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Abstract 

Deep learning has greatly improved image-based object classification in recent years. Among 

different models, Convolutional Neural Networks (CNNs) perform better than traditional 

image processing methods and simple neural networks. Despite their success, achieving a 

balance between classification accuracy, model complexity, and computational efficiency 

remains a key research challenge as classification accuracy and training cost strongly depend 

on network structure and learning strategy. In this study, an optimized deep CNN model for 

object classification is explored by carefully analyzing important architectural and training 

hyperparameters. Experiments are conducted using CIFAR-10 standard datasets. The 

proposed architecture is organized into three convolutional stages with increasing channel 

capacity. Batch normalization is utilized to stabilize gradient propagation, while max pooling 

is employed for spatial compression. Dropout-based regularization is strategically integrated 

to reduce overfitting. Additionally, adaptive average pooling is used before the classifier to 

maintain expressive feature learning while minimizing the overall parameter count. All 

experiments are conducted using GPU acceleration and optimized using momentum based 

minibatch Stochastic Gradient Descent (MSGD) algorithm to ensure stable and efficient 

learning. Model performance is evaluated in terms of classification accuracy, parameter 

efficiency, training time and number of training epochs. The experimental results 

demonstrate that the proposed CNN architecture achieves competitive accuracy on CIFAR-10 

while maintaining a relatively low computational cost, highlighting the effectiveness of 

careful architectural design and optimization for efficient image classification. In addition, 

comparisons with existing state-of-the-art models show that the proposed method delivers 

higher classification accuracy and improved computational efficiency. 
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1. Introduction 

Artificial Neural Networks (ANNs) are machine learning models that learn patterns from data 

using interconnected processing units inspired by biological neurons. Unlike rule-based 

programming approaches, ANNs rely on interconnected processing units that adaptively learn 

patterns and relationships directly from data. Through iterative training, these models have 

demonstrated the ability to solve complex tasks that were traditionally considered difficult for 

machines, including image recognition, speech processing, facial analysis, object detection, 

and visual classification. The success of learning-based systems like neural networks depends 
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not only on having a large amount of high-quality training data, but also on carefully testing 

and evaluating the model on new, unseen data to ensure that it can generalize well and 

perform accurately on real-world situations beyond the data it was trained on. 

Neural networks are often described in terms of their depth, which refers to the number of 

layers that exist between the input and output nodes, commonly known as hidden layers. 

Traditionally, it was believed that a small number of hidden layers, typically two or three, 

were sufficient for a neural network to learn patterns effectively and perform its intended 

tasks. However, with the advancement of computational resources and a deeper 

understanding of network behavior, increasing the number of hidden layers allows the 

network to capture more complex and abstract representations of the input data. These high-

dimensional features provide richer information, enabling the network to model intricate 

relationships and subtle patterns that simpler architectures might miss. Networks with 

multiple hidden layers are collectively known as Deep Neural Networks (DNNs), forming the 

foundation of many state-of-the-art models in machine learning. By stacking layers and 

increasing network depth thoughtfully, DNNs can achieve superior learning capacity and 

generalization performance, which is particularly important for complex pattern classification 

problems like Image recognition, Speech recognition etc. [1]. In computer vision 

applications, Convolutional Neural Networks (CNNs) are extensively employed due to their 

ability to capture local spatial patterns and build hierarchical feature representations. The 

effectiveness of Convolutional Neural Networks (CNNs) is strongly influenced by both their 

architectural design and training strategies, including choices such as filter dimensions, 

number of filters, network depth, and the arrangement of hidden layers. This research work 

aims to develop CNN architecture optimized for object classification and to provide clear, 

systematic guidance on selecting hyperparameters that achieve an optimal balance between 

model accuracy and computational cost 

1.2 Convolution Neural Network (CNN) 

Convolutional Neural Networks (CNNs) are a specialized variant of traditional Multilayer 

Perceptron (MLP) architectures that integrate one or more convolution layers, optional 

pooling layers and final fully connected layers. Convolutional layers enforce local 

connectivity by linking each neuron only to a small receptive field of the previous layer and 

apply weight sharing across spatial locations to extract hierarchical features from structured 

inputs such as images [2]. Pooling decreases feature map dimensions by merging values from 

nearby spatial locations, thereby decreasing computational complexity and improving 

translation invariance in CNNs [2]. The fully connected layer densely links all neurons from 

the preceding layer so that the aggregated feature representations can be transformed into the 

final classification or recognition task output [3].  

In this structure, each neuron still has learnable weights and biases and performs a weighted 

sum followed by a non-linear activation, but compared with ordinary MLPs, CNNs 

dramatically reduce the number of parameters while capturing spatially invariant patterns and 

enabling efficient learning of both low-level and high-level representations, which has 

contributed to their state-of-the-art performance across a range of computer vision and pattern 

recognition tasks in recent literature [3]. Consider a simple example where the input is an 

RGB image of size 32×32. In a fully connected neural network, each input pixel is connected 
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to every neuron in the next layer, resulting in 32 × 32 × 3 = 3072 input weights for just one 

neuron. While this number is relatively manageable, the situation becomes significantly 

worse as the image size increases. For instance, an RGB image of size 200 × 200 * 3 

=120,000 input values, meaning each neuron would require 120,000 weights. Such many 

parameters lead to high computational cost and increased memory usage. More importantly, 

the excessive number of weights makes the model highly prone to overfitting, as it can easily 

memorize the training data rather than generalize well to unseen images. Therefore, fully 

connected models are inefficient for high-dimensional image data, and this limitation 

motivates the use of convolutional neural networks, which significantly reduce parameters 

through local connectivity and weight sharing, thereby improving generalization and 

reducing overfitting 

Convolutional Neural Networks (CNNs or ConvNets) are a specialized form of multilayer 

perceptions that are widely used for image recognition and classification tasks. Unlike 

traditional MLPs, where every neuron is fully connected to the next layer, CNNs employ 

local connectivity, meaning each neuron is connected only to a small, localized region of the 

previous layer. This region, known as the receptive field, enables the network to capture 

important local features such as edges and textures while significantly reducing the number 

of learnable parameters. By stacking multiple convolutional layers, CNNs progressively 

combine local features into more complex and abstract representations, which explains their 

effectiveness in visual learning tasks. Neural networks are often characterized by their depth, 

which refers to the number of layers between the input and output, commonly called hidden 

layers. Earlier assumptions suggested that networks with only two or three hidden layers were 

sufficient for most learning tasks. However, subsequent research demonstrated that increasing 

the number of layers enables neural networks to learn more complex and high-dimensional 

representations of input data [4]. Networks with many such layers are known as Deep Neural 

Networks (DNNs). Convolutional Neural Networks (CNNs) are a prominent example of 

DNNs and have achieved remarkable success in computer vision applications such as image 

classification and object recognition as shown in Figure 1. 

 

 

Figure 1 : CNN Architecture [5] 

2. Methodology  

2.1 Dataset Preparation 

Initially, the data are divided into training, validation, and test data sets. The training data are 

responsible for guiding the learning process by tuning the model’s weights and internal 

parameters. In contrast, the validation set is not utilized for parameter updates, rather, it 
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serves to analyze the model’s predictive performance, detect potential overfitting, and 

evaluate the efficiency of the convolutional neural network (CNN) during training. After 

training is complete, model performance is examined using the test set, which contains data 

unseen by the model. In this study, standard CIFAR-10 dataset is utilized and is shown in 

Figure 2. The CIFAR-10 dataset consists of 60,000 color (RGB) images with a resolution of 

32 × 32 pixels, along with a separate set of 10,000 validation samples. Among these 50000 

training datasets, 40,000 images are allocated to the training set for model optimization, while 

the remaining 10,000 images are reserved for testing to evaluate model performance. The 

dataset contains 10 distinct object categories with each class represented by 5,000 training 

images and 1,000 validation images. Further, CIFAR-10 maintains class balance by including 

an equal number of samples for each category. Its moderate size and diversity make 

CIFAR-10 an ideal standard for assessing the performance of convolutional neural networks 

and other machine learning algorithms [6]. 

 

 
Figure 2: Visualization of CIFER-10 Dataset 

Different classes of CIFER-10 dataset are shown in Table 1.  

Table 1 : Cifer-10 Dataset Class and Label [6] 

S. N Class 

No. of Training 

Images 

No. of Validation 

Images 

No. of testing 

Images Label 

1 Airplane  4000 1000 1000 0 

2 Automobile  4000 1000 1000 1 

3 Bird  4000 1000 1000 2 

4 Cat  4000 1000 1000 3 

5 Deer  4000 1000 1000 4 

6 Dog  4000 1000 1000 5 

7 Frog  4000 1000 1000 6 

8 Horse  4000 1000 1000 7 

9 Ship  4000 1000 1000 8 
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10 Truck 4000 1000 1000 9 

2.2 Architecture Design 

A Convolutional Neural Network (CNN) consists of an input layer, an output layer, and multiple 

hidden layers, including convolutional, pooling, and fully connected layers, which can be 

combined and stacked in various configurations to form a complex architecture capable of 

handling diverse classification tasks as depicted in Figure 3. The design and performance of 

CNNs are highly dependent on the target task, requiring careful tuning of hyperparameters such 

as the number of layers, kernel sizes, number of filters, stride lengths, and dropout rates to 

balance computational cost and classification accuracy. For instance, shallow networks with 

fewer layers and small kernels are often sufficient for simpler tasks such as MNIST digit 

recognition, whereas complex datasets like CIFAR-10 or ImageNet demand deeper and wider 

networks with larger receptive fields to capture intricate patterns. To address these challenges, 

the proposed lightweight CNN architecture employs a three-block convolutional design with 

progressively increasing feature channels, batch normalization after each convolution, and 

adaptive average pooling before the classifier, enabling effective hierarchical feature extraction 

while reducing trainable parameters and mitigating overfitting.  

 
Figure 3: CNN Layers 

2.3 Convolution Layer Design 

The convolutional layer extracts hierarchical features from the input, with early layers 

capturing low-level patterns such as edges and corners, and deeper layers learning higher-

level representations. Each layer contains a set of learnable filters, applied across local 

regions called receptive fields, which are shared across neurons to detect specific features. By 

stacking multiple filters, the depth of the layer increases, enabling the network to learn rich 

feature representations through linear filter weights applied as convolutions over the previous 

layer which can be shown in Figure 4.  

 
Figure 4: Convolution Operation 
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In a convolutional neural network, the convolutional layer processes an input feature volume 

of size W1 × H1 × D1  and produces a corresponding output feature volume with dimensions 

W2 × H2 × D2. The operation of this layer is governed by four key hyperparameters: the 

number of filters (K), the spatial size of each filter (F), the stride length (S), and the amount 

of zero-padding applied (P). The dimensions of the resulting output volume are determined 

based on these hyperparameters as follows: 

 
2.4 Pooling / Sub Sampling Layer Design 

The pooling (subsampling) layer reduces feature representations by decreasing their spatial 

dimensions, thereby reducing the size of the input data without discarding critical 

characteristics leading to lower computational cost, decreased memory consumption, and 

increased robustness to small input variations. This dimensionality reduction is typically 

achieved using either max pooling or average pooling operations. In both approaches, the 

input is partitioned into non-overlapping two-dimensional regions, over which the pooling 

operation is applied. For example, a pooling kernel of size 2 × 2 with a stride of 2 units slides 

across the input to generate the down sampled output, as illustrated in the Figure 5. 

 
Figure 5: Max Pooling Operation 

A pooling layer takes an input volume of size W1 × H1 × D1 and produces an output volume 

of size W2 × H2 × D2. Its operation is governed by two key hyperparameters: the size of the 

pooling region (F) and the stride length (S). The resulting output dimensions are determined 

based on these hyperparameters as follows: While such fixed pooling operations effectively 

reduce spatial resolution, they require careful manual tuning and may increase architectural 

rigidity. In the proposed architecture, adaptive average pooling is employed to overcome 

these limitations. Unlike traditional pooling layers, adaptive average pooling dynamically 

adjusts its pooling regions to produce a predefined output size, regardless of the input feature 

map dimensions. By incorporating adaptive average pooling before the final classification 

stage, the spatial information of each feature map is condensed into a single representative 

value per channel, producing a compact global feature representation. This approach 

substantially reduces the number of trainable parameters and removes the dependency on 

large fully connected layers, thereby lowering computational cost and improving parameter 

efficiency. Global and adaptive pooling strategies have been used to simplify CNN 

architectures while preserving discriminative capability, contributing to improved 

generalization and reduced overfitting. Consequently, adaptive average pooling serves as an 
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effective mechanism for balancing classification performance, architectural complexity, and 

computational efficiency in convolutional neural networks [7]. 

2.5 Non-linear layers 

CNNs employ non-linear activation functions to enable the network to identify complex 

features at each hidden layer. The Rectified Linear Unit (ReLU) is commonly used for this 

purpose, implementing the operation y=max (0, Z), which preserves the input and output 

dimensions of the layer. By introducing non-linearity, ReLU enhances the representational 

capacity of the network and the decision function without altering the receptive fields of the 

convolutional layers. Additionally, ReLU offers the practical benefit of significantly faster 

training compared to other non-linear activation functions and is shown in Figure 6[8]. 

 
Figure 6: ReLU Activation Function 

 

2.6 Fully connected layers 

Fully connected layers typically serve as the final stages of a CNN, integrating features 

extracted by preceding layers to produce the network’s output. Each neuron in a fully 

connected layer computes a weighted sum of all the activations from the previous layer, 

effectively combining every feature to determine the contribution toward a specific output. 

This complete connectivity allows the layer to learn complex, global patterns and 

relationships across the entire feature set. By connecting all features, fully connected layers 

enable the network to perform final decision-making, such as Classification, consolidating 

both low-level and high-level representations captured by earlier convolutional and pooling 

layers. 

2.7 Data Augmentation 

In image classification tasks, input images provided to a CNN can vary in multiple ways, 

including orientation, scale, noise, and stability. Consequently, the model must be capable of 

handling and accurately interpreting a wide range of input variations. Training the network on 

every possible variation of each image, however, is impractical. This challenge can be 

effectively addressed using image data augmentation, a technique that generates transformed 

versions of existing images according to specified operations. By applying this method, the 

size of the training dataset is artificially increased, enhancing the diversity of input samples 

and reducing the risk of overfitting. Figure 7 illustrates the impact of various data 

augmentation strategies on a subset of CIFAR-10 dataset images. 
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Figure 7: Visualization of Data Augmentation Operations for ‘Automobile’ class in 

CIFAR-10 Dataset 

 

2.8 Learning Classifier 

Once an efficient convolutional neural network architecture has been structured, the next step 

is to implement a supervised learning algorithm that enables the model to learn to classify 

objects from the input data as shown in Figure 8. In supervised learning, the network is 

trained with labeled examples, allowing it to iteratively adjust its parameters to minimize a 

defined loss function that measures the difference between predicted outputs and true labels. 

This process typically employs optimization techniques such as backpropagation combined 

with stochastic gradient descent, which guides weight updates to improve classification 

accuracy over successive iterations. By leveraging the large volume of labeled training 

samples, supervised training enables the CNN to capture complex data patterns and 

generalize well to new, unseen samples, which is critical for robust classification performance 

in real-world applications [9]. 

 
Figure 8: Model for Supervised Learning 

 

This algorithm enables the network to learn optimal weights and biases such that its output 

closely approximates y(x) for all training inputs x. To achieve this, a cost function, also 

referred to as an objective function or loss function, is defined to quantify the difference 

between the predicted outputs and the true labels.  

In classification tasks, this is commonly formulated using the negative log-likelihood of the 

predicted class probabilities. 
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Where  is Dataset,  is weight parameter,  is ith training data and Y is the target 

data. The training process is considered successful when it identifies weights and biases that 

minimize the cost function. To achieve this, optimization is typically performed using the 

gradient descent algorithm, which iteratively adjusts the parameters in the direction of the 

steepest reduction of the loss. 

2.9 Gradient Descent 

After defining a cost function, the training algorithm aims to minimize it by optimizing the 

network’s weights and biases. These parameters are initially assigned small random values to 

break symmetry and are iteratively refined using gradient-based optimization. Adaptive 

optimizers like Adam, RMSProp, and Adagrad often converge faster in early training but do 

not generalize as well as SGD in many deep learning tasks like computer vision and 

classification [10]. In each iteration, the gradient of the loss with respect to the weights and 

biases is calculated and propagated backward through the network via the backpropagation 

algorithm. Variants such as stochastic gradient descent accelerate convergence and enhance 

stability, allowing the network to effectively capture complex patterns from large-scale 

datasets [10]. 

2.10 Stochastic Gradient Descent (SGD) 

A cost function is determined by the network’s parameters, and the ordinary gradient descent 

algorithm minimizes this function by iteratively moving in the direction of steepest descent 

on the error surface. Stochastic Gradient Descent (SGD) follows the same principle but 

updates parameters more frequently, using gradients computed from a small subset of training 

examples rather than the entire dataset. A popular variant of SGD is Mini-Batch Gradient 

Descent (MSGD), in which the training data is partitioned into multiple batches, and 

gradients are calculated and applied after processing each batch. Much research shows that 

MSGD and its momentum variants often yield better generalization performance than 

adaptive optimizers such as Adam in non-convex deep learning settings. SGD with 

momentum adds a memory of previous gradients to the current update.  Study shows that 

while Adam optimizes faster, SGD frequently achieves superior generalization in practical 

settings. Thus, MSGD with momentum can be considered the most reliable choice when the 

primary goal is robust performance on unseen data rather than solely faster convergence 

[11][12].  The general procedure for MSGD with momentum is outlined in the flowchart in 

Figure 9. 
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Figure 9: Flowchart for MSGD Learning Optimization 

The algorithm begins by initializing the model parameters and setting the velocity to zero. 

For each epoch, the training dataset is first shuffled and then divided into mini batches of a 

specified size. For each mini-batch, the gradient of the loss function is computed with respect 

to the model parameters using only the samples in that mini-batch. The velocity is then 

updated by multiplying the previous velocity by the momentum coefficient and adding the 

current mini-batch gradient. The model parameters are updated by moving in the direction of 

the negative velocity scaled by the learning rate. This process is repeated for all mini batches 

in the epoch and continues for the specified number of epochs.  

2.11 Overfitting and Dropout 

Throughout the training process, a CNN identifies visual patterns by iteratively updating the 

parameters associated with neurons in its hidden layers. These weights determine how 

strongly each neuron responds to specific features, allowing the network to detect edges, 

textures, and higher-level patterns. When the training dataset is small, the network may 

perform very well on the training data but fail to generalize to validation or test data, this 

problem is known as overfitting [13]. Overfitting occurs because the network memorizes 

specific details of the training images rather than learning features that apply broadly to new 

images. Techniques such as dropout, where a random subset of neurons is temporarily 

disabled during training, help prevent overfitting by encouraging the network to develop 

more robust and generalizable feature representations [14]. 

Overfitting in a CNN model can be detected by comparing the accuracy of the training and 
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validation datasets over successive iterations or epochs. Typically, a plot of these accuracies 

reveals overfitting when the training accuracy continues to improve steadily, while the 

validation accuracy plateaus or fails to increase at the same rate. The figure below illustrates 

this scenario, showing a divergence between training and validation performance indicative 

of overfitting which is shown in Figure 10. 

 
Figure 10: Training vs Validation Accuracy 

Dropout is one of the regularization techniques to minimize over-fitting problems. It prevents 

complex co-adaptation on the training data. Since a fully connected layer occupies most of 

the parameters, it is prone to overfitting. In this technique, some of the hidden and visible 

nodes selected randomly with probability P and are dropped. It can also be viewed as model 

averaging neural networks. Dropout technique not only builds an efficient model by 

minimizing overfitting problems but also reduce the training time required. The below figure 

shows how dropout can disintegrate a complex neural structure to smaller networks with less 

connections thus achieving model averaging principle. 

Dropout is a regularization technique used to reduce overfitting and enhance the 

generalization of neural networks. During training, a random subset of neurons is deactivated 

based on a probability P, which limits reliance on specific feature patterns. This method is 

particularly effective in fully connected layers, where the number of parameters is high. By 

reducing overfitting and promoting more robust feature learning, dropout not only improves 

model generalization but can also decrease training time. Figure 11 illustrates how dropout 

decomposes a complex network into smaller subnetworks with fewer connections, thereby 

implementing the principle of model averaging. 

 
Figure 11: Standard CNN vs CNN After Applying Dropout 

 

The term unit dropout denotes the temporary deactivation of a neuron and the elimination of 

all connections linked to it during training. 

2.12 Testing and Evaluation 

The performance of the proposed model is evaluated using the testing dataset from the 

CIFAR-10 datasets, comprising 10,000 images. Model evaluation is conducted using multiple 

performance metrics across testing datasets as mentioned below 

i. Confusion Matrix 

ii. Precision, Recall and F Measure 

https://en.wikipedia.org/wiki/Overfitting
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iii. Validation and Training Accuracy 

iv. Number of Parameters, Model Size and Training Time to achieve maximum 

accuracy 

Considering these parameters collectively allows for a comprehensive evaluation of the 

proposed CNN, capturing both predictive performance and computational efficiency, thereby 

providing a balanced perspective on its suitability for practical image classification 

applications. 

2.13 Confusion Matrix 

The confusion matrix is a performance evaluation tool that organizes prediction results into a 

matrix format, enabling a direct comparison between true class labels and the classifier’s 

predictions. It organizes the classifier’s predictions against the actual class labels, typically 

with one axis representing actual classes and the other representing predicted classes, 

allowing easy visualization of correct and incorrect classifications [15]. For binary 

classification problems, model predictions can be grouped into four distinct outcomes: True 

Positives (TP), which indicate correct detection of positive samples; False Positives (FP), 

occurring when negative samples are incorrectly predicted as positive; False Negatives (FN), 

arising when positive samples are misclassified as negative; and True Negatives (TN), where 

negative samples are accurately identified. The confusion matrix is a foundation for deriving 

important evaluation metrics such as precision, recall, and F1-score, which quantify different 

aspects of classifier performance beyond simple accuracy. 

For any class X, the confusion matrix is given as 

                                                                       Actual Class 

 X Not X 

X TP FP 

Not X FN TN 

 

Figure 12: Confusion Matrix 

 

Correct predictions appear along the main diagonal of the matrix, while off-diagonal entries 

indicate misclassifications as shown in Figure 12.  

2.13 Precision, Recall and F1 Measure 

Precision, recall, and F1-score are key metrics for evaluating the performance of a CNN 

classifier beyond simple accuracy. Precision measures the proportion of correctly predicted 

positive instances among all instances labeled as positive by the model, while recall 

quantifies the proportion of actual positive instances that are correctly identified. For 

example, in a medical imaging application for detecting pneumonia from chest X-rays, high 

recall ensures that most patients with pneumonia are correctly identified, but if precision is 

low, many healthy patients may be incorrectly flagged as positive. Conversely, a model with 

high precision but low recall would correctly identify positive cases while missing a 

significant number of actual patients with pneumonia. Since optimizing one metric does not 

guarantee good performance on the other, the F1-score, defined as the harmonic means of 

precision and recall, provides a balanced measure of model performance. These metrics can 

be computed using the counts of True Positives (TP), False Positives (FP), and False 

     Predicted Class 
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Negatives (FN) derived from the confusion matrix, allowing a comprehensive evaluation of 

the CNN’s predictive capability. Precision, recall and F1 score can be calculated as below 

• Precision = TP / (TP + FP) 

• Recall = TP (TP + FN) 

• F1 Score = 2 (Precision * Recall)/ (Precision + Recall) 

2.14 Validation and Testing Accuracy 

When developing a CNN model, it is essential to utilize two distinct datasets first, a training 

set and second a testing or validation dataset. The network learns feature representations and 

optimizes its parameters using the training data, while the validation dataset is used to 

evaluate its generalization performance. The resulting metrics are referred to as training 

accuracy and validation accuracy, respectively as shown in Figure 13. A large difference 

between training and validation accuracies typically signals overfitting, where the model 

excels on the training set but struggles to generalize to new data. It is therefore essential to 

analyze and address this discrepancy to achieve stable and reliable model performance. 

Careful analysis and mitigation of this gap are crucial to ensure robust and reliable model 

performance.  

 

 
Figure 13: Validation/ Training Accuracy 

 

2.15 Number of Parameters, Model Size and Training Time to achieve maximum accuracy 

In addition to accuracy-based metrics, the efficiency of a convolutional neural network 

(CNN) is evaluated using several computational and model complexity parameters, which are 

essential for assessing its practical applicability. The number of parameters reflects the total 

trainable weights within the network, including convolutional kernels, fully connected layer 

weights, and biases, and provides an indication of the model’s complexity and memory 

footprint. While larger networks can capture more intricate features, they also require more 

memory and may be prone to overfitting, particularly with limited data.  

Model size, typically expressed in megabytes, denotes the storage needed to save the trained 

network and is influenced by both the number of parameters and data precision, where 

smaller models improve memory efficiency and ease of deployment.  

Finally, training time quantifies the duration required for the network to reach its optimal 

accuracy and is affected by factors such as model depth, parameter count, batch size, learning 

rate, and the computing hardware used.  
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2.16 Implementation 

The experiments were carried out using the PyTorch deep learning framework, which 

supports computations on both CPU and GPU, providing an efficient environment for 

designing, training, and evaluating CNNs. Several CNN architectures were developed and 

tested on the CIFAR-10 datasets by systematically changing key hyperparameters, such as the 

number of layers, filter sizes, number of filters, and by applying techniques like data 

augmentation, global and adaptive pooling, and batch normalization. From these experiments, 

the best-performing architecture for the CIFAR-10 dataset is presented below and is shown in 

Figure 14, showing how network design and hyperparameter choices influence both 

classification accuracy and computational efficiency. 

Architecture Specification for Efficient CNN Architecture for CIFAR-10 Dataset 

i. INPUT Layer: Accepts input images of size 32 × 32 with 3 channels (RGB). 

ii. First CONV Layer: Convolution with 48 filters of size 3 × 3, followed by Batch 

Normalization and ReLU activation. 

iii. Second CONV Layer: Convolution with 48 filters of size 3 × 3, followed by Batch 

Normalization and ReLU activation. 

iv. MAXPOOL Layer: Max pooling of size 2 × 2, followed by 10% Dropout. 

v. Third CONV Layer: Convolution with 96 filters of size 3 × 3, followed by Batch 

Normalization and ReLU activation. 

vi. Fourth CONV Layer: Convolution with 96 filters of size 3 × 3, followed by Batch 

Normalization and ReLU activation. 

vii. MAXPOOL Layer: Max pooling of size 2 × 2, followed by 20% Dropout. 

viii. Fifth CONV Layer: Convolution with 192 filters of size 3 × 3, followed by 

Batch Normalization and ReLU activation. 

ix. Sixth CONV Layer: Convolution with 192 filters of size 3 × 3, followed by Batch 

Normalization and ReLU activation. 

x. MAXPOOL Layer: Max pooling of size 2 × 2, followed by 30% Dropout. 

xi. Global Adaptive Average Pooling: Reduces the spatial dimension of each feature map 

to 1 × 1. 

xii. Flatten Layer: Converts the pooled output into a 192-dimensional vector. 

xiii. Fully Connected / OUTPUT Layer: Linear layer mapping 192 units directly to 10 

output classes. 
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Figure 14: Efficient CNN Architecture for CIFAR-10 Dataset 

3. Results and Discussion 

The primary objective of this research is to develop an efficient convolutional neural network 

(CNN) architecture for accurate object classification on the CIFAR-10 dataset through 

systematic fine-tuning of hyperparameters and the application of data augmentation 

techniques. In addition, this study aims to demonstrate an effective methodology for selecting 

suitable hyperparameter configurations when designing compact and efficient CNN 

architectures. The performance of the proposed CNN model was evaluated using standard 

classification metrics, including training accuracy, testing accuracy, and confusion matrix 

analysis. Figure 15 illustrates the training and testing accuracy curves, showing stable 

convergence and consistent improvement across epochs. The final model achieved a 

classification accuracy of 91.11% on the CIFAR-10 test dataset, indicating strong 

generalization performance. Figure 16 presents the confusion matrix, which demonstrates that 

the proposed model performs well across all ten CIFAR-10 classes, with only minor 

misclassifications among visually similar categories. This reflects the model’s ability to learn 

discriminative and class-specific features effectively. Table 2 summarizes the quantitative 

performance metrics, further confirming the robustness of the proposed architecture. 
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3.1 Performance evaluation of CNN architecture for CIFAR-10 Dataset 

 

 

Figure 15: Train and Test Accuracy                                                   Figure 16: Confusion Matrix 

Table 2: Performance Metric 

 

The optimized CNN was trained for 97 epochs, with an average training time of 

approximately 30 seconds per epoch, highlighting its computational efficiency. Compared 

with lightweight CNN architecture MobileNetVx trained under standard settings, which 

contain approximately 1.5 million parameters, and deeper and more complex architectures 

such as VGG-16 and ResNet-18 trained under standard settings, which contain approximately 

138 million and 11.7 million parameters respectively, the proposed model achieves 

competitive classification accuracy with a significantly reduced parameter count 

[16],[17],[18],[19],[20],[21]. The final efficient architecture contains only 0.6 million 

learnable parameters providing a classification accuracy of 91.11%, making it significantly 

more compact while maintaining high accuracy. The optimized lightweight CNN architecture 

consists of three convolutional blocks with progressively increasing channel dimensions (48, 

96, and 192). The use of 3×3 convolutional filters enable effective feature extraction while 

limiting parameter growth. Batch normalization improves training stability, while max-

pooling layers reduce spatial dimensionality and enhances receptive field efficiency. Stage-
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wise dropout (0.1, 0.2, and 0.3) mitigates overfitting in deeper layers, and adaptive average 

pooling significantly reduces the number of parameters in the classification stage. 

Optimization using minibatch stochastic gradient descent (MSGD), combined with data 

augmentation, further contributes to improved generalization performance. Several 

architectural insights are supported by the experimental results: 

• The use of 3×3 convolutional filters enable fine-grained feature extraction with fewer 

parameters. 

• Progressive increase in filter depth enhances the network’s ability to capture high-

level semantic features. 

• Batch normalization improves training stability and allows the use of higher learning 

rates. 

• Stage-wise dropout rates (0.1, 0.2, and 0.3) effectively reduce overfitting in deeper 

layers. 

• Max pooling between convolutional blocks efficiently reduces spatial resolution while 

preserving important features. 

• Global adaptive average pooling significantly reduces parameter count and improves 

generalization. 

• Stochastic Gradient Descent (SGD) provides stable and efficient optimization. 

• Data augmentation techniques further improve generalization and contribute to higher 

classification accuracy. 

Overall, the results demonstrate that careful architectural design combined with appropriate 

hyperparameter selection and regularization strategies can yield an efficient light weight 

CNN model with strong classification performance on CIFAR10 dataset. 

4. Conclusions 

This study investigates the design of an efficient convolutional neural network (CNN) 

architecture for image classification on the CIFAR-10 dataset. Through systematic 

exploration of architectural depth, filter dimensions, regularization strategies, and 

optimization parameters, an optimized CNN model was developed that achieves 91.11% 

classification accuracy with only 0.6 million parameters. Overall, this study highlights key 

design considerations for building efficient CNN architectures and provides empirical 

evidence supporting the use of small convolutional filters, progressive depth-wise channel 

expansion, dropout regularization, and data augmentation. Future work will focus on 

evaluating the model on more complex and high-resolution datasets, such as ImageNet, Tiny 

ImageNet, or CIFAR-100, including those with class imbalance or greater intra-class 

variation, to test generalization. Additionally, the impact of alternative optimization 

algorithms such as AdaDelta, Adam, and AdaGrad can be assessed, and the proposed 

architecture can be benchmarked against current state-of-the-art models in challenging image 

classification scenarios. 
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