Unlocking the Potential of CT scans: An Explanation-Driven Deep Learning Model for Predicting Lung Cancer

Authors

  • Yuba Raj Oli Phoenix College of Management, Kathmandu, Nepal
  • Loknath Regmi IOE, Pulchowk Campus, Nepal
  • Prakash Poudel Nepal College of Information Technology, Nepal
  • Satish Kumar Karna Nepal College of Information Technology, Nepal
  • Mohan Bhandari Samriddhi College, Bhaktapur, Nepal

DOI:

https://doi.org/10.3126/injet.v1i1.60945

Keywords:

Transfer learning, ResNet50, CT scan images, Lung cancer, Classification, Explainable, AI, LIME, SHAP, Deep learning, Predictive modeling

Abstract

This research study aims to evaluate the effectiveness of transfer learning with the ResNet50 model for classifying CT scan images of lungs as having cancer or not. Additionally, it explores the interpretability methods of LIME (Local Interpretable Model-Agnostic Explanations) and SHAP (SHapley Additive exPlanations) to provide explanations for the predictions made by the ResNet50 model on CT scan images. The research objectives include developing a deep learning model based on the ResNet50 architecture, evaluating its performance using various metrics, and explaining the predictions using LIME and SHAP techniques. The dataset consists of a collection of CT scan images of lungs, with labels indicating the presence or absence of cancer. Through k-fold cross-validation, the model achieves high accuracy and low loss, demonstrating its effectiveness in classifying lung cancer. The interpretability methods of LIME and SHAP shed light on the crucial features and regions in the CT scan images that contribute to the model's predictions, enhancing the understanding of the model's decision-making process. The results highlight the potential of transfer learning and interpretability techniques in improving the accuracy and explainability of lung cancer detection models. Future directions may involve applying the developed model to larger datasets, classifying different stages of cancer, and identifying the specific regions within the lungs where cancer cells are detected.

Downloads

Download data is not yet available.
Abstract
152
PDF
48

Downloads

Published

2023-12-21

How to Cite

Oli, Y. R., Regmi, L., Poudel, P., Karna, S. K., & Bhandari, M. (2023). Unlocking the Potential of CT scans: An Explanation-Driven Deep Learning Model for Predicting Lung Cancer. International Journal on Engineering Technology, 1(1), 223–231. https://doi.org/10.3126/injet.v1i1.60945

Issue

Section

Articles