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Abstract 

 

This research study aims to evaluate the effectiveness of transfer learning with the ResNet50 model for classifying CT scan 

images of lungs as having cancer or not. Additionally, it explores the interpretability methods of LIME (Local Interpretable 

Model-Agnostic Explanations) and SHAP (SHapley Additive exPlanations) to provide explanations for the predictions made 

by the ResNet50 model on CT scan images. The research objectives include developing a deep learning model based on the 

ResNet50 architecture, evaluating its performance using various metrics, and explaining the predictions using LIME and 

SHAP techniques. The dataset consists of a collection of CT scan images of lungs, with labels indicating the presence or 

absence of cancer. Through k-fold cross-validation, the model achieves high accuracy and low loss, demonstrating its 

effectiveness in classifying lung cancer. The interpretability methods of LIME and SHAP shed light on the crucial features 

and regions in the CT scan images that contribute to the model's predictions, enhancing the understanding of the model's 

decision-making process. The results highlight the potential of transfer learning and interpretability techniques in improving 

the accuracy and explainability of lung cancer detection models. Future directions may involve applying the developed 

model to larger datasets, classifying different stages of cancer, and identifying the specific regions within the lungs where 

cancer cells are detected. 
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1. Introduction 

Lung cancer is a significant global health concern, accounting for many cancer-related deaths worldwide. Early 

and accurate detection of lung cancer plays a crucial role in improving patient outcomes and survival rates. 

Recent advancements in deep learning algorithms, coupled with the availability of large-scale medical imaging 

datasets, have shown promising results in automating the diagnosis of lung cancer using CT scan images. 

However, the inherent complexity of deep learning models and the lack of interpretability hinder their 

widespread adoption in clinical practice. 

This paper addresses the challenges of classifying lung cancer in CT scan images by leveraging the power of 

deep learning techniques while enhancing interpretability. The research aims to investigate the effectiveness of 

transfer learning with the ResNet50 model, a state-of-the-art architecture, in accurately classifying CT scan 

images as either malignant or benign. Additionally, the research employs two popular interpretability methods, 

LIME (Local Interpretable Model-Agnostic Explanations) and SHAP (SHapley Additive exPlanations), to 

explain the predictions of the deep learning model and gain insights into the features that are most relevant for 

determining the presence of lung cancer. 
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The objectives of the study encompass the development of a deep learning model based on the ResNet50 

architecture, evaluating its performance using various metrics, and providing interpretability analysis to enhance 

trust and transparency in the model's predictions. We hypothesize that transfer learning, combined with LIME 

and SHAP techniques, can significantly improve both the accuracy and interpretability of lung cancer 

classification in CT scan images. 

By addressing the challenges of accuracy and interpretability in lung cancer classification, this research 

contributes to the field of medical image analysis and has the potential to improve diagnostic accuracy, patient 

outcomes, and overall healthcare decision-making in lung cancer management. 

The contribution of this study is what follows: 

1. Evaluate the accuracy of the ResNet50 model in classifying CT scan images of lungs as malignant or 

benign, aiming to enhance diagnostic precision and promote early lung cancer detection. 

 

2. Enhance model interpretability by employing LIME and SHAP techniques to explain the deep learning 

model's predictions, fostering trust and facilitating its adoption in clinical practice. 

2. Related Works 

In the field of lung cancer detection, various traditional, machine learning (ML), and deep learning (DL) 

approaches have been explored. Traditional approaches, relying on handcrafted features and classical machine 

learning algorithms, provided foundational insights but had limited performance compared to more recent 

techniques. ML approaches, such as the supervised CNN method proposed by Kumar et al. (2020), 

demonstrated remarkable accuracy in identifying relevant regions in PET-CT images, surpassing traditional 

methods. Kumar, A. et. al. achieved an exceptional accuracy of 99.29% in foreground detection. 

DL approaches, like the DL-based CAD system introduced by Hanan et al. (2018), showcased the power of 

automatically learning intricate patterns, achieving high accuracy and sensitivity in lung cancer detection. Their 

model achieved a classification accuracy rate of 99.06%, a sensitivity of 100%, and a specificity of 99.2% 

(Hanan et al., 2018). Suren Makaju et al. (2018) employed a prototype DL model for lung cancer detection, 

resulting in an accuracy of 92%. Although specific details regarding the algorithm and dataset were not 

provided, the achieved accuracy signifies the potential of DL approaches in improving the accuracy and aiding 

in the early detection of lung cancer. 

Allison and A.M.R.W. (2017) utilized DL models with manifold preprocessing methods, achieving an accuracy 

of 97.5% with a false positive rate below 10%. By employing these techniques, the study showcased the 

potential of DL in accurately identifying and diagnosing lung cancer cases. 

Aggarwal, Furquan, and Kalra introduced a model designed to facilitate the differentiation between nodules and 

the regular anatomical structures found in the lungs. This approach involves the extraction of geometric, 

statistical, and grayscale attributes. The classifier employed in this method is Linear Discriminant Analysis 

(LDA), combined with optimal thresholding for segmentation purposes. The system demonstrates a 

commendable 84% accuracy, along with a high sensitivity rate of 97.14%. However, the specificity, which 

stands at 53.33%, remains notably lower. Despite its capacity to detect cancer nodules, the model's overall 

accuracy remains unsatisfactory. 

Jin, Zhang, and Jin employed a convolutional neural network as the classifier within their CAD (Computer-

Aided Detection) system for the identification of lung cancer. The system achieved notable performance metrics 

with an accuracy of 84.6%, sensitivity of 82.5%, and specificity of 86.7%. One notable strength of this model 

lies in its utilization of circular filters during the Region of Interest (ROI) extraction phase, effectively 

mitigating the training and recognition expenses. However, it is worth noting that despite the reduction in 

implementation costs, the model's accuracy remains suboptimal. 
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3. Methodology 

The framework used in this study aims to develop an accurate and efficient system for lung cancer detection 

using deep learning techniques. It consists of multiple stages, starting with data preprocessing, where the images 

from the dataset are resized and pixel values are normalized. The preprocessed data is then used to train a deep 

convolutional neural network (CNN) model, designed to learn intricate patterns and features indicative of lung 

cancer. Transfer learning with the ResNet50 architecture is employed to leverage pre-trained weights and 

improve the model's performance. The trained model is evaluated using various metrics such as accuracy, 

precision, recall, and F1-score. To enhance interpretability, the LIME and SHAP methods are applied to explain 

the model's predictions and identify essential features in the CT scan images. The framework holds the potential 

to provide accurate and reliable lung cancer detection, contributing to early diagnosis and improved patient 

outcomes. 

 

Figure 1. Framework used 

 

The following algorithm (Gaur, L., Bhandari, M., Razdan, T., Mallik, S., & Zhao, Z. 2022) is used to calculate 

the Shapley values in this study. 

Input: Number of iterations M, instance of interest x, feature index j, data matrix X, and (SVM or LR Model) 

for Every Iteration 1 up to M do 

Draw random instance z from the data matrix X 

Choose a random permutation of the feature values 

Order instance x: ( )      (Equation 1)  

Order instance z: ( )      (Equation 2) 

Construct two new instances: 

with( ( ))   (Equation 3)  

Without( ( ))   (Equation 4) 

 

Compute Marginal Distribution: 

𝜙𝑗
𝑚 = 𝑓(𝑥+𝑗) − 𝑓(𝑥−𝑗) (Equation 5) 

end for 
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Compute Shapely values:   

𝜙𝑗(𝑥) =
1

𝑀
∑ 𝜙𝑗

𝑚𝑀
𝑚=1   (Equation 6) 

3.1 Dataset 

In this study, the "Lung Cancer Dataset" was created by merging data from two sources: "The IQ-OTHNCCD 

lung cancer dataset" (Alyasriy, H., & AL-Huseiny, M. 2021) and "Chest Cancer Detection Transfer Learning" 

(Hany, M. 2020). With a total of 2020 images, including 1444 cancerous and 576 non-cancerous samples, the 

merged dataset provides a more extensive and more diverse collection for robust analysis and model training. 

By combining datasets from different sources, the "Lung Cancer Dataset" captures variations in imaging 

techniques, patient demographics, and disease presentations, enhancing the models' ability to discriminate 

between cancerous and non-cancerous cases. This comprehensive dataset in Google Drive facilitates accurate 

and reliable lung cancer analysis and detection. 

3.1.1. Data Pre-processing 

The images in the dataset were resized to a standardized dimension of 150 × 150 × 3 to ensure consistent 

learning and efficient processing. Subsequently, the pixel values of each image were scaled down to a range of 0 

to 1 for optimal calculations. The dataset was then split into training and test sets, with an 80:20 ratio, where 

80% of the data was used for training the model and 20% for independent testing. To improve convergence and 

prevent the CNN model from learning the training order, all images, regardless of their original size, were 

resized to uniform dimensions. Gaussian noise, with a mean of 0 and a standard deviation of 100.5, was 

introduced as an augmentation technique to enhance the deep learning process. Figure 1 provides an example of 

a tumor instance from the dataset, showcasing one of the tumor categories for analysis. 

4. Result and Analysis 

4.1. Accuracy and Loss 

After the classification process, the evaluation of CNN models is conducted by assessing their accuracy and the 

number of incorrect predictions. The results obtained from the conventional CNN approach are illustrated in 

Figure 2, showcasing the corresponding curves. These metrics provide valuable insights into the effectiveness 

and reliability of the CNN models in accurately classifying the given data. 

A. 

 

B. 

 

Figure 2. Training and Validation results of the model. Figure A shows the training and validation accuracy of 99.64% and 99.25%, 

respectively. In figure B it shows the training and validation loss of 0.1149 and 0.153 respectively.  

 

4.2. Confusion Matrix 

The confusion matrix, shown in Figure 3, provides a comprehensive overview of the classification results 

achieved by the CNN model. It demonstrates the model's effectiveness in accurately identifying cancerous 

instances (class 0), with 286 out of 290 cases correctly classified. Additionally, the model performs well in 

distinguishing non-cancerous instances (class 1), with 114 out of 118 cases accurately classified. Overall, the 
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high accuracy of the model's predictions indicates its potential for reliable cancer detection. However, it is 

crucial to further investigate the misclassification of 4 non-cancerous instances as cancerous, as this could have 

implications in real-world scenarios. The reason behind this misclassification is small set of data and will go 

further low in number if we train our model with large dataset. 

 

Figure 3: Effectiveness of model with confusion matrix. 

4.3. K- Fold Analysis 

The k-fold analysis produced exceptional results, with a perfect accuracy score of 1.0000 in each fold except for 

fold 8, which had a slightly lower accuracy of 0.9876. This is due to the insufficient dataset while randomly 

picking the training and test data. The average accuracy across all folds was an impressive 0.9987, indicating the 

robustness and reliability of the CNN model in accurately predicting lung cancer. Additionally, the average loss 

value of 0.0071 demonstrates the model's ability to minimize errors and make precise predictions. These 

findings suggest that the proposed CNN model performs excellently in classifying lung cancer cases. The 

consistently achieved high accuracy across multiple folds reinforces the model's effectiveness and strengthens 

its potential for practical applications in lung cancer diagnosis. 

Fold Training Accuracy Training Loss Test Accuracy Test Loss 

1 0.9988 0.0142 1.0000 0.0040 

2 0.9972 0.0168 1.0000 0.0023 

3 0.9987 0.0145 1.0000 0.0038 

4 0.9987 0.0114 1.0000 0.0029 

5 0.9978 0.0124 1.0000 0.0094 

6 0.9934 0.0280 1.0000 0.0046 

7 0.9999 0.0092 1.0000 0.0011 
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Table 1: K-fold analysis of the proposed model 

4.4. SHAP 

The CNN model employed in this study exhibits complex mathematical behavior, which can pose challenges in 

interpreting its predictions directly. To address this issue, SHAP (SHapley Additive exPlanations) was utilized 

to elucidate the impact of individual input features on the model's output. The resulting SHAP values were 

visualized in Figures 4 and 5, where red pixels indicate positive values that contribute to higher class 

probabilities, and blue pixels represent negative values that decrease class probabilities. These visual 

representations provide valuable insights into how specific features influence the model's predictions. By 

leveraging SHAP, this study enhances the interpretability of the CNN model, enabling a better understanding of 

its decision-making process and feature importance. 

 

Figure 4: Based on the high SHAP value displayed in the explanation image (second image), we can say the CT image is diagnosed as 

Cancerous. 

 

8 0.9942 0.0287 0.9876 0.0361 

9 0.9961 0.0199 1.0000 0.0058 

10 0.9990 0.0093 1.0000 0.0012 

Average 0.9974 0.0164 0.9987 0.0071 
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Figure 5: Based on the high SHAP value displayed in explanation image (second image), we can say the CT image is diagnosed as non-

cancerous. 

 

4.5. LIME 

This study employed LIME to provide localized explanations for the model's predictions. LIME accomplishes 

this by perturbing the test image and generating a set of random perturbations in a matrix format consisting of 

ones and zeros. Each row in the matrix represents a perturbation, while the columns correspond to superpixels. 

A superpixel is labeled as "ON" if assigned a value of 1, indicating its relevance, or "OFF" if assigned a value of 

0, indicating its lack of influence. The length of the vector displayed in the visualizations reflects the total 

number of superpixels in the image, which in our case is 150*150 perturbations. In Figure 6, the third image 

depicts the final perturbed image for the cancerous test image, while in Figure 7, the third image displays the 

perturbed image for the test image with standard conditions. These visualizations highlight specific regions 

within the image that play a crucial role in the classification process, emphasizing the portions that have a 

significant impact on determining the presence or absence of cancer. The localized interpretability provided by 

LIME enhances our understanding of the model's decision-making process, fostering transparency and trust in 

the model's predictions (Vedaldi and Soatto, 2008). 

 

Figure 6: Interpretations generated by LIME for cancerous tissue. The leftmost is sample of cancerous CT images from the test image. The 

middle one represents super pixels generated from quick-shift segmentation to create perturbations. The rightmost represents the final 

perturbed image showing the presence of cancerous tissue. 

 

 

Figure 7: Interpretations generated by LIME for a normal image. Leftmost is a sample of the normal image from the test image. The middle 

one represents super pixels generated from a sample of the normal image from test image quick-shift segmentation to create perturbations. 

The last one, rightmost represents the final perturbed image for the normal image. 
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5. Conclusion and Further Direction 

In conclusion, this study successfully developed a deep learning model for the classification of lung cancer with 

high accuracy on the provided dataset. However, future research should focus on scaling the model to larger 

datasets to ensure its performance and generalizability. Additionally, extending the model to classify different 

stages of lung cancer would enhance its clinical utility and assist in personalized treatment planning. Moreover, 

there is potential for further research in localizing cancerous regions within the lungs to improve targeted 

interventions. By addressing these aspects, we can advance the field of lung cancer detection and contribute to 

improving patient outcomes through early diagnosis and personalized treatment strategies. The interpretability 

methods of LIME and SHAP also played a crucial role in enhancing the transparency of the model's predictions 

and providing valuable insights into the critical features for classification. Overall, this study demonstrates the 

potential of deep learning models and opens avenues for further advancements in the field of lung cancer 

diagnosis. 
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