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Abstract. 

This paper proposes a novel weak Simpson method for numerical solution for a class of stochastic 

differential equations. We show that such a method has weak convergence of order one in general and 

weak convergence of order three under certain additional assumptions, which improves the weak 

convergence order of two for the weak trapezoid method developed in (1). The main results are illustrated 

with numerical examples.  
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1.  Introduction 

We consider the problem of constructing accurate approximations on fixed time intervals to solutions of 

the following system of stochastic differential equations (SDEs) 

 X (s) = x + 

0

s

 b(X(r)) dr + 
M

  
k = 1

 

0

s
 k (X (r)) vk dWk(r),   s  0, (1.1) 

where x  d, M   is a positive integer, b : d  d , k : 
d  , and for k = 1.......M, vk  d, and Wk(t) 

are independent one-dimensional Brownian motions. Here for each k, νk represents the direction along 

which the random noise Wk enters the system (1.1). Suppose the coefficients b and σ are measurable and 

are such that a weak solution to (1.1) exists and is unique in probability law. Typically the coefficients b 

and σ are assumed to satisfy the Lipschitz continuity and the linear growth condition; see, for example, 

(9) or (5). SDEs have a wide range of applications in areas such as ecosystem modeling, mathematical 

finance, and risk management. In most of the practical applications, we cannot find explicit solutions for 

the underlying SDEs, as with most ordinary differential equations (ODEs). In such situations, numerical 

approximation then becomes the one viable approach.  

There are generally two numerical approximation methods for SDEs, namely strong and weak methods. 

The strong methods focus on the sample path properties while the weak methods deal with the 

distributions of the underlying SDEs. Strong approximations are necessary to explore characteristics of 

the systems that depend on path wise properties. The order of convergence of strong approximation is 
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sometimes less in the stochastic case than in the corresponding deterministic case (6). It is also observed 

that strong explicit methods, particularly, the widely used Euler-Maruyama method, sometimes works 

unreliably and generate large errors for certain step-sizes, (2).  

Motivated by financial applications, we are interested in evaluating functional of the form 𝔼[f(X(T))] for 

some T > 0 and some function f. Therefore, we will focus on weak methods in this work. For instance, the 

arbitrage-free price of a European call option is given by 𝔼Q [e
-r(T—t)

 (S(T) – K)+| Ft ], in which ℚ is a risk-

neutral measure, r > 0 is the discounting factor, K is the strike price, and S(T) is the price of the 

underlying asset at time T. In approximating such functionals, an efficient approximation to the 

probability distribution of the solutions is sufficient.  

This work is motivated by (1) and improves their weak trapezoidal method. In (1), the weak trapezoidal 

method has weak convergence order of two and seems to require a large number sample paths (10 

million). Motivated by the fact that Simpson’s rule is usually an improvement of trapezoidal rule, we use 

the Simpson-like rule to approximate the area under the diffusion term in (1.1). In other words, we use a 

weak Simpson method to approximate the stochastic integral of (1.1) in our algorithm. We show that our 

method has weak convergence order one in general and weak convergence of order three under certain 

additional assumptions (Assumption (A4)). However, we note that our examples in Section 2.4 all 

demonstrate weak order three convergence, even though they do not necessarily satisfy the Assumption 

(A4). Moreover, in these examples, our method requires fewer number (in the order of 50,000) of sample 

paths compared to (1). Unfortunately, at this point, we are not able to prove that the weak Simpson 

method enjoys weak order three convergence without Assumption (A4).  

It is worth noting that there are many other higher order weak Taylor schemes to solve stochastic 

differential equations, see, for example, (6). Generally, these higher order methods are much more 

complicated than ours, and contain a large number of terms, such as all of the multiple Itô integrals of 

higher multiplicity from Itô-Taylor expansion (6). For instance, we need to include all of the third order 

multiple Itô integrals from the Itô-Taylor expansion to construct order 3.0 weak Taylor scheme. This 

makes these methods hard to implement in practice. Compared to those higher order weak Taylor 

schemes, our algorithm is simple and derivative free, yet still enjoys weak convergence order 3.0 under 

Assumption (A4).  

The algorithm of our method consists of two steps, in the first an explicit Euler-Maruyama type step is 

used and in the second the resulting fractional point is used in combination with initial point to obtain 

higher order. We use variable steps to obtain better approximation. The use of different paths for each 

time step-size make sense in our setting because we are only concerned with the mean of the solution. We 

can choose any sample h N(0, 1) for the increment W(tk) − W(tk−1). This paper develops the method 

which produce weak approximation rather than strong approximation. Hence, we produce an 

approximating sample path without giving proper attention to underlying Wiener process. Our algorithm 

does not require simulation of the Itô integral.  

The rest of the paper is organized as follows. In Section 2 we propose our method and we describe why 

and how our method works by considering the simple case. We give a proof that our method converge 

with weak order three under the suitable conditions. We also discuss about the numerical performance of 

our method with some examples. Finally we give the proof of Lemma 2.6 in Appendix which we need to 
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prove our local approximation theorem. To facilitate the presentation of the paper, we introduce some 

notations here. The notation a T denotes the transpose of a vector or matrix a. For a smooth function  

f: d |
d, Df(x) = 







f (x)

 x1
....  

f (x)

 xd

T
  denotes the gradient of f and D2 f(x) = 







 2f(x)

 xi xj
  is the Heissian of  f 

at x. For , x  d, f ' [] (x) is the derivative of f in the direction of  evaluated at the point x. And for , 

v, x  d, f " [, v] (x) : = f '  (f ' []) [v] (x). In a similar fashion, we define f ''' [, v, ] (x) etc. Note that f 

'' [, v] [x] = tr (vT
 D

2 f(x)) : = f" [v, ] (x).  

A vector  = (1, ......, d) with each component i taking values from the set of nonnegative integers is 

called a multi-index. Moreover, we denote ||: = 1 + ... + d and D f(x) = 
 |  |

 x
1

 1
 ... x 

 d

 d

 f(x).  

2.   The weak Simpson Method 

2.1. Preliminaries. To begin with, we state the standing assumptions throughout the paper: (A1) The 

coefficients of (1.1) satisfy the Lipschitz and linear growth condition: 

 |b(x) – b(y)| + 

M


k = 1

 |k (x) –k (y)|  L | x – y|,  

 |b (x)| +  

M


k = 1

  | k (x)|  K (1 + |x|),  (2.1)  

 for all x, y  d, where L, K are positive constants.  

 (A2) for each k = 1, ...., M, we have infx
d{k (x)} > 0. In addition, there exists a positive constant 

  (0,1] so that for any x,   d we have  

   ||2  T a(x)  –1 ||2,  (2.2)  

 where a(x) : = 

M


k = 1

  2(x) vk v
T

K .  

` (A3) For all multi-index  with ||  8, we have  

  |D b(x)| + 

M


k = 1

 |D k (x) |  K (1 + |x|P), for all x  d,  (2.3)  

 where K and p are positive numbers.  

It is well-known that under Assumption (A1), the stochastic differential equation (1.1) has a unique strong 

solution; see, for example, (5),( 9) or (12). Moreover, we have the following moment estimate: 
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Lemma 2.1 (12). Assume (A1). Let T > 0 be fixed. Then for any positive constant p, we have 

 𝔼 



sup

 t[0T]
 |Xx (t)|P    C< , x  d × M, (2.4)  

Where the constant C satisfies C = C(x,T,p) > 0 and X
x
 denotes the solution to (1.1) with initial condition 

x ∈ d. 

Remark 2.2. Assumption (A1) is a standard condition in the literature and it guarantees the existence and 

uniqueness of a strong solution to the stochastic differential equation (1.1). In addition, we note that 

Assumptions (A1)–(A3) are weaker than those in (1), where it is assumed that b,σk, k = 1, . . . , M are 

bounded with bounded and continuous partial derivatives up to the sixth order and that infx
d {k (x)} > 0 

for each k. Also; (2.2) plays an important role in a certain Gaussian tail estimate in the proof of Lemma 

2.6.   

We denote the space of continuous and bounded functions whose first through kth order partial 

derivatives are continuous and bounded by Ck (d), that is, 

Ck (d ) = {f : d →  s.t. Dα f(x) exists and is bounded and continuous for all x ∈ d}, where α = (α1, . . . 

,αd) is a multi-index such that |α| := α1 + · · · + αd ≤ k. In addition, we define the norm of Ck (d ) in 

following way 

 || f ||k = sup {|Dα f(x)| : x ∈ d , α = (α1, . . . , αd) is a multi-index with |α| ≤ k}  (2.5) 

 Note that when k = 0, C0 is the family of bounded and continuous functions. 

Next we define the Markov semigroup ρt: C
k → Ck related to (1.1) by  

 (ρt f) (x): def =  𝔼x [f(X(t))], [2.6]  

where X(0)= x and Markov semigroup Ph: C
k → Ck associated with single full step size h of the numerical 

method (2.9)–(2.10) by 

 (Phf) (y): def =  𝔼y [f(Y1))], [2.7] 

where Y0 = y. Since || f ||0 = sup{|f(x)|: x ∈ d}, it follows that || ρt f ||0 ≤  || f ||0 and similarly || Ph f||0 ≤ || f ||0. 

The following Proposition is from (1).   

Proposition 2.3. Assume (A1)–(A3). Then for any 0 < t ≤ T and k ∈ , there exists a  C = C(T, k, b, σ) > 

0 such that || ρt f||k ≤ C||f||k. 

As in (1), we define the induced operator norm for any linear operator L : C k → Cl by 

 ||L||kl
  = 

sup
 
f Ck ‚ f  0

  
||Lf ||l

 ||f||k
  

Then it follows from Proposition 2.3 that || ρt ||k→k ≤ C. In particular, we have 
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 ||ρt ||0  0 = 
sup

 
f C0 ‚ f  0

  
|| ρt f ||0

 || f ||0
   

sup
 
f C0 ‚ f  0

 
| |f ||0

 ||f||0
 =1 

Similarly, ||Ph||0→0 ≤ 1.  

2.2. The Algorithm. The weak Simpson method can be summarized as follows. Let T > 0 and Π := {0 = 

t0 < t1 < ... < tN = T} be a subdivision of [0, T]. Let {η
(i)

 1k , η
(i)

 2k : i ∈  ℕ, k ∈ {1, 2, . . . , M}} be a collection 

of mutually independent normal random variables with mean zero and variance 1. Fix θ ∈ (0, 1) and 

define 

 1 = 
5

 12 (1 – )
 and 2 = 1 – 1 = 

5 –12 + 122

 12(1 – )
   (2.8) 

In this work, we take constant discretization stepsize h = T /N and so ti = ih for i = 0, 1, . . . , N. Let Y0 = 

X(0) = x0 and for i = 1, 2, . . . , N, we repeat the following steps: 

Step 1.  

 Yi* = Yi – 1 + b(Yi–1)h + 

M

 
 k = 1

 k (Yi–1)vk
(i)

 k
 h  (2.9)  

Step 2. 

 Yi  = Yi
* + (1 b(Yi

*) – 2b (Yi–1)) (1 – ) h  

  +

M

 
 k = 1

  [1
2

k
 (Yi

*) – 2
2

k
 (Yi–1)

+ vk 
(i)

 2k
 (1 – )h  (2.10)  

We call such an algorithm the weak Simpson method. To motivate such a name, let’s temporarily ignore 

the diffusion terms in (1.1). In addition, if we take θ = 
1

2
 , then α1 = 

5

3
  , α2 =  

2

3
 , and (2.9) reduces to Yi

∗ = 

Yi−1 + 
h

2
 b(Yi−1). Next we insert it into (2.10) to obtain 

 Yi = Yi–1 + 
h

6
 [b(Yi–1) + 4b (Yi

*) + b(Yi
*)]                                                                                    (2.11) 

On the other hand, the Simpson rule approximates the deterministic integral 


ti–1

 ti

 b(Y(s)) ds by 

 


ti–1

 ti

 b(Y(s)) ds  
ti – ti–1

 6
 




b(Y (ti – 1)) + 4b 





Y 





ti–1 + ti

 2
 + b (Y (ti))   
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  = 
h

6
 




b (Y(ti – 1)) + 4b 





Y 





ti – 1 + 

h

2
 + b (Y (ti))   

 Compare this with the second term on the right-hand side of (2.11), and notice that 

 Yi
* =Yi – 1 + 

h

2
 b (Y (ti– 1))  Y 





ti – 1 + 

h

2
  

Therefore our algorithm (2.9)–(2.10) is similar to the deterministic Simpson rule, though we use the θ-

midpoint value b(Yi
∗) instead of the terminal value b(Y(ti)) in (2.11).  

To further illustrate the idea behind the algorithm (2.9)–(2.10), we note that (1) the solution of (1.1) is 

equivalent in distribution to 

 X(t) = x + 


0

t 
 b(X(s)) ds + 

M

 
 k= 1

 vk 


0


  


0

t
 I[0,

2

k
 (X(s))](u)k (du × ds), (2.12)  

Where k is a time-space white noise for each k = 1, .........., M. Recall that {k(t, x)}t0, x + is a time-space 

white noise if it is an 𝔽-adapted centered Gaussian random field with  

 𝔼[ (s,y)  (t, x)] =  (t – s)  (x – y), for all t, s   and x, y +,  

where, (.) is the delta function. In particular, it follows that is A,B are disjoint subsets of [ 0, )2 , then k 

(A) and k (B) are independent normal random variables with means 0 and variances |A| and |B|, 

respectively, where | . | denotes the Lebesgue measure on [0,)2. We refer to (11) for introduction to 

space-time white noise and stochastic partial differential equations.  

To illustrate the idea, let's fix  = 
1

2
 and modify a figure from (1) as in Figure 1. For simplicity, we take i 

= 1 in (2.9) and (2.10). In order to approximate the diffusion term in (2.12) over the interval [0, h], we 

must approximate k (A[0, h] ( )
2

k  ), where A[0, h] ( )
2

k  is the region under the curve 
2

k (X (t)) for 0  t  h. 

Since k  is a space-time white noise, k (A[0, h] ( )
2

k  is normally distributed with mean zero and variance 

equals the area of the region A[0, h] ( )
2

k  . Thus it is enough to find an accurate approximation to the area 

of the region A[0, h] ( )
2

k  .  
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   (a) First step (b) Desired second step (c) Used second step  

 

Figure 1. A graphical illustration of weak Simpson scheme for  = 
1

2
 , where V = 

2

k (X (0)) –
2

k (Y1
*) 

We would like to approximate the area under the curve 
2

k (X(t)) using the Simpson rule. Recall for a 

positive function f(x), the Simpson rule to approximate 


a

b
 f(x) dx which gives the area of the region under 

the curve y = f(x) between a and b is given by  

 I (f)  
h

6
 




f (a) + 4f 





a + b

 2
 + f (b)   

  = 
1

3
 . 

h

2
 (f (a) + f (b) )+ 

2

3
 . hf 





a + b

 2
  (2.13)  

  = 
1

3
 (Area of BCDF) + 

2

3
  (Area of ACDE),  

Where we put h = b – a, BCDF is the trapezoid with base [a, b] and heights f (a) and f (b), and ACDE is 

the rectangle with base [a, b] and height f 




 

a + b

 2
 ; see the illustration in Figure 2.  
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Figure2. The Simpson Rule 

To approximate the area of the region A[0,h] ( )
2

k  , we first note that  

 k (Region 1) d


 N (0, 
2

k (X (0) 
h

2
 ) d


 k (X (0))
h

2
 N (0,1),  

Which is equivalent in distribution to the summand of the right-hand side of (2.9) in Step 1 of our 

algorithm. Here and throughout the paper, N (, 2) denotes a normal random variable with mean  and 

variance 2.  

Now using the estimated -midpoint Y1
* from step 1, we approximate the area under the curve 

2

k (X(t)). 

Since we used the area of the green shaded region (Region 3 in Figure 1 (b)) in (2.9) of Step 1, we need to 

discard this area in Step 2. Observe that Region 3 and the blue shaded region (Region 4 in Figure 1 (c)) 

have equal areas. Thus in Step 2, we do not add the area of Region 4.  

Since Region 5 in Figure 1(c) is the part of both the rectangle and the trapezoid, we take the whole region 

under consideration.  

 k (Region 5) d


  N 




0 [ ]

2

k (X(0)) – 2(
2

k(X(0)) – 
2

k (Y1
*))

h

2
   

   d


 N 




0 [ ]2

2

k(Y1
*) – 

2

k (X (0))
h

2
  

On the other hand, Region 6 in Figure 1(c) is part of the rectangle only, we take 
2

3
 of the area of Region 6 

only:  

 k 



2

3
 Region 6  d


 N 





0

2

3
 . 

1

2
 . ( )

2

k(X(0)) – 
2

k(Y1
*)  . 

h

2
  

   d


 N 




0 

1

3
 ( )

2

k(X(0)) – 
2

k (Y1
*)

h

2
 . 

Note that Region 5 and Region 6 are disjoint. Thus we have  

 k (Region 5) + k 



2

3
 Region 6   

   d


  N 




0 [ ]2

2

k (Y1
*) – 

2

k (X(0))
h

2
 + N 





0 

1

3
 ( )

2

k (X(0)) – 
2

k (Y1
*)  

h

2
  

   d


 N 




0 





5

3


2

k(Y1
*) – 

2

3


2

k (X(0))  
h

2
  

   d


  
5

3


2

k (Y1
*) – 

2

3


2

k (X(0))  
h

2
 N(0,1). 
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Note that for  = 
1

2
  we have 1 = 

5

3
  and 2 = 

2

3
 . Again, we find that k (Region 5) + k 



2

3
 Region 6  is 

equivalent in distribution to the last term on the right-hand side of (2.10) of Step 2. Therefore, it is 

reasonable to anticipate that the weak Simpson algorithm shall work well. We note that the weak 

trapezoid method in (1) does not consider Region 6.  

2.3 The Weak Convergence Rage. Similar to the notion in (6), we give the following definition: 

Definition 2.4. We say that the approximating sequence Y = Yh converges weakly to X at time T with 

order  > 0 if 

 |𝔼[f(X(T))] – 𝔼[f (Y(N))]|  C || f||k h for all f  Ck (d) (2.14)  

where k = 2( + 1), Nh = T, and C = C(T) > 0 is a constant. In terms of the induced operator norm. (2.14) 

can be rewritten equivalently as  

 || ρt – P
N

h  ||k0  Ch (2.15)  

Next we state the following assumption, which is necessary to show that the weak Simpson method (2.9) 

– (2.10) has weak convergence order three.  

 (A4) For any sufficiently smooth functions f: d  , we have  

 (A2f ) (x0) = (B1
2f ) (x0), and                                                                                                         (2.16) 

 (A3f ) (x0) = (B1
2(Af )) (x0) = (B1g) (x0) = (B1 (A(B1f  ))) (xo) = (B

3

1 f ) (x0), (2.17)  

for all x0  , where  

 g(x) = f'' [b(x), b(x)] (x) + 

M

 
 k = 1

 
2

k (x) f''' [vk, vk, b(x)] (x)   

   + 
1

4
 

M

 
 k‚ j = 1

 
2

j  (x) 
2

k (x) f (4)[vk,vk, vj, vj] (x), (2.18) 

 (Af ) (x) = f ' [b (x)] (x) + 
1

2
 

M

 
 k = 1

 
2

k (x) f'' [vk, vk] (x),                                                                  (2.19) 

 (B1f ) (x) = f ' [b(x0)] (x) + 
1

2
 

M

 
 k = 1

 k (x0)
2 f'' [vk, vk] (x).                                                              (2.20) 

and we define (An f) (x) = (A(An–1f)) (x) for any integer n  2, and similarly for B1 and B.  

The following theorem gives the weak local convergence rate of the weak Simpson method (2.9) – (2.10).  
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Theorem 2.5 (Local Approximation). Assume (A1) – (A4). Then there exist a constant k so that  

 ||ρh – Ph ||8 0  kh4 for all h > 0 sufficiently small.  

The proof of Theorem 2.5 depends on the following lemma, whose proof is relegated to Appendix A.  

Lemma 2.6. Assume (A1) – (A4). Then for all h > 0 sufficiently small and f C8 we have  

 𝔼 






f (Y1
*) + (Bf) (Y1

*) (1 –  ) h + (B2 f) (Y1
*) 

(1 – )2h2

 2
 + (B3 f) (Y1

*) 
(1 –  )3h3

 6
  (2.21)  

 = f (x0) + (Af ) (x0)h + (A2f) (x0) 
h2

2
  + (A3 f ) (x0) 

h3

 6
  + O (h4),  

where  

 (Bf ) (x) = f' [1b(Y1
*) – 2b (x0)] (x) + 

1

2
 

M

 
 k = 1

 [1
2

k (Y1
*) – 2

2

k (x0)]+ f'' [vk, vk] (x). (2.22)  

Proof of Theorem 2.5. We need to show that for any f  C8 and h > 0 sufficiently small, there exists a 

constant K > 0 so that  

 |𝔼x0
 [f (Y1)] – 𝔼x0

 [f (X (h))]|  K || f ||8 h4, for all x0  d  (2.23)  

To this end, we consider the stochastic differential equation.  

 dy(t) = b(x0)dt + 

M

 
 k = 1

 k (x0) vk dWk (t), t 0, y(0) = x0. (2.24)  

Then we have,  

 y (h) = x0 + b(x0) h + 

M

 
 k = 1

 k (x0) vk (Wk (h) – Wk (0)). (2.25)  

Since Wk (h) – Wk (0) d


 N (0, h) d


  N (0, 1) h , we see that (2.9) in Step 1 of the weak Simpson 

algorithm produces a value Y1
* which is equal to y(h) in distribution. Similarly, (2.10) in Step 2 produces 

a value Y1 that is equivalent to z(h) in distribution, where z(t) solves the stochastic differential equation 

  





dz (t) = (1 b (Y1
*) – 2 b(x0)) dt + 

M

 
 k = 1

 [1 
2

k (Y1
*) – 2 

2

k (x0)]+ vk dWk (t)  t  h 

 z(h) = Y1
*.

  (2.26)  

Recall the definitions of the operators A and B in (2.19) and (2.22), respectively. Note that A is the 

infinitesimal generator of (1.1) and B the infinitesimal generator of (2.26).  

z (h) = Y1*. 
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Let Ft denote the filtration generated by the Brownian motion processes Wk (t) in (2.24) and (2.26). Then  

 𝔼 [f (z(h))] = 𝔼[𝔼[f (z(h)) |Fh]] def


  𝔼 [𝔼h [f (z(h))]], (2.27)  

where we have defined 𝔼h [.]def


 𝔼[.|Fh]. Let z(h) be the solution to (2.26). Since fC 8, we can use 

Dynkin's formula repeatedly to obtain  

 𝔼h [f (z(h))] =  f (Y1
*) + 



h

 h
 𝔼h[(Bf)(z(s))] ds  

   = f (Y1
*) + (Bf) (Y1

*)(1 – )h + 


h

 h
 


h

 s
 𝔼h [(B

2f) (z (r))] dr ds 

   = f (Y1
*) + (B f) (Y1

*)(1 –  )h + (B2 f ) (Y1
*) 

(1 – )2h2

 2
   

    + 


h

 h
  


h

 s
  


h

 r
  𝔼h [B

3f ) (z (u))] du dr ds  

   =  f (Y1
*) + (Bf ) (Y1

*) (1 –  ) h + (B2 f) (Y1
*) 

(1 – )2h2

2
  + (B3f) (Y1

*) 
(1 – )3 h3

 6
  

   + 


h

h
 


h

s
 


h

r
 


h

v
𝔼h [(B

4f) (z (w))] dw du dr ds                                                     (2.28) 

The term (B4f) (y(w)) in the last integral above depends only on the first eight derivatives of f. Therefore, 

using the fact that f  C8 and Lemma 2.1, we obtain 

 













h

h
 


h

s
 


h

r
 


h

v
𝔼h [(B

4f) (z (w))] dw du dr ds   C1 || f ||8 h4  (2.29)  

for some constant C1 independent of h.  

Recall that Y1 of (2.10) and z(h) of (2.26) have the same distribution, and in particular, we have 𝔼x0
 [ f 

(Y1)] = 𝔼x0
 [f (z (h))]. Then it follows from (2.27), (2.28), and (2.29) that  

 𝔼x0
 [ f (Y1)]  =  𝔼x0

 [f (z (h))] 

    =  𝔼x0
 


f (Y1

*) + (Bf ) (Y1
*) (1 –  )h + (B2 f ) (Y1

*) 
(1 –  )2h2

 2
  



12   Ram Sharan Adhikari 

 

     



 + (B3 f) (Y1
*) 

(1 –  )3h3

 6
 + O (h4)   

On the other hand, proceeding as above and applying Dynkin's formula to (1.1) repeatedly gives  

 𝔼x0
 [f (X (h))] = f (x0) + (Af (x0)h + (A2f ) (x0) 

h2

 2
 + (A3f ) (x0) 

h3

 6
 +O (h4).  

Then (2.23) follows from Lemma 2.6 and the above two displayed equations. This completes the proof of 

the theorem.  

With Theorem 2.5 at our hands, we can proceed to derive the global weak convergence rate for the weak 

Simpson method (2.9) – (2.10).  

Theorem 2.7. Assume (A1) – (A4). Then for any T > 0 there exists a constant C (T) > 0 such that  

 
sup

 0  nh  T
  ‖ ‖ ρnh  – P

n

h
 

8 0
  C (T) h3 (2.30)  

Proof. This theorem follows directly from Theorem 2.5; the argument is similar to that of (1, Theorem 

2.4). We shall omit the details here.  

2.4. Examples. To illustrate the main results in Section 2.3, we present three examples in this subsection. 

We start with the one-dimensional geometric Brownian motion (2.31) in Example 2.8. so that we can 

compare the numerical computations using the weak Simpson method (2.9) – (2.10) with the theoretical 

values. Next we consider two nonlinear two dimensional SDEs which are investigated in (1). In 

particular, we want to compare the performance of the weak Simpson method with that of the weak 

trapezoidal method proposed in (1).  

Example 2.8. We consider the one-dimensional geometric Brownian motion in the following form  

 dX (t) = X (t) dt + X (t)dW (t),  

 X (0) = X (0)  ,  (2.31)  

where  and  are real constants. The solution to (2.31) is X (t) = X (0)e( ) – 
1

2
2 t + W (t)

  and we have  

 𝔼[X (t)] = 𝔼[X (0)] et,  𝔼 [ (X (t)2] = 𝔼 [X (0)2] e(2 + 2)t 

We test the performance of the weak Simpson method (2.9) – (2.10) for (2.31). We take T = 1,  = 3 ,  = 

0.3, and X (0) = 1 in (2.31). Also, we use step sizes hp  = 
1

 100p
 , for p = 1, ......, 5 to generate N = 48, 200 

sample paths of (2.31) using the weak Simpson algorithm (2.9) – (2.10), We then compute  

 Error 
1

p(1) = 𝔼 [X (1)] – 
1

N
 

N


k=1

 Y
k‚hp

Np
,   (2.32) 
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 Error
2

1 (t) = 𝔼 |X (1)2] – 
1

N
 

N


i=1

 ( )Y
k‚hp

Np

2.  (2.33) 

where Np = 
1

hp
, and Y 

k‚hp

Np
 is the value obtained using the weak Simpson method (2.9) – (2.10) in the kth 

simulation with step size hp. The results are plotted in Figure 3 in the log-log scale. Note that in both plots 

of Figure 3, the best fit lines have slope 3, as expected. 

Example 2.9. Here we investigate the same example considered in (1). 

 



dX1(t)

dX2(t)
 = 



X1(t)

0
 dt + X1(t) 



0

1
 dW1 (t) + 

1

10
 


1

1
 dW2(t), (2.34) 

 

 

  (a) Error
1

p (1) of (2.32) (b) Error 
2

p (1) of (2.33) 

Figure 3. Log-Log plots of error versus step-size for example 2.8 

where W1(t) and W2(t) are independent standard one-dimensional Brownian motion processes. It is 

straight forward to show that 

 𝔼[X2(t)2] = 𝔼 [X2 (0)2] – 
1

2
 𝔼 [X1(0)2] + 

1

400
 e2t (200 𝔼 [X1 (0)2] + 1) + 

t

200
 – 

1

400
 .  (2.35) 

Next we use (2.35) to compute the error 

 Errorp (1) = 𝔼 [X2(1)2] – 
1

N
 

N


k=1

 ( )Y
k‚hp

2‚Np

2
,  (2.36) 
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by generating N=46,300 sample paths of (2.34), where hp = 
1

10p
 for p = 1,…,4. Np = 

1

hp
 , and 

( )Y
k‚hp

1‚Np
‚ Y 

k‚hp

2‚Np
' ℝ2 is the approximated value of (2.34) obtained using the weak Simpson method (2.9) – 

(2.10) in the kth simulation, for 1  k  N. The resulting error is displayed in Figure 4(a), where we have 

plotted the weak error against hp on log-log scale. We observe that the slope of the best fit line in Figure 

4(a) is three as the step size h tends to zero. 

Example 2.10. Here we consider the system 

 



dX1 (t)

dX2 (t)
 = 



–X2(t)

X1(t)
 dt + 

sin2 (X1(t) + X2(t))

t + 1
 


1

0
 dW1(t) (2.37) 

  + 
cos2 (X1(t) + X2(t))

t + 1
 


1

0
 dW2 (t).  

where W1(t) and W2(t) are independent standard one-dimensional Brownian motions. The system (2.37) is 

similar to the one considered in (1). Then 𝔼 [|X(t)|2]  can be calculated as 

 𝔼 [|X(t)|2] = 𝔼[X (0)2] + log(1 + t).                                                                                         (2.38) 

 

 (a) Errorp (1) of (2.36) in Example 2.9 (b) Errorp (1) of (2.39) in Example 2.10 

Figure 4. Log-Log plots of error versus step-size for Examples 2.9 and 2.10. 

We generate N=51,000 different sample paths of (2.37) using the weak Simpson algorithm (2.9) – (2.10) 

with step sizes h = 
1

5p
 for 1  p  4 and initial condition X (0) = (1, 1)'. We then compute 

 Errorp (1) = [|X(1)|2] – 
1

N
 

N


k=1

 | |Y
k‚hp

Np

2

,   (2.39) 
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where Np = 
1

hp
 , for 1  k  51,000, Y 

k‚hp

Np
  2 is the kth numerical value of (2.37) obtained from the weak 

Simpson method and 𝔼[|X(1)|2] is from (2.38). The result of numerical experiment is shown in Figure 4 

(b), where we have plotted the error against h on log-log scale. It is observed that the slope of the best fit 

line is three. 

Remark 2.11. We note that the weak trapezoidal method in (1) gives a weak convergence order two; and 

requires 10 million sample paths to obtain such a convergence order for Examples 2.9 and 2.10. In 

contrast, the weak Simpson method (2.9)–(2.10) gives a weak convergence order three and requires only 

approximately 5 × 104 sample paths. Therefore, it is a substantial improvement over the method in (1).    

Remark 2.12. The computation of the error may be sometimes influenced by different kind of errors like 

sampling error, random number bias and rounding error. In our algorithm we generate more than one 

sample of random numbers. So, for large number of sample path there is a greater chance of dependency 

in the samples and might degrade the order of convergence of our algorithm. 

Appendix A. The Proof of Lemma 2.6 

The proof of Lemma 2.6 depends on the following Lemmas. 

Lemma A.1. Let X, Z, W, and Y be real valued random variables on some probability space (, F, 𝕡). 

Let p, q > 1 with 
1

p
 + 

1

q
 = 1. Then the following assertions are true: 

(i) if ||XY|| Lp()
 < , then 

 𝔼 [|YX + – YX|]  ||XY|| Lp ()(ℙ{X < 0})

1

q
 , 

(ii) if ||ZXY|| Lp ()
 < , then 

 𝔼 [|ZY+X+ – ZYX|]  ||XYZ|| Lp ()(ℙ{X < 0 or Z < 0})

1

q
, 

(iii) if ||WXYZ|| Lp () < , then 

 [|ZW+Z+Y+ – ZWXY|]  ||WYXZ|| Lp ()(ℙ{W < 0 or X < 0 or Y < 0})

1

q
. 

Proof: We only prove assertion (iii) here; the proofs of (i) and (ii) are similar and can be found in (1). Let 

A : = {W < 0 or X < 0 or Y < 0}. Then we have Ac = {W  0 and X  0 and Y  0}. Moreover, on the set Ac, 

ZW+X+Y+ = ZWXY. Thus it follows from the Holders inequality that  

 𝔼 [|ZW+X+Y+ – ZWXY|] = 𝔼 [| – ZWXYIA|]  ||ZWXY|| Lp () ℙ(A)1/q. 

Lemma A.2. Suppose Assumptions (A1) and (A2). Then for any p > 0, there exists and h0 > 0 so that 

 ℙ {1 
2

k (Y1
*) – 2 

2

k  (x0) < 0} = O(hp) for all 0 < h < h0,  (A.1)  
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where Y1

* is given in (2.9).  

Proof:  Denote Ek : = {1 
2

k (Y1
*) – 2 

2

k  (x0) < 0}. As we noted before, Y1
* of (2.9) and y (h) of (2.25) 

have the same distribution. Thus  

 ℙ(EK) =ℙ {1 
2

k (y(h)) – 2 
2

k (x0) < 0} = ℙ { }|k (y (h))| < 2/1 |k (x0)|   (A.2)  

  = ℙ { }|k (y (h))| – | k (x0)| < ( )2/1 – 1  |k (x0)|   

On the other hand, using the triangle inequality and (2.1), we have  

 |k (y ( h))| – |k (x0)|  – |k (y (h)) – k (x0) |  – L |y(h) – x0|.  

Putting this into (A.2), we have  

 ℙ (Ek)   ℙ { } – L |y (h) – x0|  ( )2/1 – 1 | k (x0)|  = ℙ{|y (h) – x0| C} 

  =  ℙ 



















b (x0)h + 

M

 
k = 1

 k (x0) vk (Wk (h) – Wk (0))   C   

    ℙ 

















M

 
 k = 1

 k (x0) vk (Wk (h) – Wk  (0))   C – |b (x0 )| h   

  =  ℙ 

















M

 
 k = 1

 k (x0) vk 
Wk (h) – Wk(0)

 h
  

C – |b (x0)| h

 h
   

where C := 
1

L
 ( )1 – 2 /1  |k (x0)|. Recall from (2.8) that 0 < 2 =  – 1 < 1. Consequently C > 0. Note 

that for each k = 1, ..., M and h > 0, Zk:= 
Wk (h) – Wk (0)

 h
  has standard normal distribution. This, together 

with the assumption that W1, ...,WM are independent Brownian motions, implies that   

 

M

 
 k= 1

 k(x0)vk 
Wk (h) – Wk (0)

 h
  has multivariate normal distributions with mean zero and covariance 

matrix 

M

 
 k = 1

  
2

k (x0) vk v
T

k   = a(x0). Now (A.1) follows from (2.2) and the usual Gaussian tail estimation 

(see, for instance, Theorem 1 of Hüsler et al. (2002)).  
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Corollary A.3. Assume the conditions of Lemma A.2. Suppose f  C8 (ℝd) and that for all multi-index  

with ||  8, we have  

 |D f (x)|  K (1 + |x|q)  (A.3) 

for some positive constants K and p  1. Then for any k, j, l  = 1, …., M and p 1, there exists an h0 > 0 so 

that for all h  (0, h0], we have  

  𝔼 [1 
2

k (Y1
*) – 2

2

k (x0))+ f'' [vk ,vk] (Y1
*)] (A.4)  

  = 𝔼 [ ](1 
2

k (Y1
*) – 2

2

k (x0)) f'' [vk  vk] (Y1
*)   + O(hp),  

  𝔼 



[1 

2

k (Y1
*) – 2 

2

k
 (x0)]+  [1 

2

j  (Y1
*) – 2

2

j  (x0)]+ f (4) [vk vk  vj vj] (Y1
*)  (A.5) 

  = 𝔼 [ ][1 
2

k (Y1
*) – 2

2

k (x0)] [1
2

 j (Y1
*) – 2 

2

 j (x0)] f 
(4) [vk  vk  vj  vj] (Y1

*)  + O (hp), 

and 

  𝔼 



[1 

2

k (Y1
*) – 2

2

k (x0)]+ [1 
2

j  (Y1
*) – 2

2

j  (x0)]+ [1 
2

l  (Y1
*) – 2 

2

l
 (x0)  

+

  (A.6) 

   × f (6) [ ][vk  vk  vj  vj vl vl] (Y1
*)   

  = 𝔼 



[1 

2

k
 (Y1

*) – 2
2

k
 (x0)  



[1 

2

j
 (Y1

*) – 2
2

j
 (x0)  



[1 

2

l
 (Y1

*) – 2
2

l
 (x0)   

   × f (6) [ ][vk  vk  vj  vj vl vl] (Y1
*)   + O(hP),  

Proof: As observed in the proof of Lemma A.2, Y1
* is equal to y( h) in distribution, where y(h) is given 

by (2.25). Therefore, in view of (A.3), the standard arguments as those in (9) or (12) yield  

 || (1 
2

k
  (Y1

*) – 2
2

k
 (x0)) f'' [vk, vk] (Y1

*)|| Lp  = ||(1
2

k
 (y(h)) – 2

2

k
  (x0)) f'' [vk, vk] (y(h))|| Lp 

    K < .  

Then (A.4) follows from Lemmas A.1 and A.2.  

 

 

Observe that  

 ℙ 












1

2

k
 (Y1

*) – 2
2

k
 (x0) < 0  or 



1 

2

j
 (Y1

*) – 2
2

j  (x0) < 0   
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  ℙ 








 1
2

k
 (Y1

*) – 2
2

k (x0) < 0   + ℙ 








1
2

j  (Y1
*) – 2

2

j
 (x0) < 0  .  

Then (A.5) follows from a similar argument as above using Lemmas A.1 and A.2.  

In a similar fashion, we can establish (A.6).  

Lemma A.4. For any sufficiently smooth function f: d  , we have  

 B
2

1
 f (x)  = f'' [b (x0),b(x0)] (x) + 

M

 
 k = 1

 
2

k (x0) f''' [vk, vk, b (x0)] (x)  

  + 
1

4
  

M

 
 kj = 1

  
2

k
 (x0) 

2

j
 (x0) f

(4) [vk, vk, vj, vj] (x),  

 A(B1f) (x) = f'' [b(x), b(x0)] (x) + 
1

2
 

M

 
 k = 1

 
2

k
  (x0) f''' [vk ,vk, b(x)] (x)   

 + 
1

2
 

M

 
 k = 1

 
2

k
  (x) f''' [vk,vk, b(x0)] (x) + 

1

4
 

M

 
 kj = 1

 
2

k
 (x) 

2

j
 (x0) f

(4) [vk, vk, vj, vj] (x),  

 B2 f(x)  = f'' [1 b(Y1
*) – 2b (x0), 1 b(Y1

*) – 2 b (x0)] (x)  

            +

M

 
 k= 1

  (1
2

k
 (Y1

*) – 2
2

k
 (x0))+ f''' [vk, vk, 1b (Y1

*) – 2b (x0)] (x)   

           + 
1

4
 

M

 
 kj = 1

  (1
2

k
 (Y1

*) – 2
2

k
 (x0)) + (1

2

j
 (Y1

*) – 2
2

j
 (x0))+ f(4) [vk, vk, vj, vj] (x),  

 B
3

1
 f (x)  = f''' [b (x0),b(x0), b(x0)] (x) + 

3

2
  

M

 
 k = 1

 
2

k (x0) f
(4) [vk, vk, b (x0), b(x0)] (x)  

  + 
3

4
 

M

 
 kj = 1

 
2

k (x0) 
2

j  (x0) f 
(5) [vk, vk, vj, vj, b(x0)] (x)  

  + 
1

8
 

M

 
 kjl = 1

 
2

k (x0) 
2

j  (x0) 
2
l  (x0) f 

(6) [vk, vk, vj, vj,vl, vl] (x)  
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and  

 B3 f(x) = f''' [1b (Y1
*) – 2b (x0), 1b(Y1

*) – 2b (x0), 1b (Y1
*) – 2b (x0)] (x)  

  + 
3

2
 

M

 
 k = 1

 (1
2

k
 (Y1

*) – 2
2

k
 (x0))+  f(4) [vk, vk, 1b (Y1

*) – 2b (x0) , 1b (Y1
*) – 2b (x0)] (x) 

  + 
3

4
 

M

 
 kj = 1

 (1
2

k
 (Y1

*) – 2
2

k
 (x0))+ (1

2

j
 (Y1

*) – 2
2

j
 (x0))+  

                                    ×f(5) [vk, vk, vj, vj, l b(Yl
*)– 2b (x0)] (x)  

                    
1

8
 

M

 
 kj = 1

 (1
2

k
 (Y1

*) – 2
2

k
 (x0))+ (1

2

j
 (Y1

*) – 2
2

j
 (x0))+  1

2
l   (Y1

*) – 2
2
l   (x0))+  

                                    ×f(6) [vk, vk, vj, vj, v1, v1] (x).     

Proof: This lemma follows from straight forward and tedious calculations. We shall omit the details here.  

Now we prove Lemma 2.6.  

Proof of Lemma 2.6. We analyze every term on the left hand side of (2.21).  

Step 1. Since Y1
* is equal to y(h) of (2.25) in distribution, and noting that the infinitesimal generator of 

(2.24) is given by B1 in (2.20), we can apply the Dynkin formula repeatedly to obtain  

 𝔼 [f(Y1
*)  = f(x0) + (B1f) (x0)h + (B

2

1
 f ) (x0) 

2h2

 2
 + (B

3

1
 f) (x0) 

3h3

 6
  + O(h4) (A.7)  

  = f(x0) + (Af) (x0) h + (B
2

1
 f) (x0) 

2h2

 2
 + (B

3

1
 f) (x0) 

3h3

 6
  + O(h4),  

where the second equality follows from the observation that (B1 f) (x0) = (Af) (x0). 

Step 2. Next we deal with the term 𝔼 [(Bf) (Y1
*)]. It follows from the definition of B2 and (A.4) that  

 𝔼 [(Bf) (Y1
*)] = 𝔼 





















f' [1 b (Y1
*) – 2b (x0)] + 

1

2
 

M

 
 k = 1

 [1 
2

k
 (Y1

*) – 2  
2

k
  (x0)]+ f'' |vk  vk |  (Y1

*)  

 `  = 𝔼 [ ]f' [1 b(Y1
*) – 2b (x0)] (Y1

*)    

   + 
1

2
 

M

 
 k = 1

 𝔼 



[1

2

k
 (Y1

*) – 2
2

k
 (x0)] f'' [vk vk] (Y1

*)  + O(h3)  
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   = 𝔼 [f' [1b (y(h)) – 2b (x0)] (y(h))]  

    + 
1

2
 

M

 
 k = 1

 𝔼 



[1 

2

k
 (y(h)) – 2

2

k
 (x0)] f'' [vk  vk] (y(h))   + O(h3).  

In the above, we again used the fact that Y1
* and y(h) of (2.25) have the same distribution to obtain the 

third equality. Moreover, since  

 f' [1b(y(h)) – 2b (x0)] (y(h)) = 1b (y(h)). Df (y(h)) – 2b(x0). Df (y(h))  

   = 1f' [b(y(h))] (y(h)) – 2f' [b(x0)] (y (h)),  

and for each k = 1, …..,M.  

  [1
2

k (y (h)) – 2
2

k (x0)] f'' [vk, vk] (y (h))  

  = 1
2

k
 (y(h)) f'' [vk ,vk] (y (h)) - 2

2

k
 (x0) f'' [vk ,vk] (y (h)),  

We have  

 𝔼 [(Bf ) (Y1
*)] = 1𝔼 









f' [ b (y (h))] (y (h)) + 
1

2
 

M

 
 k = 1

 k (y (h))2 f''  [ vk  vk] (y (h))   

   – 2 𝔼 









f' [b (x0)] (y (h)) + 
1

2
 

M

  

 k = 1

 k  (x0)2 f'' [vk vk] (y (h))   (A.8)  

   = 1 𝔼 [Af (y (h))] – 2 𝔼 [B1f (y (h))],  

where A and B1 are defined in (2.19) and (2.20); they are the infinitesimal generators for the stochastic 

differential equations (1.1) and (2.24), respectively. Now we apply Dynkin's formula repeatedly to obtain  

 𝔼 [Af (y (h))] = Af (x0) + 


0

 h
  𝔼 [B1 (Af) (y (s))] ds 

               = Af (x0) + B1 (Af) (x0) h + 


0

 h
  


0

s
 [B

2

1
 (Af )(y(r))] drds  

               = Af (x0) + B1 (Af) (x0) h + B
2

1
  (Af) (x0) 

2h2

2
  (A.9)  

   + 


0

 h
   


0

s
  


0

r
  𝔼 [B

3

1
 (Af (y (u))] du dr ds  
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   = Af (x0) + B1(Af) (x0)h + B
2

1
 (Af) (x0) 

2h2

 2
 + O(h3) 

Similarly, we have  

  𝔼[B1 f (y (h))] = B1 f (x0) + B
2

1
 f (x0) h + B

3

1
 f (x0) 

2h2

 2
  + O(h3).                        (A. 10)  

Notice that B1f(x0)=Af (x0) and hence B1(Af )(x0)= A(Af) (x0) = A2f (x0). Using these observations in (A.9) 

and (A.10) and plugging them into (A.8) and noting 1 – 2 = 1, we have  

 𝔼 [(Bf )(Y1
*)] = (Af )(x0) + 1(A

2f ) (x0) h – 2 (B
2

1
 f ) (x0)h  

  + 1 B
2

1
 (Af) (x0) 

2h2

 2
  – 2(B

3

1
 f) (x0) 

2h2

 2
  + O (h3). (A. 11)  

Step 3.  Next we evaluate 𝔼 (B2f)(Y1
*). Thanks to Lemma A.4 and Corollary A.3, we have  

𝔼[B2 f (Y1
*)] = 𝔼[f '' [1b (Y1

*) – 2b (x0), 1b (Y1
*) – 2b (x0)] (Y1

*)] 

                      +

M

 
 k = 1

 𝔼 [(1
2

k (Y1
*) –2

2

k
 (x0))+f''' [vk, vk, 1b(Y1

*) – 2b (x0)] (Y1
*)]  

             + 
1

4
  

M

 
 kj = 1

 𝔼 [(1
2

k (Y1
*) –2 

2

k
 (x0))+ (1

2

j  (Y1
*) –2 

2

j
 (x0))+ f(4) [vk, vk, vj, vj] (Y1

*)]  

            = 𝔼 [f'' [1b (Y1
*) –2b(x0) , 1b (Y1

*) –2b (x0)] (Y1
*)]  

           +

M

 
 k = 1

 𝔼 [(1
2

k (Y1
*)  -2 

2

k
 (x0)) f''' [vk, vk, 1b(Y1

*) – 2b (x0)] (Y1
*)]  

                   + 
1

4
  

M

 
 kj = 1

 𝔼 [(1
2

k (Y1
*) –2 

2

k
 (x0))  (1

2

j  (Y1
*) –2 

2

j
 (x0)) f

(4) [vk, vk, vj, vj ] (Y1
*)] + O(h2). 

Moreover, detailed calculations using Lemma A.4 reveal that  

 𝔼 [B2f (Y1
*)] = 𝔼 






2

2
 B

2

1
f (Y1

*) – 212A(B1f) (Y1
*) + 

2

1
 





M

 
 k = 1

 
2

k
 (Y1

*) f''' [vk vk b (Y1
*)] (Y1

*)  

          + f'' [b(Y1
*), b(Y1

*)] (Y1
*) + 

1

4
 











 

M

 
 kj = 1

 
2

k
 (Y1

*) 
2

j
 (Y1

*) f(4) [ vk  vk vj vj] (Y1
*)  + O (h2). 

Next we apply Dynkin's formula repeatedly to obtain  

   𝔼[B2f (Y1
*)]  = 𝔼[B2 f (y (h))]  
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   = 
2

2
 











B
2

1
f (x0) + B

3

1
 f(x0) h + 



0

 h
 


0

s
 𝔼 [B

4

1
 f (y (r))] dr ds   

   – 212 











A (B1 f ) (x0) + B1 (A (B1 f)) (x0) h + 


0

 h
 


0

s
 𝔼 [B

2

1
 (A (B1 f)) (y (r)) dr ds]   

   + 
2

1
 `











(B
2

1 f ) (x0) + (B
3

1 f) (x0) h + 


0

h
 


0

s
 𝔼 [B

4

1 f (y (r))  dr ds] + O (h2).  

The detailed calculation shows that,  

 𝔼 [B2f (Y1
*)] = (B

2

1f ) (x0) + (B
3

1f) (x0)h + O (h2).  (A.12) 

Step 4. Proceeding in the same way as above, we have  

 𝔼 (B3f) (Y1
*) = (B

3

1f ) (x0)  +O (h)                                                                                        (A.13) 

Step 5. Combining (A.7), (A.11), (A.12), (A.13) and observing  

 1 (1 – )h2 – 2 (1– ) h2 + 
(1 – )2h2

 2
  + 

2h2

 2
  = 

h2

2
   

and 

 
3 h3

 6
  + 1 

 2(1 –  )

 2
 h3 – 2 

2 (1 –  )

 2
 h3 + 1 

 (1 –  )2

 2
 h3 – 2 

 (1 –  )2

 2
 h3 +

(1 –  )3

 6
 h3 = 

h3

 6
  

gives the desired result.  
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