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Abstract

Deep learning has greatly improved image-based object classification in recent years. Among
different models, Convolutional Neural Networks (CNNs) perform better than traditional
image processing methods and simple neural networks. Despite their success, achieving a
balance between classification accuracy, model complexity, and computational efficiency
remains a key research challenge as classification accuracy and training cost strongly depend
on network structure and learning strategy. In this study, an optimized deep CNN model for
object classification is explored by carefully analyzing important architectural and training
hyperparameters. Experiments are conducted using CIFAR-10 standard datasets. The
proposed architecture is organized into three convolutional stages with increasing channel
capacity. Batch normalization is utilized to stabilize gradient propagation, while max pooling
is employed for spatial compression. Dropout-based regularization is strategically integrated
to reduce overfitting. Additionally, adaptive average pooling is used before the classifier to
maintain expressive feature learning while minimizing the overall parameter count. All
experiments are conducted using GPU acceleration and optimized using momentum based
minibatch Stochastic Gradient Descent (MSGD) algorithm to ensure stable and efficient
learning. Model performance is evaluated in terms of classification accuracy, parameter
efficiency, training time and number of training epochs. The experimental results
demonstrate that the proposed CNN architecture achieves competitive accuracy on CIFAR-10
while maintaining a relatively low computational cost, highlighting the effectiveness of
careful architectural design and optimization for efficient image classification. In addition,
comparisons with existing state-of-the-art models show that the proposed method delivers
higher classification accuracy and improved computational efficiency.
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1. Introduction

Artificial Neural Networks (ANNs) are machine learning models that learn patterns from data
using interconnected processing units inspired by biological neurons. Unlike rule-based
programming approaches, ANNs rely on interconnected processing units that adaptively learn
patterns and relationships directly from data. Through iterative training, these models have
demonstrated the ability to solve complex tasks that were traditionally considered difficult for
machines, including image recognition, speech processing, facial analysis, object detection,

and visual classification. The success of learning-based systems like neural networks depends
- -
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not only on having a large amount of high-quality training data, but also on carefully testing
and evaluating the model on new, unseen data to ensure that it can generalize well and
perform accurately on real-world situations beyond the data it was trained on.

Neural networks are often described in terms of their depth, which refers to the number of
layers that exist between the input and output nodes, commonly known as hidden layers.
Traditionally, it was believed that a small number of hidden layers, typically two or three,
were sufficient for a neural network to learn patterns effectively and perform its intended
tasks. However, with the advancement of computational resources and a deeper
understanding of network behavior, increasing the number of hidden layers allows the
network to capture more complex and abstract representations of the input data. These high-
dimensional features provide richer information, enabling the network to model intricate
relationships and subtle patterns that simpler architectures might miss. Networks with
multiple hidden layers are collectively known as Deep Neural Networks (DNNs), forming the
foundation of many state-of-the-art models in machine learning. By stacking layers and
increasing network depth thoughtfully, DNNs can achieve superior learning capacity and
generalization performance, which is particularly important for complex pattern classification
problems like Image recognition, Speech recognition etc. [1]. In computer vision
applications, Convolutional Neural Networks (CNNs) are extensively employed due to their
ability to capture local spatial patterns and build hierarchical feature representations. The
effectiveness of Convolutional Neural Networks (CNNs) is strongly influenced by both their
architectural design and training strategies, including choices such as filter dimensions,
number of filters, network depth, and the arrangement of hidden layers. This research work
aims to develop CNN architecture optimized for object classification and to provide clear,
systematic guidance on selecting hyperparameters that achieve an optimal balance between
model accuracy and computational cost

1.2 Convolution Neural Network (CNN)

Convolutional Neural Networks (CNNs) are a specialized variant of traditional Multilayer
Perceptron (MLP) architectures that integrate one or more convolution layers, optional
pooling layers and final fully connected layers. Convolutional layers enforce local
connectivity by linking each neuron only to a small receptive field of the previous layer and
apply weight sharing across spatial locations to extract hierarchical features from structured
inputs such as images [2]. Pooling decreases feature map dimensions by merging values from
nearby spatial locations, thereby decreasing computational complexity and improving
translation invariance in CNNs [2] The fully connected layer densely links all neurons from
the preceding layer so that the aggregated feature representations can be transformed into the
final classification or recognition task output [3].

In this structure, each neuron still has learnable weights and biases and performs a weighted
sum followed by a non-linear activation, but compared with ordinary MLPs, CNNs
dramatically reduce the number of parameters while capturing spatially invariant patterns and
enabling efficient learning of both low-level and high-level representations, which has
contributed to their state-of-the-art performance across a range of computer vision and pattern
recognition tasks in recent literature [3] Consider a simple example where the input is an
RGB image of size 32x32. In a fully connected neural network, each input pixel is connected
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to every neuron in the next layer, resulting in 32 x 32 x 3 = 3072 input weights for just one

neuron. While this number is relatively manageable, the situation becomes significantly
worse as the image size increases. For instance, an RGB image of size 200 x 200 * 3
=120,000 input values, meaning each neuron would require 120,000 weights. Such many
parameters lead to high computational cost and increased memory usage. More importantly,
the excessive number of weights makes the model highly prone to overfitting, as it can easily
memorize the training data rather than generalize well to unseen images. Therefore, fully
connected models are inefficient for high-dimensional image data, and this limitation
motivates the use of convolutional neural networks, which significantly reduce parameters
through local connectivity and weight sharing, thereby improving generalization and
reducing overfitting

Convolutional Neural Networks (CNNs or ConvNets) are a specialized form of multilayer
perceptions that are widely used for image recognition and classification tasks. Unlike
traditional MLPs, where every neuron is fully connected to the next layer, CNNs employ
local connectivity, meaning each neuron is connected only to a small, localized region of the
previous layer. This region, known as the receptive field, enables the network to capture
important local features such as edges and textures while significantly reducing the number
of learnable parameters. By stacking multiple convolutional layers, CNNs progressively
combine local features into more complex and abstract representations, which explains their
effectiveness in visual learning tasks. Neural networks are often characterized by their depth,
which refers to the number of layers between the input and output, commonly called hidden
layers. Earlier assumptions suggested that networks with only two or three hidden layers were
sufficient for most learning tasks. However, subsequent research demonstrated that increasing
the number of layers enables neural networks to learn more complex and high-dimensional
representations of input data [4]. Networks with many such layers are known as Deep Neural
Networks (DNNs). Convolutional Neural Networks (CNNs) are a prominent example of
DNNs and have achieved remarkable success in computer vision applications such as image
classification and object recognition as shown in Figure 1.

Input Convolution Pooling Fully Connected Output

=

Feature Extraction Classification

Figure 1 : CNN Architecture [5]

2. Methodology
2.1 Dataset Preparation

Initially, the data are divided into training, validation, and test data sets. The training data are
responsible for guiding the learning process by tuning the model’s weights and internal
parameters. In contrast, the validation set is not utilized for parameter updates, rather, it
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serves to analyze the model’s predictive performance, detect potential overfitting, and
evaluate the efficiency of the convolutional neural network (CNN) during training. After
training is complete, model performance is examined using the test set, which contains data
unseen by the model. In this study, standard CIFAR-10 dataset is utilized and is shown in
Figure 2. The CIFAR-10 dataset consists of 60,000 color (RGB) images with a resolution of
32 x 32 pixels, along with a separate set of 10,000 validation samples. Among these 50000
training datasets, 40,000 images are allocated to the training set for model optimization, while
the remaining 10,000 images are reserved for testing to evaluate model performance. The
dataset contains 10 distinct object categories with each class represented by 5,000 training
images and 1,000 validation images. Further, CIFAR-10 maintains class balance by including
an equal number of samples for each category. Its moderate size and diversity make

CIFAR-10 an ideal standard for assessing the performance of convolutional neural networks
and other machine learning algorithms [6].
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Figure 2: Visualization of CIFER-10 Dataset
Different classes of CIFER-10 dataset are shown in Table 1.
Table 1 : Cifer-10 Dataset Class and Label [6]

No. of Training No. of Validation No. of testing

S.N Class Images Images Images Label
1 Airplane 4000 1000 1000 0
2 Automobile 4000 1000 1000 1
3 Bird 4000 1000 1000 2
4 Cat 4000 1000 1000 3
5 Deer 4000 1000 1000 4
6 Dog 4000 1000 1000 5
7 Frog 4000 1000 1000 6
8 Horse 4000 1000 1000 7
9 Ship 4000 1000 1000 8
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2.2 Architecture Design

A Convolutional Neural Network (CNN) consists of an input layer, an output layer, and multiple
hidden layers, including convolutional, pooling, and fully connected layers, which can be
combined and stacked in various configurations to form a complex architecture capable of
handling diverse classification tasks as depicted in Figure 3. The design and performance of
CNNs are highly dependent on the target task, requiring careful tuning of hyperparameters such
as the number of layers, kernel sizes, number of filters, stride lengths, and dropout rates to
balance computational cost and classification accuracy. For instance, shallow networks with
fewer layers and small kernels are often sufficient for simpler tasks such as MNIST digit
recognition, whereas complex datasets like CIFAR-10 or ImageNet demand deeper and wider
networks with larger receptive fields to capture intricate patterns. To address these challenges,
the proposed lightweight CNN architecture employs a three-block convolutional design with
progressively increasing feature channels, batch normalization after each convolution, and
adaptive average pooling before the classifier, enabling effective hierarchical feature extraction
while reducing trainable parameters and mitigating overfitting.

Input Layer
(Stack of CONV, POOL.,
Mon Linear and FC
Layers)
*
Output Layer

Figure 3: CNN Layers

2.3 Convolution Layer Design

The convolutional layer extracts hierarchical features from the input, with early layers
capturing low-level patterns such as edges and corners, and deeper layers learning higher-
level representations. Each layer contains a set of learnable filters, applied across local
regions called receptive fields, which are shared across neurons to detect specific features. By
stacking multiple filters, the depth of the layer increases, enabling the network to learn rich
feature representations through linear filter weights applied as convolutions over the previous
layer which can be shown in Figure 4.

o
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Figure 4: Convolution Operation
|
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In a convolutional neural network, the convolutional layer processes an input feature volume
of size W1 x H1 x D1 and produces a corresponding output feature volume with dimensions
W2 x H2 x D2. The operation of this layer is governed by four key hyperparameters: the
number of filters (K), the spatial size of each filter (F), the stride length (S), and the amount
of zero-padding applied (P). The dimensions of the resulting output volume are determined
based on these hyperparameters as follows:

W1—F +2P
W2=— "t
S
H1—F +2P
HZ=— 1
S
D2 =K

2.4 Pooling / Sub Sampling Layer Design

The pooling (subsampling) layer reduces feature representations by decreasing their spatial
dimensions, thereby reducing the size of the input data without discarding critical
characteristics leading to lower computational cost, decreased memory consumption, and
increased robustness to small input variations. This dimensionality reduction is typically
achieved using either max pooling or average pooling operations. In both approaches, the
input is partitioned into non-overlapping two-dimensional regions, over which the pooling
operation is applied. For example, a pooling kernel of size 2 x 2 with a stride of 2 units slides
across the input to generate the down sampled output, as illustrated in the Figure 5.
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Figure 5: Max Pooling Operation
A pooling layer takes an input volume of size W1 x H1 X D1 and produces an output volume
of size W2 x H2 x D2. Its operation is governed by two key hyperparameters: the size of the
pooling region (F) and the stride length (S). The resulting output dimensions are determined
based on these hyperparameters as follows: While such fixed pooling operations effectively
reduce spatial resolution, they require careful manual tuning and may increase architectural
rigidity. In the proposed architecture, adaptive average pooling is employed to overcome
these limitations. Unlike traditional pooling layers, adaptive average pooling dynamically
adjusts its pooling regions to produce a predefined output size, regardless of the input feature
map dimensions. By incorporating adaptive average pooling before the final classification
stage, the spatial information of each feature map is condensed into a single representative
value per channel, producing a compact global feature representation. This approach
substantially reduces the number of trainable parameters and removes the dependency on
large fully connected layers, thereby lowering computational cost and improving parameter
efficiency. Global and adaptive pooling strategies have been used to simplify CNN
architectures while preserving discriminative capability, contributing to improved
generalization and reduced overfitting. Consequently, adaptive average pooling serves as an
|
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effective mechanism for balancing classification performance, architectural complexity, and

computational efficiency in convolutional neural networks [7].

2.5 Non-linear layers

CNNs employ non-linear activation functions to enable the network to identify complex
features at each hidden layer. The Rectified Linear Unit (ReLU) is commonly used for this
purpose, implementing the operation y=max (0, Z), which preserves the input and output
dimensions of the layer. By introducing non-linearity, ReLU enhances the representational
capacity of the network and the decision function without altering the receptive fields of the
convolutional layers. Additionally, ReLU offers the practical benefit of significantly faster
training compared to other non-linear activation functions and is shown in Figure 6[8].

ReLU

10

R(z)=max(0, 2)

13

-10 -5 0 5 0

Figure 6: ReLU Activation Function

2.6 Fully connected layers

Fully connected layers typically serve as the final stages of a CNN, integrating features
extracted by preceding layers to produce the network’s output. Each neuron in a fully
connected layer computes a weighted sum of all the activations from the previous layer,
effectively combining every feature to determine the contribution toward a specific output.
This complete connectivity allows the layer to learn complex, global patterns and
relationships across the entire feature set. By connecting all features, fully connected layers
enable the network to perform final decision-making, such as Classification, consolidating
both low-level and high-level representations captured by earlier convolutional and pooling
layers.

2.7 Data Augmentation

In image classification tasks, input images provided to a CNN can vary in multiple ways,
including orientation, scale, noise, and stability. Consequently, the model must be capable of
handling and accurately interpreting a wide range of input variations. Training the network on
every possible variation of each image, however, is impractical. This challenge can be
effectively addressed using image data augmentation, a technique that generates transformed
versions of existing images according to specified operations. By applying this method, the
size of the training dataset is artificially increased, enhancing the diversity of input samples
and reducing the risk of overfitting. Figure 7 illustrates the impact of various data
augmentation strategies on a subset of CIFAR-10 dataset images.
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Figure 7: Visualization of Data Augmentation Operations for ‘Automobile’ class in
CIFAR-10 Dataset

2.8 Learning Classifier

Once an efficient convolutional neural network architecture has been structured, the next step
is to implement a supervised learning algorithm that enables the model to learn to classify
objects from the input data as shown in Figure 8. In supervised learning, the network is
trained with labeled examples, allowing it to iteratively adjust its parameters to minimize a
defined loss function that measures the difference between predicted outputs and true labels.
This process typically employs optimization techniques such as backpropagation combined
with stochastic gradient descent, which guides weight updates to improve classification
accuracy over successive iterations. By leveraging the large volume of labeled training
samples, supervised training enables the CNN to capture complex data patterns and
generalize well to new, unseen samples, which is critical for robust classification performance

in real-world applications [9].

Scaled Data

Validation Data

Validate

Analyze and tune Weights/Bias of Model

Figure 8: Model for Supervised Learning

This algorithm enables the network to learn optimal weights and biases such that its output
closely approximates y(x) for all training inputs x. To achieve this, a cost function, also
referred to as an objective function or loss function, is defined to quantify the difference
between the predicted outputs and the true labels.

In classification tasks, this is commonly formulated using the negative log-likelihood of the
predicted class probabilities.
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Where T is Dataset, & is weight parameter, (x'",y'”) is i training data and Y is the target

data. The training process is considered successful when it identifies weights and biases that
minimize the cost function. To achieve this, optimization is typically performed using the
gradient descent algorithm, which iteratively adjusts the parameters in the direction of the
steepest reduction of the loss.

2.9 Gradient Descent

After defining a cost function, the training algorithm aims to minimize it by optimizing the
network’s weights and biases. These parameters are initially assigned small random values to
break symmetry and are iteratively refined using gradient-based optimization. Adaptive
optimizers like Adam, RMSProp, and Adagrad often converge faster in early training but do
not generalize as well as SGD in many deep learning tasks like computer vision and
classification [10]. In each iteration, the gradient of the loss with respect to the weights and
biases is calculated and propagated backward through the network via the backpropagation
algorithm. Variants such as stochastic gradient descent accelerate convergence and enhance
stability, allowing the network to effectively capture complex patterns from large-scale
datasets [10].

2.10 Stochastic Gradient Descent (SGD)

A cost function is determined by the network’s parameters, and the ordinary gradient descent
algorithm minimizes this function by iteratively moving in the direction of steepest descent
on the error surface. Stochastic Gradient Descent (SGD) follows the same principle but
updates parameters more frequently, using gradients computed from a small subset of training
examples rather than the entire dataset. A popular variant of SGD is Mini-Batch Gradient
Descent (MSGD), in which the training data is partitioned into multiple batches, and
gradients are calculated and applied after processing each batch. Much research shows that
MSGD and its momentum variants often yield better generalization performance than
adaptive optimizers such as Adam in non-convex deep learning settings. SGD with
momentum adds a memory of previous gradients to the current update. Study shows that
while Adam optimizes faster, SGD frequently achieves superior generalization in practical
settings. Thus, MSGD with momentum can be considered the most reliable choice when the
primary goal is robust performance on unseen data rather than solely faster convergence
[11][12]. The general procedure for MSGD with momentum is outlined in the flowchart in
Figure 9.
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Figure 9: Flowchart for MSGD Learning Optimization

The algorithm begins by initializing the model parameters and setting the velocity to zero.
For each epoch, the training dataset is first shuffled and then divided into mini batches of a
specified size. For each mini-batch, the gradient of the loss function is computed with respect
to the model parameters using only the samples in that mini-batch. The velocity is then
updated by multiplying the previous velocity by the momentum coefficient and adding the
current mini-batch gradient. The model parameters are updated by moving in the direction of
the negative velocity scaled by the learning rate. This process is repeated for all mini batches
in the epoch and continues for the specified number of epochs.

2.11 Overfitting and Dropout

Throughout the training process, a CNN identifies visual patterns by iteratively updating the
parameters associated with neurons in its hidden layers. These weights determine how
strongly each neuron responds to specific features, allowing the network to detect edges,
textures, and higher-level patterns. When the training dataset is small, the network may
perform very well on the training data but fail to generalize to validation or test data, this
problem is known as overfitting [13]. Overfitting occurs because the network memorizes
specific details of the training images rather than learning features that apply broadly to new
images. Techniques such as dropout, where a random subset of neurons is temporarily
disabled during training, help prevent overfitting by encouraging the network to develop
more robust and generalizable feature representations [14].

Overfitting in a CNN model can be detected by comparing the accuracy of the training and
|

[THAPA] 117



Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026
validation datasets over successive iterations or epochs. Typically, a plot of these accuracies
reveals overfitting when the training accuracy continues to improve steadily, while the
validation accuracy plateaus or fails to increase at the same rate. The figure below illustrates

this scenario, showing a divergence between training and validation performance indicative
of overfitting which is shown in Figure 10.

Accuracy
training-set

/\val dation-set

Iterations

Figure 10: Training vs Validation Accuracy

Dropout is one of the regularization techniques to minimize over-fitting problems. It prevents
complex co-adaptation on the training data. Since a fully connected layer occupies most of
the parameters, it is prone to overfitting. In this technique, some of the hidden and visible
nodes selected randomly with probability P and are dropped. It can also be viewed as model
averaging neural networks. Dropout technique not only builds an efficient model by
minimizing overfitting problems but also reduce the training time required. The below figure
shows how dropout can disintegrate a complex neural structure to smaller networks with less
connections thus achieving model averaging principle.

Dropout is a regularization technique used to reduce overfitting and enhance the
generalization of neural networks. During training, a random subset of neurons is deactivated
based on a probability P, which limits reliance on specific feature patterns. This method is
particularly effective in fully connected layers, where the number of parameters is high. By
reducing overfitting and promoting more robust feature learning, dropout not only improves
model generalization but can also decrease training time. Figure 11 illustrates how dropout
decomposes a complex network into smaller subnetworks with fewer connections, thereby
implementing the principle of model averaging.

The term unit dropout denotes the temporary deactivation of a neuron and the elimination of
all connections linked to it during training.
2.12 Testing and Evaluation

The performance of the proposed model is evaluated using the testing dataset from the
CIFAR-10 datasets, comprising 10,000 images. Model evaluation is conducted using multiple
performance metrics across testing datasets as mentioned below
i. Confusion Matrix
ii. Precision, Recall and F Measure
-
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iii. Validation and Training Accuracy
iv. Number of Parameters, Model Size and Training Time to achieve maximum

accuracy
Considering these parameters collectively allows for a comprehensive evaluation of the
proposed CNN, capturing both predictive performance and computational efficiency, thereby
providing a balanced perspective on its suitability for practical image classification
applications.
2.13 Confusion Matrix
The confusion matrix is a performance evaluation tool that organizes prediction results into a
matrix format, enabling a direct comparison between true class labels and the classifier’s
predictions. It organizes the classifier’s predictions against the actual class labels, typically
with one axis representing actual classes and the other representing predicted classes,
allowing easy visualization of correct and incorrect classifications [15]. For binary
classification problems, model predictions can be grouped into four distinct outcomes: True
Positives (TP), which indicate correct detection of positive samples; False Positives (FP),
occurring when negative samples are incorrectly predicted as positive; False Negatives (FN),
arising when positive samples are misclassified as negative; and True Negatives (TN), where
negative samples are accurately identified. The confusion matrix is a foundation for deriving
important evaluation metrics such as precision, recall, and F1-score, which quantify different
aspects of classifier performance beyond simple accuracy.

For any class X, the confusion matrix is given as

Actual Class
X Not X
X TP FP
Predicted Class Not X FN TN

Figure 12: Confusion Matrix

Correct predictions appear along the main diagonal of the matrix, while off-diagonal entries
indicate misclassifications as shown in Figure 12.
2.13 Precision, Recall and F1 Measure
Precision, recall, and Fl-score are key metrics for evaluating the performance of a CNN
classifier beyond simple accuracy. Precision measures the proportion of correctly predicted
positive instances among all instances labeled as positive by the model, while recall
quantifies the proportion of actual positive instances that are correctly identified. For
example, in a medical imaging application for detecting pneumonia from chest X-rays, high
recall ensures that most patients with pneumonia are correctly identified, but if precision is
low, many healthy patients may be incorrectly flagged as positive. Conversely, a model with
high precision but low recall would correctly identify positive cases while missing a
significant number of actual patients with pneumonia. Since optimizing one metric does not
guarantee good performance on the other, the F1l-score, defined as the harmonic means of
precision and recall, provides a balanced measure of model performance. These metrics can
be computed using the counts of True Positives (TP), False Positives (FP), and False
|

[THAPA] 119



Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026
Negatives (FN) derived from the confusion matrix, allowing a comprehensive evaluation of
the CNN’s predictive capability. Precision, recall and F1 score can be calculated as below

ePrecision = TP/ (TP + FP)

eRecall = TP (TP + FN)

oF1 Score =2 (Precision * Recall)/ (Precision + Recall)
2.14 Validation and Testing Accuracy
When developing a CNN model, it is essential to utilize two distinct datasets first, a training
set and second a testing or validation dataset. The network learns feature representations and
optimizes its parameters using the training data, while the validation dataset is used to
evaluate its generalization performance. The resulting metrics are referred to as training

accuracy and validation accuracy, respectively as shown in Figure 13. A large difference
between training and validation accuracies typically signals overfitting, where the model
excels on the training set but struggles to generalize to new data. It is therefore essential to
analyze and address this discrepancy to achieve stable and reliable model performance.
Careful analysis and mitigation of this gap are crucial to ensure robust and reliable model
performance.

A ger
accuracy training accurac

validation accuracy:
little overfitting

validation accuracy: strong overfitting

epoch

Figure 13: Validation/ Training Accuracy

2.15 Number of Parameters, Model Size and Training Time to achieve maximum accuracy

In addition to accuracy-based metrics, the efficiency of a convolutional neural network
(CNN) is evaluated using several computational and model complexity parameters, which are
essential for assessing its practical applicability. The number of parameters reflects the total
trainable weights within the network, including convolutional kernels, fully connected layer
weights, and biases, and provides an indication of the model’s complexity and memory
footprint. While larger networks can capture more intricate features, they also require more
memory and may be prone to overfitting, particularly with limited data.

Model size, typically expressed in megabytes, denotes the storage needed to save the trained
network and is influenced by both the number of parameters and data precision, where
smaller models improve memory efficiency and ease of deployment.

Finally, training time quantifies the duration required for the network to reach its optimal
accuracy and is affected by factors such as model depth, parameter count, batch size, learning
rate, and the computing hardware used.

I
[THAPA] 120



Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026
2.16 Implementation

The experiments were carried out using the PyTorch deep learning framework, which
supports computations on both CPU and GPU, providing an efficient environment for
designing, training, and evaluating CNNs. Several CNN architectures were developed and
tested on the CIFAR-10 datasets by systematically changing key hyperparameters, such as the
number of layers, filter sizes, number of filters, and by applying techniques like data
augmentation, global and adaptive pooling, and batch normalization. From these experiments,
the best-performing architecture for the CIFAR-10 dataset is presented below and is shown in
Figure 14, showing how network design and hyperparameter choices influence both
classification accuracy and computational efficiency.
Architecture Specification for Efficient CNN Architecture for CIFAR-10 Dataset
1. INPUT Layer: Accepts input images of size 32 x 32 with 3 channels (RGB).
ii. First CONV Layer: Convolution with 48 filters of size 3 x 3, followed by Batch
Normalization and ReLU activation.
ii1. Second CONV Layer: Convolution with 48 filters of size 3 x 3, followed by Batch
Normalization and ReLU activation.
iv. MAXPOOL Layer: Max pooling of size 2 x 2, followed by 10% Dropout.
v. Third CONV Layer: Convolution with 96 filters of size 3 x 3, followed by Batch
Normalization and ReLU activation.
vi. Fourth CONV Layer: Convolution with 96 filters of size 3 x 3, followed by Batch
Normalization and ReLU activation.
vii. MAXPOOL Layer: Max pooling of size 2 x 2, followed by 20% Dropout.
Vviil. Fifth CONV Layer: Convolution with 192 filters of size 3 x 3, followed by
Batch Normalization and ReL.U activation.
ix. Sixth CONV Layer: Convolution with 192 filters of size 3 x 3, followed by Batch
Normalization and ReLU activation.
x. MAXPOOL Layer: Max pooling of size 2 x 2, followed by 30% Dropout.
xi. Global Adaptive Average Pooling: Reduces the spatial dimension of each feature map
to 1 x 1.
xii. Flatten Layer: Converts the pooled output into a 192-dimensional vector.
xiii. Fully Connected / OUTPUT Layer: Linear layer mapping 192 units directly to 10
output classes.
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Layer (type) Output Shape Param #
Conv2d-1 [-1, 48, 32, 32] 1,296
BatchNorm2d-2 [-1, 48, 32, 32] 96
RelLU-3 [-1, 48, 32, 32] 0
Conv2d-4 [-1, 48, 32, 32] 20,736
BatchNorm2d-5 [-1, 48, 32, 32] 96
ReLU-6 [-1, 48, 32, 32] 0
MaxPool2d-7 [-1, 48, 16, 16] 0
Dropout2d-8 [-1, 48, 16, 16] 0
Conv2d-9 [-1, 96, 16, 16] 41,472
BatchNorm2d-10 [-1, 96, 16, 16] 192
ReLU-11 [-1, 96, 16, 16] 0
Conv2d-12 [-1, 96, 16, 16] 82,944
BatchNorm2d-13 [-1, 96, 16, 16] 192
RelLU-14 [-1, 96, 16, 16] 0
MaxPool2d-15 [-1, 96, 8, 8] 0
Dropout2d-16 [-1, 96, 8, 8] 0
Conv2d-17 [-1, 192, 8, 8] 165,888
BatchNorm2d-18 [-1, 192, 8, 8] 384
ReLU-19 [-1, 192, 8, 8] 0
Conv2d-20 [-1, 192, 8, 8] 331,776
BatchNorm2d-21 [-1, 192, 8, 8] 384
ReLU-22 [-1, 192, 8, 8] 0
MaxPool2d-23 [-1, 192, 4, 4] 0
Dropout2d-24 [-1, 192, 4, 4] 0
AdaptiveAvgPool2d-25 [-1, 192, 1, 1) 0
Flatten-26 [-1, 192] 0
Linear-27 [-1, 10] 1,930

Total params: 647,386
Trainable params: 647,386
Non-trainable params: ©

Input size (MB): 0.01
Forward/backward pass size (MB): 4.27
Params size (MB): 2.47

Estimated Total Size (MB): 6.75

Figure 14: Efficient CNN Architecture for CIFAR-10 Dataset

3. Results and Discussion

The primary objective of this research is to develop an efficient convolutional neural network
(CNN) architecture for accurate object classification on the CIFAR-10 dataset through
systematic fine-tuning of hyperparameters and the application of data augmentation
techniques. In addition, this study aims to demonstrate an effective methodology for selecting
suitable hyperparameter configurations when designing compact and efficient CNN
architectures. The performance of the proposed CNN model was evaluated using standard
classification metrics, including training accuracy, testing accuracy, and confusion matrix
analysis. Figure 15 illustrates the training and testing accuracy curves, showing stable
convergence and consistent improvement across epochs. The final model achieved a
classification accuracy of 91.11% on the CIFAR-10 test dataset, indicating strong
generalization performance. Figure 16 presents the confusion matrix, which demonstrates that
the proposed model performs well across all ten CIFAR-10 classes, with only minor
misclassifications among visually similar categories. This reflects the model’s ability to learn
discriminative and class-specific features effectively. Table 2 summarizes the quantitative
performance metrics, further confirming the robustness of the proposed architecture.
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3.1 Performance evaluation of CNN architecture for CIFAR-10 Dataset

Confusion Matrix - CIFAR-10 Test Dataset
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Figure 15: Train and Test Accuracy Figure 16: Confusion Matrix
Table 2: Performance Metric
precision recall fi1-score  support
(4] 9.899 0.922 0.910 1000
1 9.959 9.957 0.958 1000
2 9.912 0.862 0.886 1000
3 9.843 0.797 0.820 1000
4 9.903 0.926 0.915 1000
5 0.866 ©.860 0.863 1000
6 9.925 0.948 0.936 1000
7 9.950 ©.930 0.940 1000
8 9.941 ©.955 0.948 1000
9 9.909 0.954 0.931 1000
accuracy 0.911 10000
macro avg 9.911 0.911 0.911 10000
weighted avg 9.911 0.911 0.911 10000

The optimized CNN was trained for 97 epochs, with an average training time of
approximately 30 seconds per epoch, highlighting its computational efficiency. Compared
with lightweight CNN architecture MobileNetVx trained under standard settings, which
contain approximately 1.5 million parameters, and deeper and more complex architectures
such as VGG-16 and ResNet-18 trained under standard settings, which contain approximately
138 million and 11.7 million parameters respectively, the proposed model achieves
competitive classification accuracy with a significantly reduced parameter count
[16],[17],[18],[19],[20],[21]. The final efficient architecture contains only 0.6 million
learnable parameters providing a classification accuracy of 91.11%, making it significantly
more compact while maintaining high accuracy. The optimized lightweight CNN architecture
consists of three convolutional blocks with progressively increasing channel dimensions (48,
96, and 192). The use of 3x3 convolutional filters enable effective feature extraction while
limiting parameter growth. Batch normalization improves training stability, while max-
pooling layers reduce spatial dimensionality and enhances receptive field efficiency. Stage-
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wise dropout (0.1, 0.2, and 0.3) mitigates overfitting in deeper layers, and adaptive average
pooling significantly reduces the number of parameters in the classification stage.
Optimization using minibatch stochastic gradient descent (MSGD), combined with data

augmentation, further contributes to improved generalization performance. Several
architectural insights are supported by the experimental results:
e The use of 3%3 convolutional filters enable fine-grained feature extraction with fewer
parameters.
e Progressive increase in filter depth enhances the network’s ability to capture high-
level semantic features.
o Batch normalization improves training stability and allows the use of higher learning
rates.
o Stage-wise dropout rates (0.1, 0.2, and 0.3) effectively reduce overfitting in deeper
layers.
e Max pooling between convolutional blocks efficiently reduces spatial resolution while
preserving important features.
e Global adaptive average pooling significantly reduces parameter count and improves
generalization.
e Stochastic Gradient Descent (SGD) provides stable and efficient optimization.
o Data augmentation techniques further improve generalization and contribute to higher
classification accuracy.
Overall, the results demonstrate that careful architectural design combined with appropriate
hyperparameter selection and regularization strategies can yield an efficient light weight
CNN model with strong classification performance on CIFAR10 dataset.
4. Conclusions

This study investigates the design of an efficient convolutional neural network (CNN)
architecture for image classification on the CIFAR-10 dataset. Through systematic
exploration of architectural depth, filter dimensions, regularization strategies, and
optimization parameters, an optimized CNN model was developed that achieves 91.11%
classification accuracy with only 0.6 million parameters. Overall, this study highlights key
design considerations for building efficient CNN architectures and provides empirical
evidence supporting the use of small convolutional filters, progressive depth-wise channel
expansion, dropout regularization, and data augmentation. Future work will focus on
evaluating the model on more complex and high-resolution datasets, such as ImageNet, Tiny
ImageNet, or CIFAR-100, including those with class imbalance or greater intra-class
variation, to test generalization. Additionally, the impact of alternative optimization
algorithms such as AdaDelta, Adam, and AdaGrad can be assessed, and the proposed
architecture can be benchmarked against current state-of-the-art models in challenging image
classification scenarios.
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