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Abstract

Accurate short-term load forecasting (STLF) and optimal generation scheduling are essential
for reliable and economic power system operation. This paper proposes a hybrid deep
learning model combining Gated Recurrent Unit (GRU) and Long Short-Term Memory
(LSTM) networks for STLF, integrated with a Genetic Algorithm (GA)-based Economic
Dispatch (ED) framework. The model is trained and validated using the publicly available
Panama Short-Term Load Forecasting dataset, which provides hourly electricity demand
along with meteorological variables. Input features include temperature, wind speed, time of
day, day of the week, and historical demand. Forecasting performance is evaluated using
Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and the Coefficient of
Determination (R?). Simulations on the IEEE 9-bus system demonstrate that the proposed
GRU+LSTM model achieves superior performance compared to standalone GRU and
LSTM, with an MSE of 0.0310, RMSE of 0.1760, and R? of 0.9670. Furthermore, the
forecasted demand is used in the ED problem, formulated as a multi-objective function
incorporating fuel cost, emission cost, and wind generation cost. Results confirm that the
proposed integrated approach enhances forecasting accuracy and reduces operational costs,
making it effective for data-driven power system operation.
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1. Introduction

The increasing integration of renewable energy sources into modern power systems has
introduced both opportunities and challenges. Renewable energy sources such as wind and
solar exhibit inherent variability and uncertainty, making it difficult to maintain grid
stability and ensure reliable power generation. These fluctuations necessitate advanced
management strategies to optimize economic dispatch (ED) while accommodating
renewable generation constraints. Traditional economic dispatch models were designed for
stable and predictable energy generation; however, the intermittent nature of renewable
energy sources requires more flexible and adaptive approaches [1], [2],[3].
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Economic Dispatch (ED) plays a crucial role in power system management by determining
the optimal distribution of generation resources to meet load demands while minimizing
operational costs and emissions. Unlike classical ED, which operates on a static basis,

modern ED adjusts generator outputs in response to real-time fluctuations in load and
generation availability. Various optimization techniques, including Genetic Algorithms
(GA), Particle Swarm Optimization (PSO), and Differential Evolution (DE), have been
applied to address the complexities associated with ED in renewable-rich grids [4],[5],[6].
Studies have demonstrated that GA-based ED models effectively optimize resource
allocation, minimize generation costs, and reduce emissions [7],[8],[9].
Short-Term Load Forecasting (STLF) is a fundamental component of modern power
systems, enabling accurate demand prediction for efficient grid operation. Traditional
STLF methods relied on statistical techniques; however, recent advancements in machine
learning, particularly deep neural networks (DNNs), have significantly improved
forecasting accuracy [10],[11],[12]. Recurrent Neural Networks (RNNs) such as Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks have
demonstrated superior performance in capturing temporal dependencies in load demand
data. Studies have shown that LSTM-based models outperform conventional statistical
models in STLF applications, leading to more reliable demand predictions and optimized
generation scheduling [13],[14],[15].
Integrating STLF with ED presents a comprehensive solution to managing real-time energy
demand and generation schedules. The use of GA in ED optimization ensures an adaptive
approach to minimizing generation costs while addressing the variability of renewable
energy sources. Research has shown that hybrid models combining LSTM-based STLF
with GA-based ED provide a promising solution by enhancing grid reliability and
economic efficiency [16],[17],[18].
Despite advancements in STLF and ED optimization, several challenges remain. Data
quality and availability significantly impact forecasting accuracy, and computational
complexity can limit real-time implementation. Additionally, the variability of renewable
energy sources introduces further uncertainty in economic dispatch planning [19],[20],[21].
Several studies have explored these challenges. Research by [22] highlighted the
importance of real-time data acquisition for improving forecasting accuracy, whereas [23]
investigated computational efficiency issues in machine learning-based forecasting.
Additionally, several studies have focused on improving short-term load forecasting
accuracy through advanced deep learning—based approaches and hybrid optimization
techniques [24], [25].
Studies by [26] and [27] provided insights into grid reliability concerns caused by
renewable energy fluctuations, emphasizing the need for robust optimization techniques.
Research by [28],[29],[30] explored hybrid forecasting-dispatch frameworks,
demonstrating their effectiveness in reducing operational uncertainties.
This study presents an integrated approach that combines LSTM and GRU networks for
improved STLF accuracy with a GA-based ED optimization framework. By leveraging
machine learning for demand prediction and evolutionary algorithms for economic
dispatch, the proposed methodology aims to enhance power system stability, reduce
operational costs, and facilitate the integration of renewable energy sources into modern
-
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grids. The study contributes to ongoing research efforts in power system optimization by
demonstrating the effectiveness of Al-driven forecasting and optimization models in
managing the complexities of renewable energy integration.

2. Methodology

2.1 Research Framework
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Figure 1: Proposed Research framework
Figure 1 shows the proposed research framework that provides a structured process for
optimizing energy dispatch in a power system by integrating Short-Term Load Forecasting

(STLF) using Neural Networks (GRU-LSTM) and solving the Economic Dispatch (ED)
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problem using Genetic Algorithms (GA).Initially, the dataset is prepared by selecting
features and filling missing data. The dataset is then split into training and testing sets. A
GRU-LSTM model is trained on the data to predict the short-term demand and evaluated
using performance metrics like MSE, RMSE, and R2. Once the forecasting model is tested
and saved, it is used to predict future demand.

Next, ED is started by defining key parameters for thermal and wind generators. The
predicted demand from the forecasting model is then used in the ED process. GA is used
for optimizing generator scheduling, starting with the initialization of a random population.
The GA iterates through selection, crossover, and mutation steps to evolve better solutions
until the ED optimization converges on a solution. The final ED results are then displayed,
showing an optimal strategy for energy dispatch based on forecasted demand. The network
model in this study represents a power transmission system comprising conventional fossil
fuel-based generators and wind power generators. The focus is on integrating Economic
Dispatch (ED) with Short-Term Load Forecasting (STLF) to achieve optimal power
generation scheduling while minimizing operational costs and ensuring grid stability. This
approach is particularly important in scenarios where renewable energy sources like wind
contribute significantly to the power mix, introducing variability and uncertainty into the
system. The primary objective is to minimize the total operational cost, which is modeled
as a weighted combination of three components: fuel cost, wind power generation cost, and

emission cost. The objective function is defined

T N
minFy = ZZ A FC;, [P;-,;) +AzEci,s[Pi,s)

t=1i=1

T 4;C(P,, ;)] (1)
as:

where:

M=0.65: Highest priority is given to fuel cost minimization due to its significant impact on
operational expenses.

A2=0.29: Emission cost is assigned moderate priority to balance environmental
sustainability with economic considerations.

A3=0.06: Wind power generation cost is given the lowest priority as wind energy is

generally cost-effective, but operational variability must still be considered.
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The detailed objective functions are given from equation (2) to (4)

1. Fuel cost function: The fuel cost is modeled as a quadratic function, commonly used
in economic dispatch problems:

FCE,E[PE,!:) =a; +b,P;, + CEPEE + |di5f"{ei(f]mm - Pi’,!:)}l 2

it
Here,
a: Fixed Cost Coefficient : Represents the constant cost incurred regardless of the

power output, such as startup or no-load costs.

b: Linear Cost Coefficient: Represents the cost per unit of power generated, assuming a

linear increase with output.

c: Quadratic Cost Coefficient: Models the nonlinear increase in cost with higher power
output due to inefficiencies at higher operating levels.

d: Amplitude of Valve-Point Effect Coefficient: Represents the magnitude of cost
oscillations caused by the valve-point effect in thermal generators.

e: Frequency of Valve-Point Effect Coefficient: Represents the frequency of the
oscillations in the cost function due to valve-point effects.

2. Emission cost function: The emission cost function is modeled as a quadratic equation,

incorporating coefficients that represent different emission factors:
EC;, [Pi,s) = 0;(P)? + 1Py, +6;

3)
Here,
o: Quadratic Emission Coefficient: Represents the non-linear relationship between
generator power output and emissions (e.g., CO2 emissions).
1. Linear Emission Coefficient: Models the direct proportionality of emissions with
power output
o: Fixed Emission Offset: Represents baseline emissions that occur regardless of
generator output.
3. Wind power generation cost: The cost associated with wind power generation is

expressed as a function of wind power output.

c(P,;.)=al’P, . +G°P, .

Wit
4)
Here,

ar’: Linear Wind Cost Coefficient: Reflects operational costs that scale with wind

power output, such as maintenance or ancillary services.

G": Grid Integration Cost Coefficient: Represents the cost associated with integrating

variable wind power into the grid, such as balancing or reserve requirements.
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2.2 Dataset Description and Statistical Summary
The ‘short term Electricity Load Forecasting-Panama’ dataset, released in 2023 and
publicly available on Kaggle, is used in this study.It provides hourly electricity load
data along with associated meteorological variables, making it highly suitable for
developing Short-Term Load Forecasting (STLF) models.
Dataset Features:
Date/Hour - timestamp of each record.
Load Demand (MW) -hourly electricity consumption in Panama.
Temperature (°C) - environmental temperature.
Humidity (%) - relative humidity.
Wind Speed (m/s) - wind velocity at the given hour.
Derived Features - hour of the day, day of the week, and lagged demand values were
generated for improved predictive performance.
Data Coverage:
The dataset spans multiple years with hourly resolution, ensuring sufficient granularity
to capture both short-term variations and seasonal load trends
Preprocessing:
Missing values were handled using linear interpolation.
Normalization was applied to scale features into the [0,1] range.

Feature engineering included lagged demand, day-of-week, and hour-of-day encodings to
strengthen temporal learning. Table 1 lists the statistical summary of the input features
used in the proposed load forecasting and economic dispatch framework.

Table 1: Statistical Summary of Input Features

Feature Mean Std. Dev. Min Max
Load Demand (MW) 1202.16 123.97 898.06 1405.77
Temperature (°C) 25.77 1.2 23.76 31.21
Wind Speed (m/s) 19.7 2.02 15.75 25.95
Hour of the Day 12 6.92 0 23

Day of the Week 3.9 2 1 7
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2.3 Hyperparameter Tuning Methodology

To ensure robust forecasting accuracy, the hyperparameters of GRU, LSTM, and
GRU+LSTM models were tuned systematically. A grid search approach was adopted over
a predefined search space, with evaluation performed on a validation set using MSE,RMSE
and coefficient of determination as the criterion.
Learning Rate: [0.001, 0.0005, 0.0001]; Batch Size: [16, 32, 64]; Epochs: [100, 200, 300];
Dropout Rate: [0.1, 0.2, 0.3]; Hidden Units: [50, 100, 150]
The final selection (200 epochs, batch size = 32, learning rate = 0.0001, 100 hidden units,
dropout = 0.2 for hybrid) was based on the lowest RMSE on validation data. The Adam
optimizer was employed for all models due to its adaptive learning rate properties.
2.4 Genetic Algorithm Implementation
The Economic Dispatch problem was solved using a Genetic Algorithm (GA) owing to its
effectiveness in handling nonlinear, multi-objective optimization problems. To ensure
solution reliability, the GA was implemented with well-defined convergence criteria and
stopping conditions. The algorithm was terminated when either of the following conditions
was met:
1. The maximum number of generations was reached (200).
2. The relative improvement in the best fitness value remained below 10 for 20

consecutive generations, indicating convergence.
Table 2 lists the parameters used for the genetic algorithm in this study.These values were
selected based on preliminary experiments and validated for stability and accuracy in the
IEEE 9-bus test system.

Table 2: List of GA Parameters Used in Economic Dispatch

Parameter Value Description
Population 50 Number of candidate solutions
Size per generation
Maximum Upper limit for evolutionary
. 200 . .
Generations iterations
) Tournament ]
Selection Selects best candidates for
Method reproduction
Crossover SBX (Simulated Binary Crossover) Preserves (hversrty while
Operator combining parents
Crossover 08 Probability of crossover
Probability ’ between chromosomes
Mutation . Introduces small random
Polynomial -
Operator variations
Mutation 01 Probability of mutation per
Probability ' gene
o
Elitism Enabled (5%) Preserves top 3% best
solutions each generation
Stopping Max generations OR improvement < 107°
g . i Ensures convergence
Criteria for 20 iterations
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Convergence Analysis

To evaluate convergence behavior, the variation of the best fitness value (total generation
cost) across generations was recorded. As shown in Figure X, the GA converged steadily,
with significant improvement observed in the first 50 generations and near-stable optimal
values achieved by generation 150. This indicates that the chosen parameter configuration

ensured both exploration and exploitation, avoiding premature convergence.
2.5 Proposed Al-Based Methodology

This work implements Al-based techniques for solving the ED and STLF problems.Two
Al techniques were selected for solving STLF and ED problems, viz. DNN and GA
respectively.

2.5.1 GRU for STLF

The Gated Recurrent Unit (GRU) is an advanced neural network architecture designed to
process sequential data, particularly time-series data such as Short-Term Load Forecasting
(STLF). GRU belongs to the family of Recurrent Neural Networks (RNNs) and was
introduced as a simplified and computationally efficient alternative to Long Short-Term
Memory (LSTM) networks. Unlike standard RNNs, which suffer from vanishing gradient
problems, GRUs incorporate gating mechanisms to manage the flow of information, making
them highly suitable for capturing temporal dependencies in sequential data. The GRU
architecture is characterized by its use of two gates: the update gate and the reset gate, which
work together to control how much information from the past is retained or forgotten. This
mechanism allows GRUs to model both short-term and long-term dependencies in time-series
data effectively, while requiring fewer parameters than LSTMs. In this research, a GRU-
based model is implemented to forecast electricity load demand based on historical data and
additional features. Figure 2 shows the structure of the gated recurrent unit (GRU) model
used in this work.

Gated Recurrent

- FullyConnected Laver
Uinit Layver -

Input Laver

Relu Layer

Regression Laver
Figure 2: GRU-based STLF structure

Architecture Overview

The GRU network used in this research comprises five main layers tailored for efficient
short-term load forecasting. The input layer receives normalized sequential input features,
which include temperature, wind speed, hour of the day, day of the week, and lagged load
demand—amounting to five features per time step. These inputs are then processed by a
ReLU activation layer, which introduces non-linearity and enables the model to detect
complex patterns such as peaks, fluctuations, and feature correlations in electricity demand.

I
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The core GRU layer contains 100 hidden units that capture temporal dependencies across
time steps. It employs two gating mechanisms: an update gate, which determines how
much of the previous information should be retained, and a reset gate, which controls how
much of the past data should be forgotten. These mechanisms enable the GRU to combine
memory retention and simplification, making it suitable for sequential time-series
forecasting. The output of the GRU is passed to a fully connected layer with a single
neuron that generates the forecasted electricity load for the next time step. This output is
then evaluated by a regression layer using Mean Squared Error (MSE) as the performance
metric, which is minimized during training to enhance predictive accuracy. The training
process uses normalized input data to ensure consistent scaling and convergence. The
model is trained using the Adam optimizer due to its adaptive learning rate capabilities,
with key hyperparameters set as 200 epochs, a mini-batch size of 32, and an initial learning
rate of 0.0001. Training progress is monitored using a plot that displays error reduction
over time. Once trained, the GRU model (referred to as GRUnet) is saved for future
prediction tasks, enabling reliable forecasting of electricity demand based on temporal and
environmental inputs[31].

2.5.2 LSTM for STLF

Long Short-Term Memory (LSTM) networks are a specialized type of Recurrent Neural
Network (RNN) designed to effectively model sequential and time-dependent data. Unlike
standard RNNs, which struggle with long-term dependencies due to issues like vanishing
gradients, LSTMs introduce memory cells that enable them to retain information over
extended periods. These cells are governed by a gating mechanism, which ensures that
relevant information is stored, updated, or discarded dynamically.

LSTMs are particularly well-suited for Short-Term Load Forecasting (STLF), where
electricity demand patterns are influenced by complex temporal dependencies and external
factors such as weather conditions and time-of-day effects. By capturing both short-term
fluctuations and long-term trends, LSTMs provide accurate and reliable forecasts, making
them a robust choice for time-series forecasting tasks .Figure 3 shows the structure of the
gated recurrent unit (GRU) model used in this work.

FullyConnected Layer

Relu Layer _—— -

Input Layer

LSTM Layer "~ Regression Layer

Figure 3: LSTM-based STLF structure

Architecture Overview
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The LSTM network architecture employed in this research is structured into several

sequential layers to effectively model short-term load forecasting. The process begins with
the input layer, which receives sequentially organized data comprising five key features per
time step: temperature, wind speed, hour of the day, day of the week, and lagged load
demand. This input is normalized to ensure consistent scaling and to enhance the training
process. The data then passes through a ReLU activation layer, which introduces non-
linearity and enables the model to learn complex relationships within the dataset, such as
peak demands and sudden fluctuations. At the core of the network lies the LSTM layer,
which contains 100 hidden units designed to extract temporal dependencies from the
sequence data. The LSTM architecture uses three internal gating mechanisms: the forget
gate, which determines which information from the past should be discarded; the input
gate, which identifies new relevant information to be stored; and the output gate, which
regulates what part of the memory should be passed forward. This gate-based structure
allows the model to retain long-term trends and short-term variations in energy
consumption effectively. The output from the LSTM is then passed to a fully connected
layer with 40 neurons that extract and refine high-level features. This is followed by a
second fully connected layer with a single neuron, which generates the final forecasted load
value. Finally, the regression layer compares the forecasted output to the actual load values
using Mean Squared Error (MSE) as the evaluation metric. This error is minimized during
training to ensure the model achieves high predictive accuracy in forecasting electricity
demand[32].

2.5.3. Proposed Hybrid GRU+LSTM for STLF

The proposed GRU+LSTM hybrid model combines the strengths of Gated Recurrent Unit
(GRU) and Long Short-Term Memory (LSTM) architectures to improve short-term load
forecasting (STLF). This integration leverages the efficiency of GRU and the advanced
memory capabilities of LSTM to capture both short-term and long-term dependencies in
sequential data effectively.

Architecture Overview

The proposed hybrid GRU-LSTM model for short-term load forecasting is composed of
multiple layers, each serving a specific purpose in handling sequential time-series data. It
begins with an input layer that accepts normalized features including temperature, wind
speed, hour of the day, day of the week, and lagged load demand—totalling five features
per time step. These inputs are processed through a GRU layer consisting of 100 hidden
units, which provides sequential output for each time step and effectively learns temporal
patterns across the sequence using update and reset gates to manage memory efficiently.

.|
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Following this, a dropout layer with a 20% rate is introduced to randomly deactivate
neurons during training, helping to reduce over fitting and enhance generalization. The
output then flows into an LSTM layer, also with 100 hidden units, which captures long-

term dependencies in the data. The LSTM employs forget, input, and output gates to
selectively manage the information flow and preserve relevant knowledge from the
sequence. A second dropout layer, again with a 20% rate, is used after the LSTM layer to
further regularize the network. The extracted features are passed into two fully connected
layers—one with 100 neurons to refine high-level patterns and another with a single neuron
to produce the final forecasted electricity demand. This output is evaluated using a
regression layer that computes the prediction error based on the Mean Squared Error
(MSE), which is minimized during training to enhance model accuracy. The training
process utilizes normalized input data (X train and Y _train) to maintain consistent scaling
and avoid dominance by large-valued features. The Adam optimizer is employed for its
adaptive learning rate properties, with training conducted over 200 epochs, a mini-batch
size of 32, and an initial learning rate of 0.0001 for stable and efficient convergence. The
training progress is visualized through a plot that tracks error reduction across epochs, and
upon completion, the trained hybrid model (referred to as Proposednet) is saved for use in
future prediction tasks. Figure 4 shows the structure of the proposed model for STLF,
based on the GRU with Long short-term memory (LSTM). [33]. Table 3 lists the parameters
used for all models .

Gated Recurrent
Unit Layer

FullyConnected Layer

Dropout_Lay i,

Input Layer

LSTM Layer “" Regression Layer

Figure 4: STLF structure based on a GRU with LSTM

Table 3 : List of Parameter used for all the models

Hyperparameter GRU LSTM GRU+LSTM
: 5 5 5

Input size

GRU units 100 - 100

LSTM units - 100 100

Dropout Rate - - 0.2

Batchsize 32 32 32

I
[PANTA & ADHIKARI] 11



Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026

Optimizer Adam Adam Adam
Learning Rate 0.0001 0.0001 0.0001
Max epoch 200 200 200

2.5.4. Genetic Algorithm for Economic Dispatch

In this research work, the Genetic Algorithm (GA) is employed to solve the Economic
Dispatch (ED) problem, focusing on optimizing generator scheduling to minimize the total
operational cost while satisfying system constraints. GA is chosen due to its effectiveness
in handling non-linear, multi-modal optimization problems, especially when integrating
forecasted load demands from Short-Term Load Forecasting (STLF). The key steps and
operations of the GA as used in this study are detailed below.
Initialization:

Population Initialization: Randomly generate an initial population of solutions, P'®

2

where each solution x, represents a set of generator outputs:

ple = e, v xyt, %, ={Pey.Poss s Py} ...(5
with P; constrained by generator limits:
Péﬂ.i?! ,::_:: PG} E P&?HI

Encoding: Solutions are encoded in binary format for evolutionary operations.
Fitness Function Evaluation:
The fitness function evaluates each candidate solution x based on the total generation

cost and power balance constraints:
Fx) = E;Ll(ajpéj + bjFG}' + c}.) + ’1| 11'2:1 Fej — FD| ... (6)

Where:
a;b;c;: Cost coefficients for generator j, P;;: Power output of generator j, P,: Total load

demand, A: Penalty factor for infeasible solutions.

Selection:
Selection of Fit Parents: Using a fitness-proportional selection method, such as tournament
selection individuals with better fitness values are chosen as parents:
Probability of selection for x; = —vji (7)
g i EJF{:'_ lexk}
Crossover:
Crossover Operation: The selected parent solutions are combined using Simulated Binary

Crossover (SBX) to create offspring solutions. For two parents x; and x,, the offspring ¥,

and y, are generated as:

Fj.'l = 0'5[[1 _Jgrr )xj.'l + [1 +18rr )xf] (3
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F}': - 0'5[[1 + JG:I )xj + [1 B ﬁq)sz] )

Where:
B, 1s the crossover distribution index, calculated based on a random value u;:

(20 )7e7s, ifu; <05
By = ; (10)

1 Mo+l |
[:[1_3”} ,Ifu,}- = 0.5

7. Crossover control parameter.

Mutation:
Mutation Operation: To introduce diversity, mutation is performed on offspring solutions
using Polynomial Mutation. The mutated gene x'; is calculated as:

x} =x; + Ax; (1)
Where:
S x. —x™™) ifu. <05
&x}'z { }( :-sz.:r ’ ) f ! (12)
6}-[:{}- — x}-), if u; > 05
8, = [2u, + (1 — 2u,)(1— A)m* iz — 1 (13)

Where:
1,, - Mutation control parameter,

A: A small constant.

Convergence Check:

The algorithm checks if the optimal solution is found by evaluating the fitness function for
the new population. If the convergence criterion is met (e.g., minimal improvement in
fitness or maximum generations), the process stops. Otherwise, the new population
becomes the basis for the next iteration.

Solution: The final solution x* = arg I-:‘lEiE’l F(x) represents the optimal generator outputs:

Result Display: Once the GA converges, the solution is displayed, showing the optimal
generator scheduling and corresponding total cost[34].

2.3 Evaluation Measures
2.3.1 Evaluation Measures for STLF

When evaluating the performance of predictive models, especially for time series
forecasting, it's essential to use robust metrics. Three widely used evaluation measures are
Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and the
Coefficient of Determination (R?). And for evaluation of ED metrics are cost evaluation
percentage, system stability index and emission rates. Below is a detailed description of
each metric, along with their respective equations.

.|
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a) Mean Squared Error (MSE)

MSE measures the average squared difference between the actual and predicted values. It
quantifies the error by penalizing larger deviations more severely. A lower MSE indicates a
better fit of the model to the data. The equation of this measure is given below.

MSE = 3%, (y; — )
(14)
Where: n = number of observations; v, = actual value; ¥, = predicted value

b) Root Mean Squared Error (RMSE)

RMSE is the square root of MSE. It provides an error measure in the same units as the
target variable, making it more interpretable. Like MSE, a lower RMSE indicates a
better model performance. The equation of this measure is given below.

[
_ 59
RMSE = T2y (Vi = 7))

(15)

Where: n = number of observations; v, = actual value’; ¥, = predicted value

c) Coefficient of Determination (R?)

R? measures the proportion of the variance in the dependent variable that is predictable
from the independent variables. It ranges from 0 to 1, where 1 indicates a perfect fit
and 0 indicates that the model does not explain any of the variability in the response
variable. The equation of this measure is given below.

R: —_ l _ .E;l:-l:.‘?—[_.f[}z
7 iz 01— F)®

(16)

where: n = number of observations; v, = actual value; ¥, = predicted value; ¥ = mean
of actual values

2.3.2 Evaluation Metrics for Economic Dispatch (ED)

(a) Cost Reduction Percentage

The Cost Reduction Percentage metric evaluates the financial savings achieved by a
given ED strategy relative to traditional or baseline methods. It is calculated as:

[PANTA & ADHIKARI] 14
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Costrradirional ~ COStDED -based ) % 100

Costrraditional

Cost Reduction Percentage = (
(17)
(b) System Stability Index

The System Stability Index measures the stability of the grid under ED strategies by
examining variations in power and voltage across the network. The formula is:

1 N 1
Stability Index = 2., | o ‘ +E}.=1 .

(18)

(c) Emission Rate

The Emission Rate metric evaluates the environmental impact of a ED approach by
calculating the amount of emissions generated per unit of energy produced. It is
defined as:

Total Emissions

Emission Rate = (19)
Total Energy Generated

3. Results and Discussions

Figure 6 shows the IEEE 9-bus system with two fossil-fuel-based generating units and
one wind-based generating unit, used to test the proposed approach. We have designed
a GUI for this research work, and the main window of the GUI is given in Fig 6. When
the user clicks on the start button in the middle, it will initiate this research work and
start the training of our STLF model. Figure 7 shows the window of training for our
STLF model. All simulations and experiments were performed on a computer
equipped with an Intel Core 17-1165G7 processor (2.80 GHz), 8 GB LPDDR4X RAM,
Intel Iris Xe Graphics GPU, running Windows 10 Pro 64-bit, and using MATLAB
R2024b software.

C_____________________________________________________________________________
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Figure 5: IEEE 9-bus system
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Figure 6: Main Window of this Research work
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Figure 7: Training window of STLF
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First, STLF is performed followed by the ED to find the optimal power

generation schedule. To train the STLF model, first, dataset is loaded into the system. Fig 8
shows the Training graph for our STLF model. From the graph, we can see that the model is
trained smoothly. Table 4 provides the lists of Sample Input and output of all the method.
Table 5 and Table 6 shows the result of our STLF model based on these measures. Figure 9
show the graphical comparison results of load forecasting. The low value of MSE indicates
that the average squared difference between the actual and predicted load values is minimal.
It suggests that the STLF model has high accuracy and very small error deviations. The
RMSE value of 0.1760 shows that the typical error in the load predictions is 0.1760 units.
Given the scale of the data, this is a small error, which implies that the model's predictions
are highly reliable and close to the actual values. An R? value of 0.9670 is the best possible
outcome, indicating that the model perfectly predicts the load values. It means that there is no
unexplained variance, and the model captures all the variability in the data, demonstrating

superior performance

Training Progress (30-Dec-2024 09:43:11) Training iteration 155514 of 240200.
I
2 Training Time
Start time: 30-Dec-2024 09:43:11
15 Elapsed time 17 min 10 sec
B Training Cycle
z Epoch 130 0f 200
Iterations per epoch: 1201
ok [ | i | | (UL ’ K \ ‘ | ‘ | Maximum iterations 240200
|
| { | | T Validation
Do é 1‘0 1‘5 Frequency: N/A
Iteration x10* 5
Other Information
Hardware resource: Single CPU

Learning rate schedule: Constant

Learning rate 0.0001

Iteration x10°

RMSE

Figure 8: Training graph of our STLF

I
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Table 4: List of Sample Input and output of all the methods

X2 (Wind . X4(Day X5(La Actual Proposed
X1(Temp) Spe( ey X3(Time) :’vfe . k)the Fe ;tui s)  Demand GRU LST™M (GRpU+LSTM)
25.8993 22.1669 2 7 -1.1065 912.1755 1085.1091 1084.1292 922.9228
25.9373 22.4549 3 7 -1.4094 900.2688 1086.6687 1085.6484 878.8319
25.9575 22.1105 4 7 -1.4713 889.9538 1084.8022 1083.8301 878.8682
25.9738 21.1861 5 7 -1.5251 893.6865 1079.7263 1078.8823 883.8198
26.0341 20.062 6 7 -1.5056 879.2323 1073.4258 1072.7325 908.5511
26.6915 21.6235 7 7 -1.5809 932.4876 1082.1403 1081.2358 933.4167
27.6741 23.7753 8 7 -1.3036 1048.972 1186.9891 1190.1957 1035.0548
28.7604 24.6362 9 7 -0.69713 1167.9074 1235.0165 1236.5592 1134.7828
29.7667 25.8627 10 7 -0.077895 1257.5069 1194.8422 1191.7795 1229.5424
30.5238 26.8281 11 7 0.3886 1254.583 1325.0223 1304.4819 1304.0778
30.9818 26.6543 12 7 0.37338 1216.9004 1316.1014 1296.1781 1282.5601
31.2112 25.7542 13 7 0.17719 1202.1556 1251.803 1239.7352 1224.6045
31.1565 24.9022 14 7 0.10042 1197.2616 1211.7626 1208.5515 1193.7446
30.8168 24.2145 15 7 0.074936 1169.0034 1191.6389 1190.562 1179.4255
30.0572 23.7668 16 7 -0.072189 1136.7054 1157.7365 1155.5651 1156.5018
28.8025 22.7551 17 7 -0.24035 1101.9447 1183.2767 1166.4121 1144.7209
27.3664 20.6788 18 7 -0.42133 1107.0406 1189.5717 1179.7048 1126.9811
26.6139 19.9264 19 7 -0.3948 1142.1548 1183.234 1174.2887 1128.4801
26.2673 19.4284 20 7 -0.21198 1097.2334 1174.3468 1166.4786 1149.239
26.0835 19.5695 21 7 -0.44586 1074.6544 1164.1569 1157.0177 1097.8817
25.9563 19.6599 22 7 -0.56341 1041.3244 1152.2863 1145.9584 1064.1124
25.8613 19.703 23 7 -0.73695 999.634 1139.338 1133.8976 1020.1225
25.7692 19.7004 0 1 -0.954 968.0526 1038.0598 1046.1331 922.7651
25.6818 19.8933 1 1 -1.1184 944.0556 1038.7549 1046.7777 898.0658

Table 5: Evaluation comparison

Values
Model Name
MSE RMSE R?
Proposed model 0.0321 0.1792 0.9658
GRU 0.1332 0.365 0.8579
LSTM 0.1352 0.3678 0.8558

Figure 9 shows the comparison between actual load , forecast load using proposed, GRU
and LSTM model and the proposed method is closer to actual load as compared to other
methods.

.|
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Figure 9: Comparison Graph

Table 6: Performance value of training and testing data

Metric Training Data Testing Data
MSE 0.03 0.0321
RMSE 0.173 0.1792
R? 0.998 0.9658
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Table 7: ED Generator output and total cost

Time Wind Week of Generator Generator Wind Fuel Emissio Power Total
. Temperature Load .

Period speed Day 1 2 turbine  Cost  nrate Loss Cost
1 25.899 7.441 7 92292  440.06 402.86 78.885 5900.8 2273.6 5.12 4499.7
2 25.937 7.908 7 878.83 362.1 436.73 79.427 55727 2063.3 4.85 4225.4
3 25.958 7.3495 7 878.87  390.75 408.12 79.955 5589  2070.8 4.9 4238.1
4 25.974 5.8504 7 883.82  397.85 405.97 79.07 56247 20934 495 4268
5 26.034 4.0275 7 908.55  408.33 420.22 79.922 57879 2195.2 5.2 4403.6
6 26.691 6.5597 7 933.42  432.45 420.97 79.07  5961.7 2308.2 5.45 4549.3
7 27.674 10.049 7 1035.1 471.65 483.4 81.311  6639.3 2757.1 6.12 5119.9
8 28.76 11.445 7 1134.8  525.75 529.03 79.326  7325.8 32452 6.65 5707.7
9 29.767 13.434 7 1229.5 574.34 575.2 78.377  7986.4 3741.9 7.2 6281.1
10 30.524 15 7 1304.1 622.45 601.63 79.894 8520.6 4165.2 7.65 6751.1
11 30.982 14.718 7 1282.6  602.43 600.13 78.38 8361  4035.3 7.52 6609.7
12 31.211 13.258 7 1224.6 = 563.31 581.3 78.838  7945.7  3709.2 7.18 6245.2
13 31.157 11.877 7 1193.7  575.84 537.9 81.715  7750.8 3568 6.98 6077.5
14 30.817 10.761 7 1179.4 554.5 544.93 80.829 7640  3479.5 6.9 5979.9
15 30.057 10.036 7 1156.5 549.33 527.18 78.572  7485.5 3366.1 6.75 5846.5
16 28.802 8.3949 7 11447  532.58 532.14 81.69 73959 3296.9 6.65 5768.2
17 27.366 5.0277 7 1127 557.44 489.54 79.857  7299.7 3240.2 6.52 5689.3
18 26.614 3.8075 7 1128.5 560.76 487.72 80.732  7312.3 3251 6.53 5700.6
19 26.267 3 7 1149.2 539.2 530.04 80.839  7430.3 33234 6.75 5798.3

20 26.084 3.2288 7 1097.9  526.67 491.21 81.944 7085.9 3077.3 6.4 5503

21 25.956 3.3754 7 1064.1 494.01 490.1 80.843  6842.7 2899.8 6.2 5293.5
22 25.861 3.4452 7 1020.1 439.88 500.24 79.227  6523.1 2678 5.95 5021.4
23 25.769 3.441 1 922.77  415.62 427.15 78.837 5882.8 2255.5 5.5 4482.7
24 25.682 3.754 1 898.07  399.18 418.88 79.907 5715.6 21494 5.35 4343.3

Table 7 lists data related to power generation and associated costs over 24 hours, with
columns detailing various parameters such as temperature readings (‘Temperature’ and
"Wind speed’), the day of the week ("WeekofDay"), power demand ('Load’), and outputs
from different energy sources (‘Generator 1°, "Generator 2°, and "Wind Turbine"). It also
includes economic and environmental metrics such as fuel cost emission rate and total cost
for each hour. Notably, the load varies between 878.83 MW and 1304.1 MW, while wind
output remains relatively stable. The costs highlight the operational expenses, with total costs
peaking at 6751.1 for hour 10 and reducing to 4343.4 at hour 24. This table could be
instrumental in analyzing cost-efficiency and optimizing energy generation strategies.

Figure 10 shows the convergence characteristics of a Genetic Algorithm (GA) for 1 hour. The
line shows a general downward trend, indicating that the adaptation function value decreases
as the number of generations increases. This suggests that the GA is improving its solutions
over time, with lower values of the adaptation function being better in this context.

.|
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Figure 10: Convergence Characteristics of GA

Figure 11 show the fuel cost for 24 hours. The fuel cost starts at a moderate level, then
increases during the middle hours, peaking around hours 8—12. After the peak, the cost
gradually decreases. This trend indicates that fuel consumption or generation requirements
are highest during the mid-day period, potentially due to increased demand.
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Figure 11: Fuel cost graph

Figure 12 shows the percentage of reduction in fuel cost for 24 hours. The graph shows
that the energy system maintains significant fuel cost reductions throughout the day,
likely leveraging renewable energy sources or operational strategies to minimize
reliance on costly fuel-based generation. The consistency indicates robust energy

I
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optimization, though variations in reduction percentages highlight periods where the
system efficiency could potentially be improved further.
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Figure 12: Percentage of Reduction of Fuel cost

Figure 13 shows the total cost of generators for 24 hours. The overall cost trend
resembles the fuel cost graph, with a peak during mid-day hours (8-12) and lower
costs during early morning and late-night hours. This implies that fuel cost is a
significant contributor to the total cost, which could also include operational and
maintenance expenses.
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Figure 13: Total Cost Graph
Figure 14 shows the percentage of saving in total cost for 24 hours. The cost savings are

highest during the early hours (1-6) and late hours (22-24), reaching above 60%. During

I
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mid-day (9-16), savings drop significantly, with the lowest savings occurring during the
hours of peak fuel cost.
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Figure 14: Percentage of saving of Total Cost

Extended Experimental Validation

To further strengthen the study, additional baseline models and temporal analyses were
incorporated. [35].

Baseline Models: In addition to GRU, LSTM, and the proposed GRU+LSTM, forecasting
results were compared against ARIMA, Multiple Linear Regression (MLR), Support
Vector Regression (SVR), Random Forest (RF), and a Persistence model. Table 6
summarizes the comparative performance in terms of RMSE, MAPE, and R The
proposed GRU+LSTM model achieved the lowest error values, clearly outperforming both
classical statistical and machine-learning baselines. [36]

Seasonal and Temporal Analysis: Forecasting performance was further analyzed under
different conditions-day vs night, weekday vs weekend, and across seasonal variations
(summer vs winter). Figure 15 shows that the proposed GRU+LSTM model maintained
robust accuracy across all cases, demonstrating its suitability for real-world power system
operation.

[PANTA & ADHIKARI] 23



Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026

Temporal and Seasonal Forecasting Accuracy Comparison
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Figure 15: Comparison of forecasting accuracy using different methods

4. Conclusions

This study presented an integrated framework combining Short-Term Load Forecasting
(STLF) with Economic Dispatch (ED) using a hybrid GRU+LSTM deep learning model
and a Genetic Algorithm-based optimizer. The model was trained on the publicly available
Panama Short-Term Load Forecasting dataset, incorporating input features such as
temperature, wind speed, time of day, day of the week, and historical demand. Forecasting
performance was rigorously evaluated using MSE, RMSE, and R2 Simulation results on
the IEEE 9-bus system showed that the proposed hybrid model significantly outperformed
standalone GRU and LSTM approaches, achieving an MSE of 0.0310, RMSE of 0.1760,
and R? of 0.9670. The integration of forecasted demand into the ED framework further
minimized fuel, emission, and wind generation costs, confirming the effectiveness of the
proposed approach for reliable and economical power system operation. The novelty of this
work lies in combining accurate deep learning-based load forecasting with a multi-
objective ED formulation that simultaneously addresses operational costs and
environmental considerations. Future work will extend this framework to larger test
systems, incorporate renewable energy variability, and explore advanced metaheuristic
optimizers to further enhance scalability and robustness.
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