resources to meet load demands while minimizing 

operational costs and emissions. Unlike classical ED, which operates on a static basis, 

modern ED adjusts generator outputs in response to real-time fluctuations in load and 

generation availability. Various optimization techniques, including Genetic Algorithms 

(GA), Particle Swarm Optimization (PSO), and Differential Evolution (DE), have been 

applied to address the complexities associated with ED in renewable-rich grids [4],[5],[6]. 

Studies have demonstrated that GA-based ED models effectively optimize resource 

allocation, minimize generation costs, and reduce emissions [7],[8],[9]. 

Short-Term Load Forecasting (STLF) is a fundamental component of modern power 

systems, enabling accurate demand prediction for efficient grid operation. Traditional 

STLF methods relied on statistical techniques; however, recent advancements in machine 

learning, particularly deep neural networks (DNNs), have significantly improved 

forecasting accuracy [10],[11],[12]. Recurrent Neural Networks (RNNs) such as Long 

Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks have 

demonstrated superior performance in capturing temporal dependencies in load demand 

data. Studies have shown that LSTM-based models outperform conventional statistical 

models in STLF applications, leading to more reliable demand predictions and optimized 

generation scheduling [13],[14],[15]. 

Integrating STLF with ED presents a comprehensive solution to managing real-time energy 

demand and generation schedules. The use of GA in ED optimization ensures an adaptive 

approach to minimizing generation costs while addressing the variability of renewable 

energy sources. Research has shown that hybrid models combining LSTM-based STLF 

with GA-based ED provide a promising solution by enhancing grid reliability and 

economic efficiency [16],[17],[18]. 

Despite advancements in STLF and ED optimization, several challenges remain. Data 

quality and availability significantly impact forecasting accuracy, and computational 

complexity can limit real-time implementation. Additionally, the variability of renewable 

energy sources introduces further uncertainty in economic dispatch planning [19],[20],[21]. 

Several studies have explored these challenges. Research by [22] highlighted the 

importance of real-time data acquisition for improving forecasting accuracy, whereas [23] 

investigated computational efficiency issues in machine learning-based forecasting. 

Additionally, several studies have focused on improving short-term load forecasting 

accuracy through advanced deep learning–based approaches and hybrid optimization 

techniques [24], [25]. 

Studies by [26] and [27] provided insights into grid reliability concerns caused by 

renewable energy fluctuations, emphasizing the need for robust optimization techniques. 

Research by [28],[29],[30] explored hybrid forecasting-dispatch frameworks, 

demonstrating their effectiveness in reducing operational uncertainties.  

This study presents an integrated approach that combines LSTM and GRU networks for 

improved STLF accuracy with a GA-based ED optimization framework. By leveraging 

machine learning for demand prediction and evolutionary algorithms for economic 

dispatch, the proposed methodology aims to enhance power system stability, reduce 

operational costs, and facilitate the integration of renewable energy sources into modern 
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grids. The study contributes to ongoing research efforts in power system optimization by 

demonstrating the effectiveness of AI-driven forecasting and optimization models in 

managing the complexities of renewable energy integration. 

2. Methodology 

   2.1 Research Framework 

Figure 1: Proposed Research framework 

Figure 1 shows the proposed research framework that provides a structured process for 

optimizing energy dispatch in a power system by integrating Short-Term Load Forecasting 

(STLF) using Neural Networks (GRU-LSTM) and solving the Economic Dispatch (ED) 
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problem using Genetic Algorithms (GA).Initially, the dataset is prepared by selecting 

features and filling missing data. The dataset is then split into training and testing sets. A 

GRU-LSTM model is trained on the data to predict the short-term demand and evaluated 

using performance metrics like MSE, RMSE, and R². Once the forecasting model is tested 

and saved, it is used to predict future demand. 

Next, ED is started by defining key parameters for thermal and wind generators. The 

predicted demand from the forecasting model is then used in the ED process. GA is used 

for optimizing generator scheduling, starting with the initialization of a random population. 

The GA iterates through selection, crossover, and mutation steps to evolve better solutions 

until the ED optimization converges on a solution. The final ED results are then displayed, 

showing an optimal strategy for energy dispatch based on forecasted demand. The network 

model in this study represents a power transmission system comprising conventional fossil 

fuel-based generators and wind power generators. The focus is on integrating Economic 

Dispatch (ED) with Short-Term Load Forecasting (STLF) to achieve optimal power 

generation scheduling while minimizing operational costs and ensuring grid stability. This 

approach is particularly important in scenarios where renewable energy sources like wind 

contribute significantly to the power mix, introducing variability and uncertainty into the 

system. The primary objective is to minimize the total operational cost, which is modeled 

as a weighted combination of three components: fuel cost, wind power generation cost, and 

emission cost. The objective function is defined 

as:  

where:  

λ1=0.65: Highest priority is given to fuel cost minimization due to its significant impact on 

operational expenses. 

λ2=0.29: Emission cost is assigned moderate priority to balance environmental 

sustainability with economic considerations. 

λ3=0.06: Wind power generation cost is given the lowest priority as wind energy is 

generally cost-effective, but operational variability must still be considered. 
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The detailed  objective  functions  are  given  from equation (2) to (4) 

1. Fuel cost function: The fuel cost is modeled as a quadratic function, commonly used 

in economic dispatch problems: 

                         (2) 

Here, 

a: Fixed Cost Coefficient : Represents the constant cost incurred regardless of the 

power output, such as startup or no-load costs. 

b: Linear Cost Coefficient: Represents the cost per unit of power generated, assuming a 

linear increase with output. 

c: Quadratic Cost Coefficient: Models the nonlinear increase in cost with higher power 

output due to inefficiencies at higher operating levels. 

d: Amplitude of Valve-Point Effect Coefficient: Represents the magnitude of cost 

oscillations caused by the valve-point effect in thermal generators. 

e: Frequency of Valve-Point Effect Coefficient: Represents the frequency of the 

oscillations in the cost function due to valve-point effects. 

  2. Emission cost function: The emission cost function is modeled as a quadratic equation, 

incorporating coefficients that represent different emission factors: 

                                         

(3) 

Here, 

σ: Quadratic Emission Coefficient: Represents the non-linear relationship between 

generator power output and emissions (e.g., CO2 emissions). 

τ: Linear Emission Coefficient: Models the direct proportionality of emissions with 

power output 

δ: Fixed Emission Offset: Represents baseline emissions that occur regardless of 

generator output. 

3. Wind power generation cost: The cost associated with wind power generation is 

expressed as a function of wind power output. 

                                           

(4) 

Here,  

aI
P: Linear Wind Cost Coefficient: Reflects operational costs that scale with wind 

power output, such as maintenance or ancillary services. 

GE: Grid Integration Cost Coefficient: Represents the cost associated with integrating 

variable wind power into the grid, such as balancing or reserve requirements. 

 



   Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026 

  

[PANTA & ADHIKARI] 6 

 

2.2 Dataset Description and Statistical Summary 

The ‘short term Electricity Load Forecasting-Panama’ dataset, released in 2023 and 

publicly available on Kaggle, is used in this study.It provides hourly electricity load 

data along with associated meteorological variables, making it highly suitable for 

developing Short-Term Load Forecasting (STLF) models. 

       Dataset Features: 

Date/Hour - timestamp of each record. 

Load Demand (MW) -hourly electricity consumption in Panama. 

Temperature (°C) - environmental temperature. 

Humidity (%) - relative humidity. 

Wind Speed (m/s) - wind velocity at the given hour. 

Derived Features - hour of the day, day of the week, and lagged demand values were 

generated for improved predictive performance. 

Data Coverage: 

The dataset spans multiple years with hourly resolution, ensuring sufficient granularity 

to capture both short-term variations and seasonal load trends 

Preprocessing: 

Missing values were handled using linear interpolation. 

Normalization was applied to scale features into the [0,1] range. 

Feature engineering included lagged demand, day-of-week, and hour-of-day encodings to 

strengthen temporal learning.  Table 1 lists the statistical summary of the input features 

used in the proposed load forecasting and economic dispatch framework. 

Table 1: Statistical Summary of Input Features 

Feature Mean Std. Dev. Min Max 

Load Demand (MW) 1202.16 123.97 898.06 1405.77 

Temperature (°C) 25.77 1.2 23.76 31.21 

Wind Speed (m/s) 19.7 2.02 15.75 25.95 

Hour of the Day 12 6.92 0 23 

Day of the Week 3.9 2 1 7 
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2.3 Hyperparameter Tuning Methodology 

To ensure robust forecasting accuracy, the hyperparameters of GRU, LSTM, and 

GRU+LSTM models were tuned systematically. A grid search approach was adopted over 

a predefined search space, with evaluation performed on a validation set using MSE,RMSE 

and coefficient of determination as the criterion. 

Learning Rate: [0.001, 0.0005, 0.0001]; Batch Size: [16, 32, 64]; Epochs: [100, 200, 300]; 

Dropout Rate: [0.1, 0.2, 0.3]; Hidden Units: [50, 100, 150] 

The final selection (200 epochs, batch size = 32, learning rate = 0.0001, 100 hidden units, 

dropout = 0.2 for hybrid) was based on the lowest RMSE on validation data. The Adam 

optimizer was employed for all models due to its adaptive learning rate properties. 

2.4 Genetic Algorithm Implementation 

The Economic Dispatch problem was solved using a Genetic Algorithm (GA) owing to its 

effectiveness in handling nonlinear, multi-objective optimization problems. To ensure 

solution reliability, the GA was implemented with well-defined convergence criteria and 

stopping conditions. The algorithm was terminated when either of the following conditions 

was met: 

1. The maximum number of generations was reached (200). 

2. The relative improvement in the best fitness value remained below 10-6 for 20 

consecutive generations, indicating convergence. 

Table 2 lists the parameters used for the genetic algorithm in this study.These values were 

selected based on preliminary experiments and validated for stability and accuracy in the 

IEEE 9-bus test system. 

Table 2:  List of GA Parameters Used in Economic Dispatch 

Parameter Value Description 

Population 

Size 
50 

Number of candidate solutions 

per generation 

Maximum 

Generations 
200 

Upper limit for evolutionary 

iterations 

Selection 

Method 

Tournament 

 

 

Selects best candidates for 

reproduction 

Crossover 

Operator 
SBX (Simulated Binary Crossover) 

Preserves diversity while 

combining parents 

Crossover 

Probability 
0.8 

Probability of crossover 

between chromosomes 

Mutation 

Operator 
Polynomial 

Introduces small random 

variations 

Mutation 

Probability 
0.1 

Probability of mutation per 

gene 

Elitism Enabled (5%) 
Preserves top 5% best 

solutions each generation 

Stopping 

Criteria 

Max generations OR improvement < 10−6 

for 20 iterations 
Ensures convergence 
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Convergence Analysis 

To evaluate convergence behavior, the variation of the best fitness value (total generation 

cost) across generations was recorded. As shown in Figure X, the GA converged steadily, 

with significant improvement observed in the first 50 generations and near-stable optimal 

values achieved by generation 150. This indicates that the chosen parameter configuration 

ensured both exploration and exploitation, avoiding premature convergence. 

2.5 Proposed AI-Based Methodology  

This work implements AI-based techniques for solving the ED and STLF problems.Two 

AI techniques were selected for solving STLF and ED problems, viz. DNN and GA 

respectively. 

2.5.1 GRU for STLF 

The Gated Recurrent Unit (GRU) is an advanced neural network architecture designed to 

process sequential data, particularly time-series data such as Short-Term Load Forecasting 

(STLF). GRU belongs to the family of Recurrent Neural Networks (RNNs) and was 

introduced as a simplified and computationally efficient alternative to Long Short-Term 

Memory (LSTM) networks. Unlike standard RNNs, which suffer from vanishing gradient 

problems, GRUs incorporate gating mechanisms to manage the flow of information, making 

them highly suitable for capturing temporal dependencies in sequential data. The GRU 

architecture is characterized by its use of two gates: the update gate and the reset gate, which 

work together to control how much information from the past is retained or forgotten. This 

mechanism allows GRUs to model both short-term and long-term dependencies in time-series 

data effectively, while requiring fewer parameters than LSTMs. In this research, a GRU-

based model is implemented to forecast electricity load demand based on historical data and 

additional features. Figure 2 shows the structure of the gated recurrent unit (GRU) model 

used in this work. 

Figure 2: GRU-based STLF structure 

Architecture Overview 

The GRU network used in this research comprises five main layers tailored for efficient 

short-term load forecasting. The input layer receives normalized sequential input features, 

which include temperature, wind speed, hour of the day, day of the week, and lagged load 

demand—amounting to five features per time step. These inputs are then processed by a 

ReLU activation layer, which introduces non-linearity and enables the model to detect 

complex patterns such as peaks, fluctuations, and feature correlations in electricity demand. 
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The core GRU layer contains 100 hidden units that capture temporal dependencies across 

time steps. It employs two gating mechanisms: an update gate, which determines how 

much of the previous information should be retained, and a reset gate, which controls how 

much of the past data should be forgotten. These mechanisms enable the GRU to combine 

memory retention and simplification, making it suitable for sequential time-series 

forecasting. The output of the GRU is passed to a fully connected layer with a single 

neuron that generates the forecasted electricity load for the next time step. This output is 

then evaluated by a regression layer using Mean Squared Error (MSE) as the performance 

metric, which is minimized during training to enhance predictive accuracy. The training 

process uses normalized input data to ensure consistent scaling and convergence. The 

model is trained using the Adam optimizer due to its adaptive learning rate capabilities, 

with key hyperparameters set as 200 epochs, a mini-batch size of 32, and an initial learning 

rate of 0.0001. Training progress is monitored using a plot that displays error reduction 

over time. Once trained, the GRU model (referred to as GRUnet) is saved for future 

prediction tasks, enabling reliable forecasting of electricity demand based on temporal and 

environmental inputs[31]. 

2.5.2 LSTM for STLF 

Long Short-Term Memory (LSTM) networks are a specialized type of Recurrent Neural 

Network (RNN) designed to effectively model sequential and time-dependent data. Unlike 

standard RNNs, which struggle with long-term dependencies due to issues like vanishing 

gradients, LSTMs introduce memory cells that enable them to retain information over 

extended periods. These cells are governed by a gating mechanism, which ensures that 

relevant information is stored, updated, or discarded dynamically. 

LSTMs are particularly well-suited for Short-Term Load Forecasting (STLF), where 

electricity demand patterns are influenced by complex temporal dependencies and external 

factors such as weather conditions and time-of-day effects. By capturing both short-term 

fluctuations and long-term trends, LSTMs provide accurate and reliable forecasts, making 

them a robust choice for time-series forecasting tasks .Figure 3 shows the structure of the 

gated recurrent unit (GRU) model used in this work. 

 

 

 

 

 

 

Figure 3: LSTM-based STLF structure 

Architecture Overview 
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The LSTM network architecture employed in this research is structured into several 

sequential layers to effectively model short-term load forecasting. The process begins with 

the input layer, which receives sequentially organized data comprising five key features per 

time step: temperature, wind speed, hour of the day, day of the week, and lagged load 

demand. This input is normalized to ensure consistent scaling and to enhance the training 

process. The data then passes through a ReLU activation layer, which introduces non-

linearity and enables the model to learn complex relationships within the dataset, such as 

peak demands and sudden fluctuations. At the core of the network lies the LSTM layer, 

which contains 100 hidden units designed to extract temporal dependencies from the 

sequence data. The LSTM architecture uses three internal gating mechanisms: the forget 

gate, which determines which information from the past should be discarded; the input 

gate, which identifies new relevant information to be stored; and the output gate, which 

regulates what part of the memory should be passed forward. This gate-based structure 

allows the model to retain long-term trends and short-term variations in energy 

consumption effectively. The output from the LSTM is then passed to a fully connected 

layer with 40 neurons that extract and refine high-level features. This is followed by a 

second fully connected layer with a single neuron, which generates the final forecasted load 

value. Finally, the regression layer compares the forecasted output to the actual load values 

using Mean Squared Error (MSE) as the evaluation metric. This error is minimized during 

training to ensure the model achieves high predictive accuracy in forecasting electricity 

demand[32]. 

2.5.3. Proposed Hybrid GRU+LSTM for STLF 

 

The proposed GRU+LSTM hybrid model combines the strengths of Gated Recurrent Unit 

(GRU) and Long Short-Term Memory (LSTM) architectures to improve short-term load 

forecasting (STLF). This integration leverages the efficiency of GRU and the advanced 

memory capabilities of LSTM to capture both short-term and long-term dependencies in 

sequential data effectively. 

 

Architecture Overview 

The proposed hybrid GRU-LSTM model for short-term load forecasting is composed of 

multiple layers, each serving a specific purpose in handling sequential time-series data. It 

begins with an input layer that accepts normalized features including temperature, wind 

speed, hour of the day, day of the week, and lagged load demand—totalling five features 

per time step. These inputs are processed through a GRU layer consisting of 100 hidden 

units, which provides sequential output for each time step and effectively learns temporal 

patterns across the sequence using update and reset gates to manage memory efficiently. 
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Following this, a dropout layer with a 20% rate is introduced to randomly deactivate 

neurons during training, helping to reduce over fitting and enhance generalization. The 

output then flows into an LSTM layer, also with 100 hidden units, which captures long-

term dependencies in the data. The LSTM employs forget, input, and output gates to 

selectively manage the information flow and preserve relevant knowledge from the 

sequence. A second dropout layer, again with a 20% rate, is used after the LSTM layer to 

further regularize the network. The extracted features are passed into two fully connected 

layers—one with 100 neurons to refine high-level patterns and another with a single neuron 

to produce the final forecasted electricity demand. This output is evaluated using a 

regression layer that computes the prediction error based on the Mean Squared Error 

(MSE), which is minimized during training to enhance model accuracy. The training 

process utilizes normalized input data (X_train and Y_train) to maintain consistent scaling 

and avoid dominance by large-valued features. The Adam optimizer is employed for its 

adaptive learning rate properties, with training conducted over 200 epochs, a mini-batch 

size of 32, and an initial learning rate of 0.0001 for stable and efficient convergence. The 

training progress is visualized through a plot that tracks error reduction across epochs, and 

upon completion, the trained hybrid model (referred to as Proposednet) is saved for use in 

future prediction tasks. Figure 4 shows the structure of the proposed model for STLF, 

based on the GRU with Long short-term memory (LSTM). [33]. Table 3 lists the parameters 

used for all models . 

 

 

        

Figure 4: STLF structure based on a GRU with LSTM 

Table 3 :  List  of Parameter used for all the models 

Hyperparameter GRU LSTM GRU+LSTM 
 

5 5 5 
Input size 

GRU units 100 - 100 

LSTM units - 100 100 

Dropout Rate - - 0.2 

Batchsize 32 32 32 
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Optimizer Adam Adam Adam 

Learning Rate 0.0001 0.0001 0.0001 

Max epoch 200 200 200 

 

 

2.5.4. Genetic Algorithm for Economic Dispatch 

In this research work, the Genetic Algorithm (GA) is employed to solve the Economic 

Dispatch (ED) problem, focusing on optimizing generator scheduling to minimize the total 

operational cost while satisfying system constraints. GA is chosen due to its effectiveness 

in handling non-linear, multi-modal optimization problems, especially when integrating 

forecasted load demands from Short-Term Load Forecasting (STLF). The key steps and 

operations of the GA as used in this study are detailed below. 

Initialization: 

Population Initialization: Randomly generate an initial population of solutions, , 

where each solution  represents a set of generator outputs: 

          … (5) 

with  constrained by generator limits: 

 
Encoding: Solutions are encoded in binary format for evolutionary operations. 

Fitness Function Evaluation: 

The fitness function evaluates each candidate solution  based on the total generation 

cost and power balance constraints: 

         … (6) 

Where: 

: Cost coefficients for generator , : Power output of generator , : Total load 

demand, : Penalty factor for infeasible solutions. 

Selection: 

Selection of Fit Parents: Using a fitness-proportional selection method, such as tournament 

selection individuals with better fitness values are chosen as parents: 

                        (7) 

Crossover: 

Crossover Operation: The selected parent solutions are combined using Simulated Binary 

Crossover (SBX) to create offspring solutions. For two parents  and , the offspring  

and  are generated as: 

             (8) 
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             (9) 

Where: 

  is the crossover distribution index, calculated based on a random value : 

            (10) 

: Crossover control parameter. 

Mutation: 

Mutation Operation: To introduce diversity, mutation is performed on offspring solutions 

using Polynomial Mutation. The mutated gene  is calculated as: 

              (11) 

Where: 

           (12) 

              (13) 

Where: 

: Mutation control parameter, 

: A small constant. 

Convergence Check: 

The algorithm checks if the optimal solution is found by evaluating the fitness function for 

the new population. If the convergence criterion is met (e.g., minimal improvement in 

fitness or maximum generations), the process stops. Otherwise, the new population 

becomes the basis for the next iteration. 

Solution: The final solution  represents the optimal generator outputs: 

Result Display: Once the GA converges, the solution is displayed, showing the optimal 

generator scheduling and corresponding total cost[34]. 

2.3 Evaluation Measures 

2.3.1 Evaluation Measures for STLF 

When evaluating the performance of predictive models, especially for time series 

forecasting, it's essential to use robust metrics. Three widely used evaluation measures are 

Mean1 Squared1 Error1 (MSE), 1 Root1 Mean1 Squared1 Error1 (RMSE), 1 and1 the1 

Coefficient1 of Determination1 (R²). And for evaluation of ED metrics are cost evaluation 

percentage, system stability index and emission rates. Below is a detailed description of 

each metric, along with their respective equations.  
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a) Mean Squared Error (MSE) 

MSE measures the average squared difference between the actual and predicted values. It 

quantifies the error by penalizing larger deviations more severely. A lower MSE indicates a 

better fit of the model to the data. The equation of this measure is given below. 

                            

(14) 

Where:  = number of observations;   = actual value;  = predicted value 

b) Root Mean Squared Error (RMSE) 

RMSE is the square root of MSE. It provides an error measure in the same units as the 

target variable, making it more interpretable. Like MSE, a lower RMSE indicates a 

better model performance. The equation of this measure is given below. 

                  

(15) 

Where:  = number of observations;  = actual value’;  = predicted value 

c) Coefficient of Determination (R²) 

R² measures the proportion of the variance in the dependent variable that is predictable 

from the independent variables. It ranges from 0 to 1, where 1 indicates a perfect fit 

and 0 indicates that the model does not explain any of the variability in the response 

variable. The equation of this measure is given below. 

    .                    

(16) 

where:  = number of observations;   = actual value;   = predicted value;   = mean 

of actual values 

2.3.2 Evaluation Metrics for Economic Dispatch (ED) 

(a) Cost Reduction Percentage 

The Cost Reduction Percentage metric evaluates the financial savings achieved by a 

given ED strategy relative to traditional or baseline methods. It is calculated as:  
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(17) 

 (b) System Stability Index 

The System Stability Index measures the stability of the grid under ED strategies by 

examining variations in power and voltage across the network. The formula is: 

     

 (18) 

 (c) Emission Rate 

The Emission Rate metric evaluates the environmental impact of a ED approach by 

calculating the amount of emissions generated per unit of energy produced. It is 

defined as: 

     (19) 

3. Results and Discussions 

Figure 6 shows the IEEE 9-bus system with two fossil-fuel-based generating units and 

one wind-based generating unit, used to test the proposed approach. We have designed 

a GUI for this research work, and the main window of the GUI is given in Fig 6. When 

the user clicks on the start button in the middle, it will initiate this research work and 

start the training of our STLF model. Figure 7 shows the window of training for our 

STLF model. All simulations and experiments were performed on a computer 

equipped with an Intel Core i7-1165G7 processor (2.80 GHz), 8 GB LPDDR4X RAM, 

Intel Iris Xe Graphics GPU, running Windows 10 Pro 64-bit, and using MATLAB 

R2024b software. 
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Figure 5: IEEE 9-bus system 

 

Figure 6: Main Window of this Research work 

 

Figure 7: Training window of STLF 
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First,1 STLF1 is1 performed1 followed1 by1 the1 ED1 to1 find1 the1 optimal1 power1 

generation1 schedule. To train the STLF model, first,  dataset is loaded into the system. Fig 8 

shows the Training graph for our STLF model. From the graph, we can see that the model is 

trained smoothly. Table 4 provides the  lists of Sample Input and output of all the method. 

Table 5 and Table 6 shows the result of our STLF model based on these measures. Figure 9 

show the graphical comparison results of load forecasting. The low value of MSE indicates 

that the average squared difference between the actual and predicted load values is minimal. 

It suggests that the STLF model has high accuracy and very small error deviations. The 

RMSE value of 0.1760 shows that the typical error in the load predictions is 0.1760 units. 

Given the scale of the data, this is a small error, which implies that the model's predictions 

are highly reliable and close to the actual values. An R² value of 0.9670 is the best possible 

outcome, indicating that the model perfectly predicts the load values. It means that there is no 

unexplained variance, and the model captures all the variability in the data, demonstrating 

superior performance 

 

Figure 8: Training graph of our STLF 
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X1(Temp)
X2(Wind 

Speed)
X3(Time)

X4(Day 

of the

week)

X5(Lag 

Features)

Actual 

Demand
GRU LSTM

Proposed 

(GRU+LSTM)

25.8993 22.1669 2 7 -1.1065 912.1755 1085.1091 1084.1292 922.9228

25.9373 22.4549 3 7 -1.4094 900.2688 1086.6687 1085.6484 878.8319

25.9575 22.1105 4 7 -1.4713 889.9538 1084.8022 1083.8301 878.8682

25.9738 21.1861 5 7 -1.5251 893.6865 1079.7263 1078.8823 883.8198

26.0341 20.062 6 7 -1.5056 879.2323 1073.4258 1072.7325 908.5511

26.6915 21.6235 7 7 -1.5809 932.4876 1082.1403 1081.2358 933.4167

27.6741 23.7753 8 7 -1.3036 1048.972 1186.9891 1190.1957 1035.0548

28.7604 24.6362 9 7 -0.69713 1167.9074 1235.0165 1236.5592 1134.7828

29.7667 25.8627 10 7 -0.077895 1257.5069 1194.8422 1191.7795 1229.5424

30.5238 26.8281 11 7 0.3886 1254.583 1325.0223 1304.4819 1304.0778

30.9818 26.6543 12 7 0.37338 1216.9004 1316.1014 1296.1781 1282.5601

31.2112 25.7542 13 7 0.17719 1202.1556 1251.803 1239.7352 1224.6045

31.1565 24.9022 14 7 0.10042 1197.2616 1211.7626 1208.5515 1193.7446

30.8168 24.2145 15 7 0.074936 1169.0034 1191.6389 1190.562 1179.4255

30.0572 23.7668 16 7 -0.072189 1136.7054 1157.7365 1155.5651 1156.5018

28.8025 22.7551 17 7 -0.24035 1101.9447 1183.2767 1166.4121 1144.7209

27.3664 20.6788 18 7 -0.42133 1107.0406 1189.5717 1179.7048 1126.9811

26.6139 19.9264 19 7 -0.3948 1142.1548 1183.234 1174.2887 1128.4801

26.2673 19.4284 20 7 -0.21198 1097.2334 1174.3468 1166.4786 1149.239

26.0835 19.5695 21 7 -0.44586 1074.6544 1164.1569 1157.0177 1097.8817

25.9563 19.6599 22 7 -0.56341 1041.3244 1152.2863 1145.9584 1064.1124

25.8613 19.703 23 7 -0.73695 999.634 1139.338 1133.8976 1020.1225

25.7692 19.7004 0 1 -0.954 968.0526 1038.0598 1046.1331 922.7651

25.6818 19.8933 1 1 -1.1184 944.0556 1038.7549 1046.7777 898.0658

Table 4:  List of Sample Input  and output of  all  the methods 

Table 5: Evaluation comparison 

Figure 9 shows the comparison between actual load , forecast load using proposed, GRU 

and LSTM model and the proposed method is closer to actual load as compared to other 

methods. 

Model Name 
Values 

MSE RMSE R² 

Proposed model 0.0321 0.1792 0.9658 

GRU 0.1332 0.365 0.8579 

LSTM 0.1352 0.3678 0.8558 
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                                                 Figure 9: Comparison Graph 

Table 6: Performance value of training and testing data 

Metric Training Data Testing Data 

MSE 0.03 0.0321 

RMSE 0.173 0.1792 

R² 0.998 0.9658 
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Time 

Period
Temperature

Wind 

speed

Week of 

Day
Load

Generator 

1

Generator 

2

Wind 

turbine

Fuel 

Cost

Emissio

n rate

Power 

Loss

Total 

Cost

1 25.899 7.441 7 922.92 440.06 402.86 78.885 5900.8 2273.6 5.12 4499.7

2 25.937 7.908 7 878.83 362.1 436.73 79.427 5572.7 2063.3 4.85 4225.4

3 25.958 7.3495 7 878.87 390.75 408.12 79.955 5589 2070.8 4.9 4238.1

4 25.974 5.8504 7 883.82 397.85 405.97 79.07 5624.7 2093.4 4.95 4268

5 26.034 4.0275 7 908.55 408.33 420.22 79.922 5787.9 2195.2 5.2 4403.6

6 26.691 6.5597 7 933.42 432.45 420.97 79.07 5961.7 2308.2 5.45 4549.3

7 27.674 10.049 7 1035.1 471.65 483.4 81.311 6639.3 2757.1 6.12 5119.9

8 28.76 11.445 7 1134.8 525.75 529.03 79.326 7325.8 3245.2 6.65 5707.7

9 29.767 13.434 7 1229.5 574.34 575.2 78.377 7986.4 3741.9 7.2 6281.1

10 30.524 15 7 1304.1 622.45 601.63 79.894 8520.6 4165.2 7.65 6751.1

11 30.982 14.718 7 1282.6 602.43 600.13 78.38 8361 4035.3 7.52 6609.7

12 31.211 13.258 7 1224.6 563.31 581.3 78.838 7945.7 3709.2 7.18 6245.2

13 31.157 11.877 7 1193.7 575.84 537.9 81.715 7750.8 3568 6.98 6077.5

14 30.817 10.761 7 1179.4 554.5 544.93 80.829 7640 3479.5 6.9 5979.9

15 30.057 10.036 7 1156.5 549.33 527.18 78.572 7485.5 3366.1 6.75 5846.5

16 28.802 8.3949 7 1144.7 532.58 532.14 81.69 7395.9 3296.9 6.65 5768.2

17 27.366 5.0277 7 1127 557.44 489.54 79.857 7299.7 3240.2 6.52 5689.3

18 26.614 3.8075 7 1128.5 560.76 487.72 80.732 7312.3 3251 6.53 5700.6

19 26.267 3 7 1149.2 539.2 530.04 80.839 7430.3 3323.4 6.75 5798.3

20 26.084 3.2288 7 1097.9 526.67 491.21 81.944 7085.9 3077.3 6.4 5503

21 25.956 3.3754 7 1064.1 494.01 490.1 80.843 6842.7 2899.8 6.2 5293.5

22 25.861 3.4452 7 1020.1 439.88 500.24 79.227 6523.1 2678 5.95 5021.4

23 25.769 3.441 1 922.77 415.62 427.15 78.837 5882.8 2255.5 5.5 4482.7

24 25.682 3.754 1 898.07 399.18 418.88 79.907 5715.6 2149.4 5.35 4343.3

Table 7: ED Generator output and total cost 

 

Table 7 lists data related to power generation and associated costs over 24 hours, with 

columns detailing various parameters such as temperature readings (`Temperature` and 

`Wind speed`), the day of the week (`WeekofDay`), power demand (`Load`), and outputs 

from different energy sources (`Generator 1`, `Generator 2`, and `Wind Turbine`). It also 

includes economic and environmental metrics such as fuel cost emission rate and total cost 

for each hour. Notably, the load varies between 878.83 MW and 1304.1 MW, while wind 

output remains relatively stable. The costs highlight the operational expenses, with total costs 

peaking at 6751.1 for hour 10 and reducing to 4343.4 at hour 24. This table could be 

instrumental in analyzing cost-efficiency and optimizing energy generation strategies.  

Figure 10 shows the convergence characteristics of a Genetic Algorithm (GA) for 1 hour. The 

line shows a general downward trend, indicating that the adaptation function value decreases 

as the number of generations increases. This suggests that the GA is improving its solutions 

over time, with lower values of the adaptation function being better in this context. 
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Figure 10: Convergence Characteristics of GA 

Figure 11 show the fuel cost for 24 hours. The fuel cost starts at a moderate level, then 

increases during the middle hours, peaking around hours 8–12. After the peak, the cost 

gradually decreases. This trend indicates that fuel consumption or generation requirements 

are highest during the mid-day period, potentially due to increased demand. 

 

Figure 11: Fuel cost graph 

Figure 12 shows the percentage of reduction in fuel cost for 24 hours. The graph shows 

that the energy system maintains significant fuel cost reductions throughout the day, 

likely leveraging renewable energy sources or operational strategies to minimize 

reliance on costly fuel-based generation. The consistency indicates robust energy 
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optimization, though variations in reduction percentages highlight periods where the 

system efficiency could potentially be improved further. 

 

Figure 12: Percentage of Reduction of Fuel cost 

Figure 13 shows the total cost of generators for 24 hours. The overall cost trend 

resembles the fuel cost graph, with a peak during mid-day hours (8–12) and lower 

costs during early morning and late-night hours. This implies that fuel cost is a 

significant contributor to the total cost, which could also include operational and 

maintenance expenses. 

 

Figure 13: Total Cost Graph 

Figure 14 shows the percentage of saving in total cost for 24 hours. The cost savings are 

highest during the early hours (1–6) and late hours (22–24), reaching above 60%. During 



   Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026 

  

[PANTA & ADHIKARI] 23 

 

mid-day (9–16), savings drop significantly, with the lowest savings occurring during the 

hours of peak fuel cost.  

 

Figure 14: Percentage of saving of Total Cost 

Extended Experimental Validation 

To further strengthen the study, additional baseline models and temporal analyses were 

incorporated. [35]. 

Baseline Models: In addition to GRU, LSTM, and the proposed GRU+LSTM, forecasting 

results were compared against ARIMA, Multiple Linear Regression (MLR), Support 

Vector Regression (SVR), Random Forest (RF), and a Persistence model. Table 6 

summarizes the comparative performance in terms of RMSE, MAPE, and R2. The 

proposed GRU+LSTM model achieved the lowest error values, clearly outperforming both 

classical statistical and machine-learning baselines. [36] 

Seasonal and Temporal Analysis: Forecasting performance was further analyzed under 

different conditions-day vs night, weekday vs weekend, and across seasonal variations 

(summer vs winter).  Figure 15 shows that  the proposed GRU+LSTM model maintained 

robust accuracy across all cases, demonstrating its suitability for real-world power system 

operation. 
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Figure 15: Comparison of forecasting accuracy using different methods 

 

4. Conclusions 

This study presented an integrated framework combining Short-Term Load Forecasting 

(STLF) with Economic Dispatch (ED) using a hybrid GRU+LSTM deep learning model 

and a Genetic Algorithm-based optimizer. The model was trained on the publicly available 

Panama Short-Term Load Forecasting dataset, incorporating input features such as 

temperature, wind speed, time of day, day of the week, and historical demand. Forecasting 

performance was rigorously evaluated using MSE, RMSE, and R². Simulation results on 

the IEEE 9-bus system showed that the proposed hybrid model significantly outperformed 

standalone GRU and LSTM approaches, achieving an MSE of 0.0310, RMSE of 0.1760, 

and R² of 0.9670. The integration of forecasted demand into the ED framework further 

minimized fuel, emission, and wind generation costs, confirming the effectiveness of the 

proposed approach for reliable and economical power system operation. The novelty of this 

work lies in combining accurate deep learning-based load forecasting with a multi-

objective ED formulation that simultaneously addresses operational costs and 

environmental considerations. Future work will extend this framework to larger test 

systems, incorporate renewable energy variability, and explore advanced metaheuristic 

optimizers to further enhance scalability and robustness. 
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