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Abstract 

The maximum static flow problem sends a maximum amount of flow from a set of sources to a set of 

sinks in a network with multiple sources and multiple sinks. Because of cost or other constraints, e.g. 

in evacuation planning, only a limited number of sinks may have to be chosen. To address such an 

issue, we consider a problem of choosing a set of at most a given number of sinks from a given set of 

possible sinks T as a Max Static k-sinks problem. We present a non-polynomial time algorithm to solve 

it and show that (T – 1)-sinks problem can be solved in a strongly polynomial time. 
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1. Introduction 

Network flow modeling, has been widely used to solve problems in various fields of 

inquiry, e.g. engineering, management, applied mathematics, and computer science 

[1]. Evacuation planning is one of the active research areas in which network flow 

modeling has been widely used. The survey of such models can be found in [2, 3]. One 

of the current research interests is identification of facility locations using network flow 

approach [4, 5]. One of the interesting problems is the shelter (sink) location problem 

in which appropriate sinks are chosen from among a given set of possible shelters [6, 7]. 

In their work, Heßler and Hamacher [6] present a model that choose shelters so as to 

minimize the opening cost of the shelter. Nath and Dhamala [7] present sink location 

models based on static and dynamic network flows to choose a single sink with the 

objectives of maximizing the flow or minimizing the time of evacuation. 

In this work, we introduce a problem of choosing at most a given number of sinks, from 

among a given set of possible sinks, to maximize the static flow. The paper is organized as 

follows. Section 2 describes the static flow modeling on which the presented problem is 

based. Section 3 introduces the problem and a solution algorithm, and Section 4 concludes 

the work. 

2. The maximum static flow problem 

A network 𝑁 = (𝑉, 𝐴) consists of a set V   of nodes, and a set 𝐴 ⊆ 𝑉 × 𝑉 of directed arcs. 

We assume that |𝑉| = 𝑚 and |𝐴| = 𝑛. For each 𝑖 ∈ 𝑉, we define  
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𝐴𝑎(𝑖) = {𝑗 ∈ 𝑉: (𝑖, 𝑗) ∈ 𝐴} 

which denotes the set of nodes that succeed 𝑖 (the nodes after 𝑖) and 

𝐴𝑏(𝑖) = {𝑗 ∈ 𝑉: (𝑗, 𝑖) ∈ 𝐴} 

which denotes the set of nodes that precede i (the nodes before i). Associated with each arc 

(𝑖, 𝑗) is a capacity 𝑢𝑖𝑗 denoting the maximum amount of flow that can flow on (𝑖, 𝑗). Given 

two special node sets, a set of source nodes 𝑆 ≠ ∅ and a set of sink nodes 𝑇 ≠ ∅ such that 

𝑆 ∩ 𝑇 = ∅, a vector 𝑥 = {𝑥𝑖𝑗} satisfying the mass balance constraints 

∑ 𝑥𝑖𝑗

𝑗∈𝐴𝑎(𝑖)

− ∑ 𝑥𝑗𝑖

𝑗∈𝐴𝑏(𝑖)

= 0 ∀𝑖 ∈ 𝑉 − {𝑆, 𝑇}                                    (1) 

and the capacity constraints 

0 ≤ 𝑥𝑖𝑗 ≤ 𝑢𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐴                                              (2) 

is known as static flow or simply a flow [8]. The value of 𝑥 is defined by  

𝑣(𝑥) = ∑ ( ∑ 𝑥𝑠𝑗

𝑗∈𝐴𝑎(𝑠)

− ∑ 𝑥𝑗𝑠

𝑗∈𝐴𝑏(𝑠)

) = ∑ (− ∑ 𝑥𝑖𝑗

𝑗∈𝐴𝑎(𝑡)

+ ∑ 𝑥𝑗𝑡

𝑗∈𝐴𝑏(𝑡)

)             (3)

𝑡∈𝑇𝑠∈𝑆

 

  

The flow 𝑥, that maximizes 𝑣(𝑥) is known as maximum flow or a maximum static flow. 

The maximum static flow problem is a well-studied problem. Starting with the pseudo-

polynomial time Ford and Fulkerson’s algorithm [9], there are several improvements 

resulting into strongly polynomial algorithms (see [1] for such several algorithms). The 

algorithms solve the problem in a single-source-single-sink network (|𝑆| = |𝑇| = 1). 

As suggested in [9], the algorithms can be used to solve the problem in the multi-

source-multi-sink network by adding two nodes, the super source s∗ and the super sink 

t∗ and the arcs (s∗, s) ∀𝑠 ∈ 𝑆,(t, t∗) ∀𝑡 ∈ 𝑇 with infinite capacity to the network. This is 

illustrated in Figure 1. 

 

Figure 1: The super sink s∗, and the super sink t∗ 
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3.  The Max Static k-sinks location problem 

Given a set of possible sinks, choosing a sink that maximizes the static flow is known as 

the Max Static Sink location problem. The problem is introduced in [7] and shown to be 

solved in a strongly polynomial time using a simple iterative procedure. 

Sometimes, we may have to choose more than one sink from a given set of possible sinks. 

The optimal choice is the subset of the sinks that gives the highest value of the maximum 

flow. The following example illustrates the fact. 

Consider a network given in Figure 2(a). Each arc-label represents the capacity of the arc. 

Let 𝑆 =  {𝑠}. Let {𝑡1, 𝑡2, 𝑡3} be the set of possible sinks. Suppose that we have to choose 

two sinks out of the three sinks. The values of the maximum static flow with the possible 

choices of the sinks is given in Table 1. The value of the maximum flow value is maximum 

when {𝑡1, 𝑡2} is considered as the sink set. For the network given in figure 2(b). 

 

 

 

 

 

 

  

 

Table 1: Value of the maximum flow in Figure 2(a) 

Sink set Value of the maximum flow 

{t1, t2} 10 

{t2, t3} 8 

{t1, t3} 9 

The values of maximum flow are given in Table 2. The optimal sink set is {t1,t2} or {t2,t3}. 

However, even if a single sink t1 is chosen, the value of the maximum flow is 9. So, only 

the singleton set {t1} may be taken as optimal sink set. 

Table 2: Value of the maximum flow in Figure 2(b) 

Sink set Value of the maximum flow 

{t1, t2} 9 

{t2, t3} 8 
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{t1, t3} 9 

Problem: (The Max Static k-sinks location problem). Given a network 𝑁 =  (𝑉, 𝐴) with 

a set of sources 𝑆, and a set of possible sinks T. Suppose that 𝑣𝑋 represents the value of the 

maximum flow from S to 𝑋 for 𝑋 ⊆  𝑇. Let 𝒯 be the collection of subsets of 𝑇 with 𝑘 

sinks. The Max Static k-sinks problem is to find 𝑇∗ ⊂  𝑇 such that 𝑣𝑇∗ ≥ 𝑣𝑋 for each 𝑋 ∈
𝒯 and |𝑇∗ |  ≤  𝑘. 

A simple procedure to solve the Max Static k-sinks location problem is given in Algorithm 

1. The algorithm iterates overall all possible subsets with k sinks, finds the maximum static 

flow introducing the super source and the super sink. Since the maximum flow cannot be 

more than the sum ∑ ∑ 𝑢𝑖𝑡𝑖∈𝐴𝑏(𝑡)𝑡∈𝑋  of the capacities of the arcs terminating in the set of 

sink nodes 𝑋, we calculate the maximum static flow only if the current value of the 

maximum flow is less than ∑ ∑ 𝑢𝑖𝑡𝑖∈𝐴𝑏(𝑡)𝑡∈𝑋 . The subset of sinks which receives the largest 

value of the maximum flow is chosen as the optimal set of the sinks. In the process, some 

sink nodes may not receive a nonzero flow as illustrated in Example 1. The optimal set of 

sinks is updated by removing such sinks. 

Algorithm 1: Max Static k-sinks location problem 

1. Add 𝑠∗ to 𝑉 and (𝑖, 𝑠) to 𝐴 such that 𝑢𝑖𝑠∗ = ∞ for each 𝑖 ∈ 𝑆. 

2. Add 𝑡∗ to 𝑉. 

3. Let max _𝑣 = −1 

4. for 𝑋 ∈ 𝒯do 

5.   if 𝑚𝑎𝑥𝑣 < ∑ ∑ 𝑢𝑖𝑡𝑡∈𝐴𝑏(𝑡)𝑡∈𝑋  then 

6.     add (𝑖, 𝑡∗) to A with 𝑢𝑖𝑡∗ = ∞ for each 𝑖 ∈ 𝑋 

7.     let 𝑥 = maximum static 𝑠∗ − 𝑡∗ flow. 

8.     if value of 𝑥 > max _𝑣 then 

9.         max _𝑣 = 𝑣𝑎𝑙𝑢𝑒  𝑜𝑓 𝑥∗ 

10.          𝑇∗ = 𝑋  

11.    Remove (𝑖, 𝑡∗) from A for each 𝑖 ∈ 𝑋 

12.  for 𝑡 ∈ 𝑇∗do 

13.    if 𝑥(𝑡, 𝑡∗) = 0 then 

14.     Remove 𝑡 from 𝑇∗. 

15.   Return 𝑇∗. 
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Theorem 1.  Algorithm 1 solves the Max static k-sinks location problem in 𝑂 (
|𝑇|
𝑘

) (𝑀 +

𝑘) where 𝑂(𝑀) is the worst-case complexity of a maximum static flow computation. 

Proof. It is clear that the algorithm runs over all the subsets of T with k sinks. The number 

of such subsets is (
|𝑇|
𝑘

).   So, in the worst case, it performs (
|𝑇|
𝑘

) maximum static flow 

computations. In each maximum static flow computation, there are 𝑂(𝑘) addition, deletion 

of arcs. So, if 𝑂(𝑀) is the worst-case complexity of a maximum static flow computation, 

the worst-case complexity of Algorithm 1 is  (
|𝑇|
𝑘

) (𝑀 + 𝑘). 

As shown in Theorem 1, Algorithm 1 is not a polynomial time algorithm. However, if 

𝑘 = |𝑇| − 1, the procedure becomes strongly polynomial time. 

Theorem 2. The Max-static (|𝑇| − 1)-sinks problem can be solved in a strongly 

polynomial time. 

Proof. If 𝑘 = |𝑇| − 1, the worst-case complexity of Algorithm 1, according to Theorem 1, 

is 

𝑂 ((
|𝑇|

|𝑇| − 1
) (𝑀 + |𝑇|)) = 𝑂(|𝑇|(𝑀 + 𝑇)). 

A maximum static flow can be computed in a strongly polynomial time, e.g., an algorithm 

by Goldberg and Tarjan [10] solves the problem in 𝑂(𝑛𝑚 𝑙𝑜𝑔(𝑛2/𝑚)) time. Since |𝑇| <
𝑛, the result follows. 

4.  Conclusion 

Motivated by the applications in the evacuation planning and the related fields, we consider 

a problem of choosing a set of sinks from among a given set of possible sinks. The problem 

is important because it may not be possible to use all the sinks because of cost or other 

constraints. We introduce a Max Static k-sinks location problem and an algorithm is 

constructed to find at most k sinks out of a set of possible sinks T. The procedure does not 

have a polynomial time complexity. However, we prove that for 𝑘 = |𝑇| − 1, the problem 

can be solved in a strongly polynomial time. 
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