
 Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026

[THAPA] 108

RESEARCH ARTICLE ISSN 2738-9898 (Print) ISSN 2738-9901 (Online)

Design of an Efficient CNN Architecture with SGD Optimization for

Accurate and Robust Object Classification
Bhesh Bahadur Thapa

School of Engineering, Faculty of Science and Technology, Pokhara University, Nepal

* Author to whom correspondence should be addressed; E-Mail:bhesh.thapa@pu.edu.np

Received: 24 December 2025; Received in revised form: 23 January, 2026; Accepted: 25 January,

2026; Published: 29 January, 2026

Abstract

Deep learning has greatly improved image-based object classification in recent years. Among

different models, Convolutional Neural Networks (CNNs) perform better than traditional

image processing methods and simple neural networks. Despite their success, achieving a

balance between classification accuracy, model complexity, and computational efficiency

remains a key research challenge as classification accuracy and training cost strongly depend

on network structure and learning strategy. In this study, an optimized deep CNN model for

object classification is explored by carefully analyzing important architectural and training

hyperparameters. Experiments are conducted using CIFAR-10 standard datasets. The

proposed architecture is organized into three convolutional stages with increasing channel

capacity. Batch normalization is utilized to stabilize gradient propagation, while max pooling

is employed for spatial compression. Dropout-based regularization is strategically integrated

to reduce overfitting. Additionally, adaptive average pooling is used before the classifier to

maintain expressive feature learning while minimizing the overall parameter count. All

experiments are conducted using GPU acceleration and optimized using momentum based

minibatch Stochastic Gradient Descent (MSGD) algorithm to ensure stable and efficient

learning. Model performance is evaluated in terms of classification accuracy, parameter

efficiency, training time and number of training epochs. The experimental results

demonstrate that the proposed CNN architecture achieves competitive accuracy on CIFAR-10

while maintaining a relatively low computational cost, highlighting the effectiveness of

careful architectural design and optimization for efficient image classification. In addition,

comparisons with existing state-of-the-art models show that the proposed method delivers

higher classification accuracy and improved computational efficiency.

Keywords

Deep Learning, CNN, Computer Vision, Data Augmentation, Machine Learning,

Optimization, Object Classification

1. Introduction

Artificial Neural Networks (ANNs) are machine learning models that learn patterns from data

using interconnected processing units inspired by biological neurons. Unlike rule-based

programming approaches, ANNs rely on interconnected processing units that adaptively learn

patterns and relationships directly from data. Through iterative training, these models have

demonstrated the ability to solve complex tasks that were traditionally considered difficult for

machines, including image recognition, speech processing, facial analysis, object detection,

and visual classification. The success of learning-based systems like neural networks depends

mailto:bhesh.thapa@pu.edu.np

 Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026

[THAPA] 109

not only on having a large amount of high-quality training data, but also on carefully testing

and evaluating the model on new, unseen data to ensure that it can generalize well and

perform accurately on real-world situations beyond the data it was trained on.

Neural networks are often described in terms of their depth, which refers to the number of

layers that exist between the input and output nodes, commonly known as hidden layers.

Traditionally, it was believed that a small number of hidden layers, typically two or three,

were sufficient for a neural network to learn patterns effectively and perform its intended

tasks. However, with the advancement of computational resources and a deeper

understanding of network behavior, increasing the number of hidden layers allows the

network to capture more complex and abstract representations of the input data. These high-

dimensional features provide richer information, enabling the network to model intricate

relationships and subtle patterns that simpler architectures might miss. Networks with

multiple hidden layers are collectively known as Deep Neural Networks (DNNs), forming the

foundation of many state-of-the-art models in machine learning. By stacking layers and

increasing network depth thoughtfully, DNNs can achieve superior learning capacity and

generalization performance, which is particularly important for complex pattern classification

problems like Image recognition, Speech recognition etc. [1]. In computer vision

applications, Convolutional Neural Networks (CNNs) are extensively employed due to their

ability to capture local spatial patterns and build hierarchical feature representations. The

effectiveness of Convolutional Neural Networks (CNNs) is strongly influenced by both their

architectural design and training strategies, including choices such as filter dimensions,

number of filters, network depth, and the arrangement of hidden layers. This research work

aims to develop CNN architecture optimized for object classification and to provide clear,

systematic guidance on selecting hyperparameters that achieve an optimal balance between

model accuracy and computational cost

1.2 Convolution Neural Network (CNN)

Convolutional Neural Networks (CNNs) are a specialized variant of traditional Multilayer

Perceptron (MLP) architectures that integrate one or more convolution layers, optional

pooling layers and final fully connected layers. Convolutional layers enforce local

connectivity by linking each neuron only to a small receptive field of the previous layer and

apply weight sharing across spatial locations to extract hierarchical features from structured

inputs such as images [2]. Pooling decreases feature map dimensions by merging values from

nearby spatial locations, thereby decreasing computational complexity and improving

translation invariance in CNNs [2]. The fully connected layer densely links all neurons from

the preceding layer so that the aggregated feature representations can be transformed into the

final classification or recognition task output [3].

In this structure, each neuron still has learnable weights and biases and performs a weighted

sum followed by a non-linear activation, but compared with ordinary MLPs, CNNs

dramatically reduce the number of parameters while capturing spatially invariant patterns and

enabling efficient learning of both low-level and high-level representations, which has

contributed to their state-of-the-art performance across a range of computer vision and pattern

recognition tasks in recent literature [3]. Consider a simple example where the input is an

RGB image of size 32×32. In a fully connected neural network, each input pixel is connected

 Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026

[THAPA] 110

to every neuron in the next layer, resulting in 32 × 32 × 3 = 3072 input weights for just one

neuron. While this number is relatively manageable, the situation becomes significantly

worse as the image size increases. For instance, an RGB image of size 200 × 200 * 3

=120,000 input values, meaning each neuron would require 120,000 weights. Such many

parameters lead to high computational cost and increased memory usage. More importantly,

the excessive number of weights makes the model highly prone to overfitting, as it can easily

memorize the training data rather than generalize well to unseen images. Therefore, fully

connected models are inefficient for high-dimensional image data, and this limitation

motivates the use of convolutional neural networks, which significantly reduce parameters

through local connectivity and weight sharing, thereby improving generalization and

reducing overfitting

Convolutional Neural Networks (CNNs or ConvNets) are a specialized form of multilayer

perceptions that are widely used for image recognition and classification tasks. Unlike

traditional MLPs, where every neuron is fully connected to the next layer, CNNs employ

local connectivity, meaning each neuron is connected only to a small, localized region of the

previous layer. This region, known as the receptive field, enables the network to capture

important local features such as edges and textures while significantly reducing the number

of learnable parameters. By stacking multiple convolutional layers, CNNs progressively

combine local features into more complex and abstract representations, which explains their

effectiveness in visual learning tasks. Neural networks are often characterized by their depth,

which refers to the number of layers between the input and output, commonly called hidden

layers. Earlier assumptions suggested that networks with only two or three hidden layers were

sufficient for most learning tasks. However, subsequent research demonstrated that increasing

the number of layers enables neural networks to learn more complex and high-dimensional

representations of input data [4]. Networks with many such layers are known as Deep Neural

Networks (DNNs). Convolutional Neural Networks (CNNs) are a prominent example of

DNNs and have achieved remarkable success in computer vision applications such as image

classification and object recognition as shown in Figure 1.

Figure 1 : CNN Architecture [5]

2. Methodology

2.1 Dataset Preparation

Initially, the data are divided into training, validation, and test data sets. The training data are

responsible for guiding the learning process by tuning the model’s weights and internal

parameters. In contrast, the validation set is not utilized for parameter updates, rather, it

 Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026

[THAPA] 111

serves to analyze the model’s predictive performance, detect potential overfitting, and

evaluate the efficiency of the convolutional neural network (CNN) during training. After

training is complete, model performance is examined using the test set, which contains data

unseen by the model. In this study, standard CIFAR-10 dataset is utilized and is shown in

Figure 2. The CIFAR-10 dataset consists of 60,000 color (RGB) images with a resolution of

32 × 32 pixels, along with a separate set of 10,000 validation samples. Among these 50000

training datasets, 40,000 images are allocated to the training set for model optimization, while

the remaining 10,000 images are reserved for testing to evaluate model performance. The

dataset contains 10 distinct object categories with each class represented by 5,000 training

images and 1,000 validation images. Further, CIFAR-10 maintains class balance by including

an equal number of samples for each category. Its moderate size and diversity make

CIFAR-10 an ideal standard for assessing the performance of convolutional neural networks

and other machine learning algorithms [6].

Figure 2: Visualization of CIFER-10 Dataset

Different classes of CIFER-10 dataset are shown in Table 1.

Table 1 : Cifer-10 Dataset Class and Label [6]

S. N Class

No. of Training

Images

No. of Validation

Images

No. of testing

Images Label

1 Airplane 4000 1000 1000 0

2 Automobile 4000 1000 1000 1

3 Bird 4000 1000 1000 2

4 Cat 4000 1000 1000 3

5 Deer 4000 1000 1000 4

6 Dog 4000 1000 1000 5

7 Frog 4000 1000 1000 6

8 Horse 4000 1000 1000 7

9 Ship 4000 1000 1000 8

 Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026

[THAPA] 112

10 Truck 4000 1000 1000 9

2.2 Architecture Design

A Convolutional Neural Network (CNN) consists of an input layer, an output layer, and multiple

hidden layers, including convolutional, pooling, and fully connected layers, which can be

combined and stacked in various configurations to form a complex architecture capable of

handling diverse classification tasks as depicted in Figure 3. The design and performance of

CNNs are highly dependent on the target task, requiring careful tuning of hyperparameters such

as the number of layers, kernel sizes, number of filters, stride lengths, and dropout rates to

balance computational cost and classification accuracy. For instance, shallow networks with

fewer layers and small kernels are often sufficient for simpler tasks such as MNIST digit

recognition, whereas complex datasets like CIFAR-10 or ImageNet demand deeper and wider

networks with larger receptive fields to capture intricate patterns. To address these challenges,

the proposed lightweight CNN architecture employs a three-block convolutional design with

progressively increasing feature channels, batch normalization after each convolution, and

adaptive average pooling before the classifier, enabling effective hierarchical feature extraction

while reducing trainable parameters and mitigating overfitting.

Figure 3: CNN Layers

2.3 Convolution Layer Design

The convolutional layer extracts hierarchical features from the input, with early layers

capturing low-level patterns such as edges and corners, and deeper layers learning higher-

level representations. Each layer contains a set of learnable filters, applied across local

regions called receptive fields, which are shared across neurons to detect specific features. By

stacking multiple filters, the depth of the layer increases, enabling the network to learn rich

feature representations through linear filter weights applied as convolutions over the previous

layer which can be shown in Figure 4.

Figure 4: Convolution Operation

 Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026

[THAPA] 113

In a convolutional neural network, the convolutional layer processes an input feature volume

of size W1 × H1 × D1 and produces a corresponding output feature volume with dimensions

W2 × H2 × D2. The operation of this layer is governed by four key hyperparameters: the

number of filters (K), the spatial size of each filter (F), the stride length (S), and the amount

of zero-padding applied (P). The dimensions of the resulting output volume are determined

based on these hyperparameters as follows:

2.4 Pooling / Sub Sampling Layer Design

The pooling (subsampling) layer reduces feature representations by decreasing their spatial

dimensions, thereby reducing the size of the input data without discarding critical

characteristics leading to lower computational cost, decreased memory consumption, and

increased robustness to small input variations. This dimensionality reduction is typically

achieved using either max pooling or average pooling operations. In both approaches, the

input is partitioned into non-overlapping two-dimensional regions, over which the pooling

operation is applied. For example, a pooling kernel of size 2 × 2 with a stride of 2 units slides

across the input to generate the down sampled output, as illustrated in the Figure 5.

Figure 5: Max Pooling Operation

A pooling layer takes an input volume of size W1 × H1 × D1 and produces an output volume

of size W2 × H2 × D2. Its operation is governed by two key hyperparameters: the size of the

pooling region (F) and the stride length (S). The resulting output dimensions are determined

based on these hyperparameters as follows: While such fixed pooling operations effectively

reduce spatial resolution, they require careful manual tuning and may increase architectural

rigidity. In the proposed architecture, adaptive average pooling is employed to overcome

these limitations. Unlike traditional pooling layers, adaptive average pooling dynamically

adjusts its pooling regions to produce a predefined output size, regardless of the input feature

map dimensions. By incorporating adaptive average pooling before the final classification

stage, the spatial information of each feature map is condensed into a single representative

value per channel, producing a compact global feature representation. This approach

substantially reduces the number of trainable parameters and removes the dependency on

large fully connected layers, thereby lowering computational cost and improving parameter

efficiency. Global and adaptive pooling strategies have been used to simplify CNN

architectures while preserving discriminative capability, contributing to improved

generalization and reduced overfitting. Consequently, adaptive average pooling serves as an

 Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026

[THAPA] 114

effective mechanism for balancing classification performance, architectural complexity, and

computational efficiency in convolutional neural networks [7].

2.5 Non-linear layers

CNNs employ non-linear activation functions to enable the network to identify complex

features at each hidden layer. The Rectified Linear Unit (ReLU) is commonly used for this

purpose, implementing the operation y=max (0, Z), which preserves the input and output

dimensions of the layer. By introducing non-linearity, ReLU enhances the representational

capacity of the network and the decision function without altering the receptive fields of the

convolutional layers. Additionally, ReLU offers the practical benefit of significantly faster

training compared to other non-linear activation functions and is shown in Figure 6[8].

Figure 6: ReLU Activation Function

2.6 Fully connected layers

Fully connected layers typically serve as the final stages of a CNN, integrating features

extracted by preceding layers to produce the network’s output. Each neuron in a fully

connected layer computes a weighted sum of all the activations from the previous layer,

effectively combining every feature to determine the contribution toward a specific output.

This complete connectivity allows the layer to learn complex, global patterns and

relationships across the entire feature set. By connecting all features, fully connected layers

enable the network to perform final decision-making, such as Classification, consolidating

both low-level and high-level representations captured by earlier convolutional and pooling

layers.

2.7 Data Augmentation

In image classification tasks, input images provided to a CNN can vary in multiple ways,

including orientation, scale, noise, and stability. Consequently, the model must be capable of

handling and accurately interpreting a wide range of input variations. Training the network on

every possible variation of each image, however, is impractical. This challenge can be

effectively addressed using image data augmentation, a technique that generates transformed

versions of existing images according to specified operations. By applying this method, the

size of the training dataset is artificially increased, enhancing the diversity of input samples

and reducing the risk of overfitting. Figure 7 illustrates the impact of various data

augmentation strategies on a subset of CIFAR-10 dataset images.

 Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026

[THAPA] 115

Figure 7: Visualization of Data Augmentation Operations for ‘Automobile’ class in

CIFAR-10 Dataset

2.8 Learning Classifier

Once an efficient convolutional neural network architecture has been structured, the next step

is to implement a supervised learning algorithm that enables the model to learn to classify

objects from the input data as shown in Figure 8. In supervised learning, the network is

trained with labeled examples, allowing it to iteratively adjust its parameters to minimize a

defined loss function that measures the difference between predicted outputs and true labels.

This process typically employs optimization techniques such as backpropagation combined

with stochastic gradient descent, which guides weight updates to improve classification

accuracy over successive iterations. By leveraging the large volume of labeled training

samples, supervised training enables the CNN to capture complex data patterns and

generalize well to new, unseen samples, which is critical for robust classification performance

in real-world applications [9].

Figure 8: Model for Supervised Learning

This algorithm enables the network to learn optimal weights and biases such that its output

closely approximates y(x) for all training inputs x. To achieve this, a cost function, also

referred to as an objective function or loss function, is defined to quantify the difference

between the predicted outputs and the true labels.

In classification tasks, this is commonly formulated using the negative log-likelihood of the

predicted class probabilities.

 Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026

[THAPA] 116

Where is Dataset, is weight parameter, is ith training data and Y is the target

data. The training process is considered successful when it identifies weights and biases that

minimize the cost function. To achieve this, optimization is typically performed using the

gradient descent algorithm, which iteratively adjusts the parameters in the direction of the

steepest reduction of the loss.

2.9 Gradient Descent

After defining a cost function, the training algorithm aims to minimize it by optimizing the

network’s weights and biases. These parameters are initially assigned small random values to

break symmetry and are iteratively refined using gradient-based optimization. Adaptive

optimizers like Adam, RMSProp, and Adagrad often converge faster in early training but do

not generalize as well as SGD in many deep learning tasks like computer vision and

classification [10]. In each iteration, the gradient of the loss with respect to the weights and

biases is calculated and propagated backward through the network via the backpropagation

algorithm. Variants such as stochastic gradient descent accelerate convergence and enhance

stability, allowing the network to effectively capture complex patterns from large-scale

datasets [10].

2.10 Stochastic Gradient Descent (SGD)

A cost function is determined by the network’s parameters, and the ordinary gradient descent

algorithm minimizes this function by iteratively moving in the direction of steepest descent

on the error surface. Stochastic Gradient Descent (SGD) follows the same principle but

updates parameters more frequently, using gradients computed from a small subset of training

examples rather than the entire dataset. A popular variant of SGD is Mini-Batch Gradient

Descent (MSGD), in which the training data is partitioned into multiple batches, and

gradients are calculated and applied after processing each batch. Much research shows that

MSGD and its momentum variants often yield better generalization performance than

adaptive optimizers such as Adam in non-convex deep learning settings. SGD with

momentum adds a memory of previous gradients to the current update. Study shows that

while Adam optimizes faster, SGD frequently achieves superior generalization in practical

settings. Thus, MSGD with momentum can be considered the most reliable choice when the

primary goal is robust performance on unseen data rather than solely faster convergence

[11][12]. The general procedure for MSGD with momentum is outlined in the flowchart in

Figure 9.

 Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026

[THAPA] 117

Figure 9: Flowchart for MSGD Learning Optimization

The algorithm begins by initializing the model parameters and setting the velocity to zero.

For each epoch, the training dataset is first shuffled and then divided into mini batches of a

specified size. For each mini-batch, the gradient of the loss function is computed with respect

to the model parameters using only the samples in that mini-batch. The velocity is then

updated by multiplying the previous velocity by the momentum coefficient and adding the

current mini-batch gradient. The model parameters are updated by moving in the direction of

the negative velocity scaled by the learning rate. This process is repeated for all mini batches

in the epoch and continues for the specified number of epochs.

2.11 Overfitting and Dropout

Throughout the training process, a CNN identifies visual patterns by iteratively updating the

parameters associated with neurons in its hidden layers. These weights determine how

strongly each neuron responds to specific features, allowing the network to detect edges,

textures, and higher-level patterns. When the training dataset is small, the network may

perform very well on the training data but fail to generalize to validation or test data, this

problem is known as overfitting [13]. Overfitting occurs because the network memorizes

specific details of the training images rather than learning features that apply broadly to new

images. Techniques such as dropout, where a random subset of neurons is temporarily

disabled during training, help prevent overfitting by encouraging the network to develop

more robust and generalizable feature representations [14].

Overfitting in a CNN model can be detected by comparing the accuracy of the training and

 Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026

[THAPA] 118

validation datasets over successive iterations or epochs. Typically, a plot of these accuracies

reveals overfitting when the training accuracy continues to improve steadily, while the

validation accuracy plateaus or fails to increase at the same rate. The figure below illustrates

this scenario, showing a divergence between training and validation performance indicative

of overfitting which is shown in Figure 10.

Figure 10: Training vs Validation Accuracy

Dropout is one of the regularization techniques to minimize over-fitting problems. It prevents

complex co-adaptation on the training data. Since a fully connected layer occupies most of

the parameters, it is prone to overfitting. In this technique, some of the hidden and visible

nodes selected randomly with probability P and are dropped. It can also be viewed as model

averaging neural networks. Dropout technique not only builds an efficient model by

minimizing overfitting problems but also reduce the training time required. The below figure

shows how dropout can disintegrate a complex neural structure to smaller networks with less

connections thus achieving model averaging principle.

Dropout is a regularization technique used to reduce overfitting and enhance the

generalization of neural networks. During training, a random subset of neurons is deactivated

based on a probability P, which limits reliance on specific feature patterns. This method is

particularly effective in fully connected layers, where the number of parameters is high. By

reducing overfitting and promoting more robust feature learning, dropout not only improves

model generalization but can also decrease training time. Figure 11 illustrates how dropout

decomposes a complex network into smaller subnetworks with fewer connections, thereby

implementing the principle of model averaging.

Figure 11: Standard CNN vs CNN After Applying Dropout

The term unit dropout denotes the temporary deactivation of a neuron and the elimination of

all connections linked to it during training.

2.12 Testing and Evaluation

The performance of the proposed model is evaluated using the testing dataset from the

CIFAR-10 datasets, comprising 10,000 images. Model evaluation is conducted using multiple

performance metrics across testing datasets as mentioned below

i. Confusion Matrix

ii. Precision, Recall and F Measure

https://en.wikipedia.org/wiki/Overfitting

 Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026

[THAPA] 119

iii. Validation and Training Accuracy

iv. Number of Parameters, Model Size and Training Time to achieve maximum

accuracy

Considering these parameters collectively allows for a comprehensive evaluation of the

proposed CNN, capturing both predictive performance and computational efficiency, thereby

providing a balanced perspective on its suitability for practical image classification

applications.

2.13 Confusion Matrix

The confusion matrix is a performance evaluation tool that organizes prediction results into a

matrix format, enabling a direct comparison between true class labels and the classifier’s

predictions. It organizes the classifier’s predictions against the actual class labels, typically

with one axis representing actual classes and the other representing predicted classes,

allowing easy visualization of correct and incorrect classifications [15]. For binary

classification problems, model predictions can be grouped into four distinct outcomes: True

Positives (TP), which indicate correct detection of positive samples; False Positives (FP),

occurring when negative samples are incorrectly predicted as positive; False Negatives (FN),

arising when positive samples are misclassified as negative; and True Negatives (TN), where

negative samples are accurately identified. The confusion matrix is a foundation for deriving

important evaluation metrics such as precision, recall, and F1-score, which quantify different

aspects of classifier performance beyond simple accuracy.

For any class X, the confusion matrix is given as

 Actual Class

 X Not X

X TP FP

Not X FN TN

Figure 12: Confusion Matrix

Correct predictions appear along the main diagonal of the matrix, while off-diagonal entries

indicate misclassifications as shown in Figure 12.

2.13 Precision, Recall and F1 Measure

Precision, recall, and F1-score are key metrics for evaluating the performance of a CNN

classifier beyond simple accuracy. Precision measures the proportion of correctly predicted

positive instances among all instances labeled as positive by the model, while recall

quantifies the proportion of actual positive instances that are correctly identified. For

example, in a medical imaging application for detecting pneumonia from chest X-rays, high

recall ensures that most patients with pneumonia are correctly identified, but if precision is

low, many healthy patients may be incorrectly flagged as positive. Conversely, a model with

high precision but low recall would correctly identify positive cases while missing a

significant number of actual patients with pneumonia. Since optimizing one metric does not

guarantee good performance on the other, the F1-score, defined as the harmonic means of

precision and recall, provides a balanced measure of model performance. These metrics can

be computed using the counts of True Positives (TP), False Positives (FP), and False

 Predicted Class

 Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026

[THAPA] 120

Negatives (FN) derived from the confusion matrix, allowing a comprehensive evaluation of

the CNN’s predictive capability. Precision, recall and F1 score can be calculated as below

• Precision = TP / (TP + FP)

• Recall = TP (TP + FN)

• F1 Score = 2 (Precision * Recall)/ (Precision + Recall)

2.14 Validation and Testing Accuracy

When developing a CNN model, it is essential to utilize two distinct datasets first, a training

set and second a testing or validation dataset. The network learns feature representations and

optimizes its parameters using the training data, while the validation dataset is used to

evaluate its generalization performance. The resulting metrics are referred to as training

accuracy and validation accuracy, respectively as shown in Figure 13. A large difference

between training and validation accuracies typically signals overfitting, where the model

excels on the training set but struggles to generalize to new data. It is therefore essential to

analyze and address this discrepancy to achieve stable and reliable model performance.

Careful analysis and mitigation of this gap are crucial to ensure robust and reliable model

performance.

Figure 13: Validation/ Training Accuracy

2.15 Number of Parameters, Model Size and Training Time to achieve maximum accuracy

In addition to accuracy-based metrics, the efficiency of a convolutional neural network

(CNN) is evaluated using several computational and model complexity parameters, which are

essential for assessing its practical applicability. The number of parameters reflects the total

trainable weights within the network, including convolutional kernels, fully connected layer

weights, and biases, and provides an indication of the model’s complexity and memory

footprint. While larger networks can capture more intricate features, they also require more

memory and may be prone to overfitting, particularly with limited data.

Model size, typically expressed in megabytes, denotes the storage needed to save the trained

network and is influenced by both the number of parameters and data precision, where

smaller models improve memory efficiency and ease of deployment.

Finally, training time quantifies the duration required for the network to reach its optimal

accuracy and is affected by factors such as model depth, parameter count, batch size, learning

rate, and the computing hardware used.

 Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026

[THAPA] 121

2.16 Implementation

The experiments were carried out using the PyTorch deep learning framework, which

supports computations on both CPU and GPU, providing an efficient environment for

designing, training, and evaluating CNNs. Several CNN architectures were developed and

tested on the CIFAR-10 datasets by systematically changing key hyperparameters, such as the

number of layers, filter sizes, number of filters, and by applying techniques like data

augmentation, global and adaptive pooling, and batch normalization. From these experiments,

the best-performing architecture for the CIFAR-10 dataset is presented below and is shown in

Figure 14, showing how network design and hyperparameter choices influence both

classification accuracy and computational efficiency.

Architecture Specification for Efficient CNN Architecture for CIFAR-10 Dataset

i. INPUT Layer: Accepts input images of size 32 × 32 with 3 channels (RGB).

ii. First CONV Layer: Convolution with 48 filters of size 3 × 3, followed by Batch

Normalization and ReLU activation.

iii. Second CONV Layer: Convolution with 48 filters of size 3 × 3, followed by Batch

Normalization and ReLU activation.

iv. MAXPOOL Layer: Max pooling of size 2 × 2, followed by 10% Dropout.

v. Third CONV Layer: Convolution with 96 filters of size 3 × 3, followed by Batch

Normalization and ReLU activation.

vi. Fourth CONV Layer: Convolution with 96 filters of size 3 × 3, followed by Batch

Normalization and ReLU activation.

vii. MAXPOOL Layer: Max pooling of size 2 × 2, followed by 20% Dropout.

viii. Fifth CONV Layer: Convolution with 192 filters of size 3 × 3, followed by

Batch Normalization and ReLU activation.

ix. Sixth CONV Layer: Convolution with 192 filters of size 3 × 3, followed by Batch

Normalization and ReLU activation.

x. MAXPOOL Layer: Max pooling of size 2 × 2, followed by 30% Dropout.

xi. Global Adaptive Average Pooling: Reduces the spatial dimension of each feature map

to 1 × 1.

xii. Flatten Layer: Converts the pooled output into a 192-dimensional vector.

xiii. Fully Connected / OUTPUT Layer: Linear layer mapping 192 units directly to 10

output classes.

 Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026

[THAPA] 122

Figure 14: Efficient CNN Architecture for CIFAR-10 Dataset

3. Results and Discussion

The primary objective of this research is to develop an efficient convolutional neural network

(CNN) architecture for accurate object classification on the CIFAR-10 dataset through

systematic fine-tuning of hyperparameters and the application of data augmentation

techniques. In addition, this study aims to demonstrate an effective methodology for selecting

suitable hyperparameter configurations when designing compact and efficient CNN

architectures. The performance of the proposed CNN model was evaluated using standard

classification metrics, including training accuracy, testing accuracy, and confusion matrix

analysis. Figure 15 illustrates the training and testing accuracy curves, showing stable

convergence and consistent improvement across epochs. The final model achieved a

classification accuracy of 91.11% on the CIFAR-10 test dataset, indicating strong

generalization performance. Figure 16 presents the confusion matrix, which demonstrates that

the proposed model performs well across all ten CIFAR-10 classes, with only minor

misclassifications among visually similar categories. This reflects the model’s ability to learn

discriminative and class-specific features effectively. Table 2 summarizes the quantitative

performance metrics, further confirming the robustness of the proposed architecture.

 Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026

[THAPA] 123

3.1 Performance evaluation of CNN architecture for CIFAR-10 Dataset

Figure 15: Train and Test Accuracy Figure 16: Confusion Matrix

Table 2: Performance Metric

The optimized CNN was trained for 97 epochs, with an average training time of

approximately 30 seconds per epoch, highlighting its computational efficiency. Compared

with lightweight CNN architecture MobileNetVx trained under standard settings, which

contain approximately 1.5 million parameters, and deeper and more complex architectures

such as VGG-16 and ResNet-18 trained under standard settings, which contain approximately

138 million and 11.7 million parameters respectively, the proposed model achieves

competitive classification accuracy with a significantly reduced parameter count

[16],[17],[18],[19],[20],[21]. The final efficient architecture contains only 0.6 million

learnable parameters providing a classification accuracy of 91.11%, making it significantly

more compact while maintaining high accuracy. The optimized lightweight CNN architecture

consists of three convolutional blocks with progressively increasing channel dimensions (48,

96, and 192). The use of 3×3 convolutional filters enable effective feature extraction while

limiting parameter growth. Batch normalization improves training stability, while max-

pooling layers reduce spatial dimensionality and enhances receptive field efficiency. Stage-

 Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026

[THAPA] 124

wise dropout (0.1, 0.2, and 0.3) mitigates overfitting in deeper layers, and adaptive average

pooling significantly reduces the number of parameters in the classification stage.

Optimization using minibatch stochastic gradient descent (MSGD), combined with data

augmentation, further contributes to improved generalization performance. Several

architectural insights are supported by the experimental results:

• The use of 3×3 convolutional filters enable fine-grained feature extraction with fewer

parameters.

• Progressive increase in filter depth enhances the network’s ability to capture high-

level semantic features.

• Batch normalization improves training stability and allows the use of higher learning

rates.

• Stage-wise dropout rates (0.1, 0.2, and 0.3) effectively reduce overfitting in deeper

layers.

• Max pooling between convolutional blocks efficiently reduces spatial resolution while

preserving important features.

• Global adaptive average pooling significantly reduces parameter count and improves

generalization.

• Stochastic Gradient Descent (SGD) provides stable and efficient optimization.

• Data augmentation techniques further improve generalization and contribute to higher

classification accuracy.

Overall, the results demonstrate that careful architectural design combined with appropriate

hyperparameter selection and regularization strategies can yield an efficient light weight

CNN model with strong classification performance on CIFAR10 dataset.

4. Conclusions

This study investigates the design of an efficient convolutional neural network (CNN)

architecture for image classification on the CIFAR-10 dataset. Through systematic

exploration of architectural depth, filter dimensions, regularization strategies, and

optimization parameters, an optimized CNN model was developed that achieves 91.11%

classification accuracy with only 0.6 million parameters. Overall, this study highlights key

design considerations for building efficient CNN architectures and provides empirical

evidence supporting the use of small convolutional filters, progressive depth-wise channel

expansion, dropout regularization, and data augmentation. Future work will focus on

evaluating the model on more complex and high-resolution datasets, such as ImageNet, Tiny

ImageNet, or CIFAR-100, including those with class imbalance or greater intra-class

variation, to test generalization. Additionally, the impact of alternative optimization

algorithms such as AdaDelta, Adam, and AdaGrad can be assessed, and the proposed

architecture can be benchmarked against current state-of-the-art models in challenging image

classification scenarios.

Conflicts of Interest Statement

The Authors declare that they have no financial interests or personal relationships that could

have influenced the research presented in this paper.

Data Availability Statement

The data supporting the findings of this study are presented in the manuscript. Additional

data will be provided upon request.

 Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026

[THAPA] 125

References

1. Shiri, F. M., T. Perumal, N. Mustapha, and R. Mohamed. “A Comprehensive

Overview and Comparative Analysis on Deep Learning Models.” Journal of Artificial

Intelligence, vol. 6, no. 1, 2024, pp. 301–360.

2. Krichen, Mohamed. “Convolutional Neural Networks: A Survey.” Computers, vol.

12, no. 8, 2023, p. 151, doi:10.3390/computers12080151.

3. Krichen, Mohamed. “Fully Connected Layer.” Convolutional Neural Networks: A

Survey, Computers, vol. 12, no. 8, 2023.

4. Cagnetta, Francesco, et al. “How Deep Neural Networks Learn Compositional Data:

The Random Hierarchy Model.” Physical Review Research, vol. 14, no. 3, 2023, p.

031001.

5. Zilliz. “What Is a Convolutional Neural Network? An Engineer’s Guide.” Zilliz

Glossary, 2025, zilliz.com/glossary/convolutional-neural-network. Accessed 3 June

2025.

6. emangope.“CIFAR-10 Dataset.” Kaggle, 2025,

www.kaggle.com/datasets/emangope/cifar-10. Accessed 8 June 2025.

7. Habib, Ghulam, et al. “GAPCNN with HyPar: Global Average Pooling CNN for

Image Classification.” IEEE Access, vol. 10, 2022, pp. 125462–125474.

8. Ramachandran, S., P. K. S. Kumar, and B. H. K. “Activation Functions in Deep

Learning.” arXiv, arXiv:2109.14545, 2022.

9. Latif, Ghulam, et al. “Deep Convolutional Neural Network Model Optimization

Techniques—A Review for Medical Imaging.” AIMS Mathematics, vol. 9, no. 8,

2024, pp. 20539–20571, doi:10.3934/math.2024998.

10. Tian, Y., Y. Zhang, and H. Zhang. “Recent Advances in Stochastic Gradient Descent

in Deep Learning.” Mathematics, vol. 11, no. 3, 2023, p. 682,

doi:10.3390/math11030682.

11. Keskar, Nitish Shirish, and Richard Socher. “Improving Generalization Performance

by Switching from Adam to SGD.” arXiv, arXiv:1712.07628, 2017.

12. Jelassi, Samy, and Yu Li. “Towards Understanding How Momentum Improves

Generalization in Deep Learning.” Proceedings of the International Conference on

Machine Learning (ICML), PMLR, 2022.

13. Dishar, H. K., and L. A. Muhammed. “A Review of the Overfitting Problem in

Convolutional Neural Networks and Remedy Approaches.” Journal of Al-Qadisiyah

for Computer Science and Mathematics, vol. 15, no. 2, 2023,

doi:10.29304/jqcm.2023.15.2.1240.

14. Harris, Oliver, and Mark Andrews. “Effects of Dropout Layers in Reducing

Overfitting in Convolutional Neural Networks.” World Journal of Advanced

Engineering Technology and Sciences, vol. 13, no. 2, 2024, pp. 836–853,

doi:10.30574/wjaets.2024.13.2.0584.

15. “Confusion Matrix.” Wikipedia, 20 July 2025,

en.wikipedia.org/wiki/Confusion_matrix. Accessed 20 July 2025.

16. PyTorch. “ResNet-18.” Torchvision Models Documentation, 2025,

docs.pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html.

Accessed 21 July 2025.

http://www.kaggle.com/datasets/emangope/cifar-10

 Himalayan Journal of Applied Science and Engineering (HiJASE), Vol. 6, Issue 2, Jan., 2026

[THAPA] 126

17. PyTorch. “VGG-16.” Torchvision Models Documentation, 2025,

docs.pytorch.org/vision/main/models/generated/torchvision.models.vgg16.html.

Accessed 21 July 2025.

18. Liu, X., and K. M. Goh. “ResNet: Enabling Deep Convolutional Neural Networks

through Residual Learning.” arXiv, 2025. Accessed 21 July 2025.

19. Shin, S., et al. “Implementation and Comparison of CNN Models on CIFAR-10

Dataset.” Proceedings of the IEOM World Congress, Detroit, USA, 2024, pp. 1–8,

doi:10.46254/wc01.20240168.

20. Li, Tao. “A Multi-Scale Feature Extraction and Hierarchical Discriminant Analysis

Approach for Image Recognition.” Proceedings of the International Joint Conference

on Artificial Intelligence (IJCAI), vol. 49, no. 22, 2025.

21. Zhao, L., et al. “A Lightweight Deep Neural Network with Higher Accuracy.” PLoS

ONE, vol. 17, no. 8, 2022, p. e0271225, doi:10.1371/journal.pone.0271225.

22. Xian, Z., et al. “CNN-Based Image Classification Using Different Color Spaces.”

Tsinghua Science and Technology, 2025.

23. Poojary, R., and A. Pai. “Comparative Study of Model Optimization Techniques in

Fine-Tuned CNN Models.” Proceedings of the International Conference on

Electrical, Computing Technologies and Applications (ICECTA), 2019, pp. 1–4.

24. Abdullah, A., and M. S. Hasan. “An Application of Pre-Trained CNN for Image

Classification.” Proceedings of the 20th International Conference on Computer and

Information Technology (ICCIT), 2017, pp. 1–6.

25. Katpally, H., and A. Bansal. “Ensemble Learning on Deep Neural Networks for

Image Caption Generation.” Proceedings of the IEEE 14th International Conference

on Semantic Computing (ICSC), 2020, pp. 61–68.

26. Tang, S., and Y. Yuan. Object Detection Based on Convolutional Neural Networks.

Stanford University, Technical Report.

27. Girshick, R., et al. Rich Feature Hierarchies for Accurate Object Detection and

Semantic Segmentation. University of California, Berkeley, Technical Report.

28. Yang, X., S. Yu, and W. Xu. “Enhanced Convolutional Neural Networks for

Improved Image Classification.” arXiv, 2025.

29. Li, B., et al. “On the Optimization and Generalization of Two-Class Deep Models.”

Proceedings of the International Conference on Learning Representations (ICLR),

2025.

30. Simonyan, K., and A. Zisserman. “Very Deep Convolutional Networks for Large-

Scale Image Recognition.” Proceedings of the International Conference on Learning

Representations (ICLR), 2015.

31. HojjatK. “MNIST Dataset.” Kaggle, 2025, www.kaggle.com/datasets/hojjatk/mnist-

dataset. Accessed 8 June 2025.

http://www.kaggle.com/datasets/hojjatk/mnist-dataset
http://www.kaggle.com/datasets/hojjatk/mnist-dataset

