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Abstract
This study attempts to test the ARIMA model and 
forecast annual time series of GDP in Nepal from mid-
July, 1960 to mid-July, 2018. The annual time series on 
GDP used in this study consists of total 59 observations. 
Out of them, three years’ data from mid-July 2016 to 
mid-July 2018 have been used for in-sample forecasting 
and evaluation. The study uses univariate Box-Jenkins 
ARIMA modelling process to identify the best fitted model 
that describes the sample data set. The study examines 
a number of ARIMA family models and recommends 
ARIMA (0,1,2) as the most appropriate model that 
best describes the annual GDP series of the sampled 
period. The ARIMA (0, 1, 2) model incorporates zero lag 
order for autoregression, integrated with 2 lag order for 
moving average model using first difference operator. 
The ARIMA model forecasts documented in this study 
are not significantly different from actual because the 
actual annual GDP series observed in forecast period 
fall within 95 per cent confidence interval of estimates. 
Hence, ARIMA (0,1,2) model can best capture the GDP 
movement in Nepal for the sample period.
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1. Introduction and Study Objectives
Modelling and forecasting of gross domestic product (GDP) have captured 
considerable interest of scholars at both academic and policy level in the context 
of several economies around the globe. The evolution of academic and policy 
interest in this area has been basically geared by the fact that GDP is considered 
as an important index of national economic development. Besides, GDP also 
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helps judging the operating status of macro economy as a whole (Ning et al, 
2010). The GDP measures national income and output for a given country. GDP 
is measured as total expenditure incurred for final goods and services produced 
in the country and include the expenditure incurred for consumption, investment, 
government expenditure and net exports. Alternatively, it can also be measured 
as value added by goods and services produced in an economy. 
Over the last several decades, many theoretical and empirical attempts have 
witnessed the growing academic interest on GDP growth and its determinants. 
Lucas (1988) explains that increasing concern toward GDP growth is being 
accelerated by the need to achieve higher rate of economic growth in both 
developed and developing nations. The theoretical and empirical attempts toward 
this direction seem to have directed to explore two issues: why GDP growth rates 
across countries are different and what factors do cause such difference? The 
difference in GDP growth rate is highly reflected in the difference in living standard, 
and quality of life of the people living across countries. Some countries have lower 
level of investment, lower productivity, slower transformation in people’s standard 
of living, and hence lower level of GDP growth (Ravallion & Chen, 1997).
The economy of the Federal Democratic Republic of Nepal is the one among the 
smallest economies in the world with a GDP of only $28.81 billion in 2018. Nepal has 
been the slower growing nation for the past 59 years (since 1960 until 2018) with an 
average annual growth rate in real GDP about 3.8 per cent (The World Bank, 2019). 
The constant unsatisfied needs and wide disparity of income and wealth among 
Nepalese people are basic shortcomings of Nepalese socioeconomic context. These 
factors have been the root causes for internal conflict over the years. However, in 
recent years, Nepal has made notable socio-economic progress. Literacy rates have 
increased, poverty rates have declined, gender disparities have narrowed, and social 
inclusion has improved (Asian Development Bank, 2013). Nepal now is striving toward 
achieving the sustainable development goals and graduating from the status of least-
developed country. The support from international community in democratic transition 
of Nepal, to some extent, is expected to facilitate the country for making progress 
toward achievement of the Millennium Development Goals. In an attempt toward 
this direction, growth in GDP remains as the main target variable for Government of 
Nepal (GoN) for setting up effective and efficient strategies and policies for economic 
development. In this backdrop, it is necessary to provide a precise forecast of GDP in 
order to develop meaningful vision of the future trend of Nepalese economy. Framing 
appropriate strategies and policies for economic development with proper allocation 
of funds towards priority sectors requires a good estimate of GDP for some period 
ahead. It is only possible by using appropriate time series model for forecasting.     
A time series represents equal spaced data points, in terms of periods, on a 
given variable which follows a chronological order. An examination of time series 
data is conducted with the expectations to discover historical patterns in the 
data set that may facilitate in preparing efficient forecast for the coming period. 
An economic time series exhibits two essential properties: non-stationary and 
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time-varying volatility. Non-stationary implies that a time series variable has no 
definite tendency to return to a linear trend. Time-varying volatility means that 
the volatility in economic time series varies over time. It should also be noted 
that non-stationarity and time-varying volatility in time series data can occur in 
combination as well. For this reason, no single best forecasting model exists. 
Thus, one of the basic issues in economic time series forecasting is that of trying 
to test the appropriateness forecasting model to the pattern of the available data. 
Hence, this study focuses on modelling and quantifying the GDP movement in Nepal 
by using appropriate time series forecasting model. Several time series forecasting 
methods have been developed over the past decades. One of the most widely used 
in practice is the Box-Jenkins (1970) method. This method incorporates both moving 
average and autoregressive models. As Dobre and Alexandru (2008) argue, although 
autoregressive and moving average models were independently used before the 
invention of Box-Jenkins method, the basic contribution of the Box-Jenkins method 
rests on offering systematic methodology for identifying and estimating models 
that can incorporate both autoregressive and moving average approaches. This 
makes Box-Jenkins methodology, also known as Autoregressive Integrated Moving 
Average (ARIMA) model, a powerful class of models.  Pankratz (1983) argues that 
most ARIMA models place significant emphasis on the recent past rather than the 
distant past and hence are appropriate for short-term forecasting. The underlying 
significance of ARIMA model is that it facilitates forecasting of the future trend of 
economic time series variables, which the policy makers can utilize for formulating 
policies based on the previous knowledge of such variables. In essence, the ARIMA 
model captures the information relating to the possible movement in future time 
series from the past data of the time series itself. In line with this argument, this 
paper attempts to use Box-Jenkins approach to test several ARIMA family models to 
decide on the best fitted model and forecast GDP movements using the best fitted 
ARIMA model in the context of Nepal using a data set of annual GDP- consisting of 
59 observations from mid-July, 1960 to mid-July, 2018. Hence, the main purpose of 
this paper is to identify the appropriate time series ARIMA modelling of sampled time 
series data of annual GDP. Besides, the study also attempts to evaluate in-sample 
forecast of the time series variable on the fitted model. 
The rest of this paper is organised thus: second section deals with literature 
review; third section describes data and methodology associated with Box-
Jenkins process; fourth section discusses on the study results associated with 
model identification, parameter estimation, diagnostic checking and forecasting; 
and finally, fifth section presents conclusions of the study.  

2. Literature Review 
Macroeconomic forecasting relies on the use of econometric models to provide an 
estimate of future progress expected to be undertaken in the economy. Forecasting 
future national productivity, such as GDP, is of obvious interest in empirical 
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macroeconomic analysis. Forecast of next year’s GDP with some degree of precision 
can help in formulation of macroeconomic policies and strategies. Although, it is 
not often possible to generate a very accurate prediction of GDP, one can at least 
forecast, for example, the sign of next GDP. Time series forecasting is highly utilised 
in predicting economic and business trends including the movements in GDP and 
stock market, among others. The purpose of literature review in this paper is to 
discuss on some of the empirical evidences associated with application of ARIMA 
model in modelling and forecasting economic time series. 
Many studies have been conducted in past to observe the applicability of Box-
Jenkins models in time series modelling and forecasting associated with business 
and economy. One such earlier study was conducted by Klugh and Markham 
(1985) with a view to compare Box-Jenkins time series forecasts to preliminary 
milk price estimates. By using the forecasts for monthly time series data from 
1979 through 1983, the study observed that Box-Jenkins time series models 
outperformed the preliminary milk price estimation procedure in five States of 
USA. Marcek’s (1998) study on economic time series forecasting was associated 
with stock price prediction based on 163 observed data from January 2, 1997 
to December 31, 1997. The study established ARIMA (2,1,1) model as the best 
predictor of future stock prices. Similarly, Amiri’s (1999) study on the Support 
Vector Machine (SVM) approach for Box-Jenkins models recognised the ARIMA 
model as the benchmark model in evaluating the performance of new method. 
By using 200 observations of time series data those used by Brockwell and Davis 
(1991), this study focused on the SVM approach in the modelling of AR(2), MA(1) 
and ARIMA(2,1,1) process. Shabri (2001) examined the performance of the Box-
Jenkins method in comparison to neural networks in forecasting time series. This 
study was based on seasonal time series forecasting using monthly data from 
International Airline Passengers for 1949-1960 periods, monthly Hotel Room 
average for 1973-1986, and Water Demand in Utopia for 1963-1982 periods. 
The study found Box-Jenkins methods being most compatible in modelling and 
forecasting the time series data used.   
In a later period, Al-Shiab (2006) examined the univariate ARIMA forecasting model, 
using the Amman Stock Exchange general daily index between January 1, 2004 
and August 10, 2008, with out-of-sample undertaken on the following seven days. 
By employing different diagnostic tests to find the best model describing the data, 
the selected model predicted that the stock price index could grow by 0.195 per 
cent point for seven days. Similarly, a study conducted by Dobre and Alexandru 
(2008) on modelling unemployment rate using Box-Jenkins procedure based on 
the monthly time series data in Romania during the period 1998-2007 observed 
ARIMA(2,1,2) as the most adequate model for the unemployment rate and provided 
the forecasts value of unemployment rate for January and February 2008.
In many of the recent studies, ARIMA model has been also used to model and 
forecast the movement in GDP. For example, in the context of India, Maity and 
Chattarjee (2012) observed significant ARMA terms in one period across the GDP 
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series over the period 1951-2011. The study established ARIMA(1,2,3) model as 
the best fitted model. The results on forecasting based on this model suggested an 
upward trend but growth rates showing opposite trend for future periods. Similarly, 
in the context of developed country, particularly Sweden, Zhang (2013) observed 
first order ARMA as the most appropriate model for modelling and forecasting 
GDP. On the other hand, Shahini and Haderi’s (2013) study on GDP forecasting 
for Albania using quarterly data from the first quarter of 2003 until the second 
quarter of 2013 observed no better performance of ARIMA. This study particularly 
compared the forecasting accuracy of two model groups, namely ARIMA and VAR. 
The results of this study established the VAR group models better as compared 
to the ARIMA group models in forecasting GDP. In the context of Pakistan, Zakia 
(2014) concluded ARIMA (1,1,0) being the best fitted model for modelling and 
forecasting of quarterly GDP of Pakistan. In the context of Jordan, Touama (2014) 
applied the statistical analysis for prediction of the Jordanian GDP series over 
the period 2003-2013 by using ARIMA process. The study results indicated the 
ARIMA (0, 1, 2) model as adequate with greater forecasting accuracy to forecast 
the Jordanian GDP. Similarly, Dritsaki (2015) used Greece GDP data from 1980 
to 2013 to fit ARIMA (1,1,1) model forecasting values for three years in future. The 
study indicated an upward trend in GDP forecast. 
There are some studies during more recent period, which have further validated 
the estimation power of ARIMA models. For example, in an attempt to establish 
the forecasting model for Kenya’s GDP over the period 1960-2012, Wabomba et 
al. (2016) followed the Box-Jenkins method to model GDP. The study established 
ARIMA (2,2,2) model as the best for modelling the Kenyan GDP. The results of 
in-sample forecast of this study showed predicted values within the range of 5 per 
cent and confirmed the adequacy and efficiency of the forecasting effect of the 
model in modelling annual growth of the Kenyan GDP. Besides, Abonazel and 
Abd-Elftah (2019) used Box-Jenkins approach to build the appropriate ARIMA 
model for Egyptian GDP data over the period 1965-2016. The study documented 
ARIMA(1,2,1) model as the appropriate model for Egyptian GDP and finally used 
the fitted ARIMA model to forecast the GDP of Egypt for the next ten years. 
Similarly, Miah et al. (2019) used ARIMA model building approach to forecast the 
GDP of Bangladesh for the period 1960-2017. The study found ARIMA(1,2,1) 
model as the best fitted one. Using model selection criteria and checking model 
adequacy, the study established the ARIMA(1,2,1) model being in suitable shape 
and concluded that forecast values of GDP  in Bangladesh are expected to 
improve steadily over the next thirteen years.    
The review of above cited literatures shows mixed evidences on the appropriateness 
of different ARIMA family models in modelling GDP growth. The difference in results 
obtained is basically attributed to the difference in the pattern of GDP movement 
across the countries. In the context of Nepal, the economy has been revealing below 
average growth in many of the past years. The performances of agriculture, industry, 
and services sectors were less than satisfactory causing a lower economic growth 
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rate. In recent years, the demand for product has been increasing due to growth in 
size of economy. However, the industry sector of Nepal is still not getting desired 
momentum in the line with demand side of the economy. The lack of effective capital 
allocation may be the basic responsible factor for lower growth over the past years. 
So, it is necessary to improve effectively the allocation and absorption of capital 
expenditure to upgrade from the low-investment, low-growth trade-off. The evidence 
on the pattern of GDP movements concerning small economy of Nepal is expected to 
contribute toward macroeconomic policy formulation and implementation. Therefore, 
in the light of these issues and based on experiences of past studies, this study 
focuses on testing and identifying an appropriate ARIMA model using univariate Box-
Jenkins methodology for annual GDP data set from mid-July, 1960 to mid-July, 2018. 

3. Research Methods
This study uses univariate Box-Jenkins method of modelling and forecasting 
non-seasonal time series data of annual GDP series in Nepal. The data set 
used in this study includes annual GDP series from mid-July, 1960 to mid-July, 
2018 consisting of 59 observations for modelling, in-sample forecasting and 
evaluation. The annual time series data set on GDP used in this study were 
derived from official website of World Bank, World Development Indicator. The 
methodological procedures applied for modelling and forecasting GDP is the Box-
Jenkins approach. This approach to modelling ARIMA process was described in 
an influential book entitled ‘Time Series Analysis, Forecasting and Control’ by 
statisticians Box and Jenkins (1970). Box-Jenkins modelling involves identifying 
an appropriate ARIMA process, fitting it to the data, and then using the fitted 
model for forecasting. The ARIMA process is a very rich class of possible models 
and this model usually makes it possible to find a process, which provides an 
adequate description to the data (Hyndman, 2002). It is a self-projecting time 
series forecasting method. It aims at finding an appropriate model so that 
residuals are minimised and they exhibit no pattern.
The most common ARIMA model includes three parameters: p, d, and q. 
The parameter p is the order of autoregressive parameters, d is the order of 
differencing parameters, and q is the order of moving average parameters. In 
order to model a time series data with this approach, at first the series must be 
stationary. Statistically, the series is confirmed to be stationary if the n values 
seem to fluctuate with constant variation around a constant mean. In other 
words, a stationary time series exhibits mean reversions with finite and time-
invariant variance and also produces a theoretical correlogram that decreases 
with an increase in lag length. The fundamental belief of this assumption is 
that mean (μX) and variance (σ2

X) do not depend on time. This assumption 
of ARIMA model is applicable to the AR process (Box and Jenkins, 1970). If 
time series data set is non-stationary, differencing process is used to make 
it stationary. It involves calculating successive changes in the values of the 
data series. For example, the first order differences of the time series values 
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x1, x2, x3, . . .,xn are written as:
zt = xt – xt-1     . . . (1)
In Equation (1), t = 2,….n. If the first order differences of the original time series 
values are also non-stationary, then second order differences are used to produce 
stationary time series values. The second order differences of the time series 
values, x1, x2, x3, . . .,xn, are written as:
zt = (xt – xt-1) - (xt-1 – xt-2)  . . . (2) 
In Equation (2), t = 3, 4, …,n. The Box-Jenkins models are based on the idea that 
a time series can be usefully regarded as generated from a series of uncorrelated 
independent shocks (εt). The sequence of εt is called a white noise if each value 
of εt are normally and independently distributed having no pattern. It has a zero 
mean, E(εt) = 0, and a constant variance (σ2

εt) as such that error variance is 
lower than the variance of zt. The autoregressive component of ARIMA model 
uses immediate past values of the series to predict future values by estimating 
an observation as a weighted sum of previous observations. An AR model uses 
‘p’ number of lags in its regression, and hence is called an autoregressive model 
of order ‘p’, denoted as AR(p). The general form of AR(p) model is given by 
Equation (3).
zt = µ + ᶲ1zt-1 + ᶲ2zt-2 +…+ ᶲpzt-p + ᶲt  . . . (3)
In Equation (3), zt is a stationary difference time series, et is a hypothetical white 
noise, and ᶲ1, ᶲ2, ....., ᶲp are AR model parameters to be estimated. 
The moving average (MA) component of ARIMA model attempts to model an 
underlying time series by averaging it for a sufficient period of time. The ‘invertibility’ 
is the underlying assumption of MA process in ARIMA modelling. It refers to the linear 
stationary process behaving as infinite representation of AR process. Invertibility is 
essential as such that time series can be represented by a finite order MA process 
or convergent autoregressive process. In essence, the idea behind this method is 
to eliminate the influence of shorter-term fluctuations. The general form of the MA 
model of order q is denoted as MA(q), and the model is represented as:

zt = µ ᶲ θ1θt-1 – θ2Ɛt-2 – …  – θqƐt-q + Ɛt . . . (4)
In Equation (4), zt is a difference time series, Ɛt is a hypothetical white noise, and 
θ1, θ2,...,θq are MA model parameters to be estimated. 
The ARIMA model incorporates both autoregressive and moving average 
components similar to ARMA. However, one distinction between ARMA and 
ARIMA is the integration component in the ARIMA model, which is necessary for 
the stationarity. In reality, most economic variables are non-stationary. Hence, 
they have to be taken through the transformation process called differencing 
before they become stationary. Therefore, ARIMA model informs the reader that 
the time series in question has gone through an integration process before being 
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used for analysis. The ARIMA model presents a time series of a variable as a 
linear function of past values of the variable and random error terms. ARIMA 
(p,d,q) is combination of AR, MA and difference terms as follows:

zt = µ + ᶲ1zt-1 + ᶲ2zt-2 +…+ ᶲpzt-p – ᶲ1Ɛt-1 – θ2Ɛt-2 – … – θqƐt-q + Ɛt . . . . (5)
In Equation (5), zt is a difference time series, Ɛt is a hypothetical white noise, 
and ᶲ1, ᶲ2, ..., ᶲp; ᶲ1, ᶲ2,...,ᶲq are autoregressive and moving average model 
parameters to be estimated. 
Under Box-Jenkins Process, a careful observation of the behaviour of 
autocorrelation function (ACF) and partial autocorrelation function (PACF) is 
necessary to determine the tentative ARIMA model. Box and Jenkins (1970) 
suggest that the number of lags should be no more than n/4 autocorrelations. 
The autocorrelation coefficient is the measure of direction and degree of linear 
association between the stationary time series random variables zt and zt+k 
separated by constant time lag ‘k’. The sample autocorrelation coefficient at lag 
‘k’ (rk) is used to estimate the theoretical autocorrelation function. The sample 
autocorrelation coefficient is given by:

rk =
Σ(zt - ẑ) (zt+k - ẑ)

Σ(zt - ẑ)2
. . . (6)

In Equation (6), zt is the data from stationary time series, zt+k is the data from k 
time period ahead of t, and ẑ is the mean of the stationary time series.
The estimated PACF and ACF are used - in choosing one or more ARIMA models 
that fit the available data. The PACF measures correlation between time series 
observations that are k time periods apart after controlling for correlations at 
intermediate lags (that is, lags less than k). In other words, it measures the 
strength of the relationship between observations in a series controlling for the 
effect of intervening time periods. Therefore, the idea of using PACF is to measure 
how lag variables are related. The PACF is given by:

 ... (7)

Where, 
 ᶲkj = ᶲk-1, j - ᶲkk ᶲk-1, k – j ;  (j = 1, 2, 3, ..., k – 1) 
The ACF and PACF are used to find a stationary time series. If the sample ACF and 
PACF of the difference series either cuts off fairly quickly or dies down fairly quickly, 
the time series values are considered stationary. In this case, model is not strictly 
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AR or MA but an ARIMA model. Once a stationary time series has been selected, a 
tentative model can be identified by examining the behaviour of the ACF and PACF. 
In the mixed model, both the ACF and PACF die down exponentially.
The ARIMA model building process involves four steps: identification, estimation, 
diagnostic checking, and forecasting. At the identification stage ACF and PACF 
are used to choose one or more ARIMA models that seem appropriate. In the 
next step, the parameters of specific Box-Jenkins model for a given series are 
estimated. This stage confirms whether the selected AR and/or MA parameters 
have the lowest sum of the squared residuals, residuals are not correlated to 
one another, and the model is parsimonious or not over-specified. In an ARIMA 
model, parsimony is the key issue. A parsimonious model gives better forecast 
than an over-parameterised model. In the third step, model diagnostic checking 
is conducted. Model diagnostic for Box-Jenkins models is similar to model 
validation for non-linear least square fitting. In other words, the error terms, εt, 
is assumed to follow the assumptions for a stationary unvaried process. The 
residuals should be white noise (or independent when their distributions are 
normal) drawings from a fixed distribution with a constant mean and variance. 
The best fitted Box-Jenkins model can satisfy these assumptions of the residual 
distribution. If these assumptions are not satisfied, it is necessary to search 
the most appropriate model. The analysis of the residuals can provide some 
clues toward more appropriate model. The residual analysis is based on random 
residuals test statistics known as Ljung Box test (Q). According to this test, if Q 
< chi-square, the ACF patterns are white noise and the model is the appropriate. 
On the other hand, if Q > chi-square, the ACF patterns are not white noise and 
the model-building cycle has to be repeated. If the model is valid after diagnostic 
checking, the model can be used for forecasting. The optimum forecast is one 
that has the minimum error. Other methodological issues associated with ARIMA 
modelling and forecasting are discussed in the ensuing section. 
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Figure 1. Annual Level GDP Series, 1960-2018
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4. Data Analysis and Discussions

For the purpose of empirical development and verification of appropriate ARIMA 
model, this study considers the annual GDP series from mid-July, 1960 to mid-
July, 2018 consisting of total 59 observations. The empirical development and 
analysis of the appropriate ARIMA model has been conducted through the steps 
mentioned below as suggested by Box and Jenkins (1970).

4.1 Identification for Stationarity
The first step in developing the Box-Jenkins model is determining if the series 
is stationary. A unit root test determines whether a time series variable is non-
stationary using an autoregressive model. The test statistic proposed in this 
study is the Augmented Dickey-Fuller (ADF) Test. This test uses the existence 
of a unit root as the null hypothesis. In this study, the correlogram representing 
ACF and PACF of the level series of the annual GDP non-seasonal time series 
data for the sampled period has been plotted and the ADF unit root test has been 
performed. Before testing for unit root, it is necessary for visualise the pattern of 
raw data over the samples period. Figure 1 shows the plot of annual level GDP 
series for the period 1960-2018. An observation of Figure 1 reveals that there is 
a clear pattern of upward movement in GDP series over the period.
Figure 2 shows the correlogram consisting of ACF and PACF for annual level 
GDP level series for 24 lags (only 10 lags reported here). As revealed in Figure 
2, the ACF declines very slowly up to 24 lags and they are outside the 95 per 
cent confidence interval. Similarly, the PACF drops immediately after the first lag. 
It is an indicative of a non-stationary series. So, correlogram in Figure 2 gives 
an initial indication for non-stationary level GDP series, which has been further 
confirmed by ADF unit root test results reported in Table 1.  

Autocorrelation Partial Correlation Lag AC  PAC  Q-Stat  Prob.

1 0.896 0.896 49.835 0.000
2 0.812 0.045 91.461 0.000
3 0.750 0.075 127.61 0.000
4 0.677 -0.072 157.59 0.000
5 0.607 -0.021 182.17 0.000
6 0.539 -0.043 201.89 0.000
7 0.467 -0.056 217.00 0.000
8 0.383 -0.116 227.36 0.000
9 0.315 0.009 234.52 0.000

10 0.266 0.048 239.73 0.000

Figure 2. Correlogram of annual Level GDP Series, 1960-2018

The ADF unit root test shows that annual level GDP series for the period 1960-
2018 is non-stationary as the p- value of test statistic is greater than 5 per cent 
level. So, the result suggests no sufficient evidence to reject the null hypothesis 
of unit root.   
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Table 1
The ADF Unit Root Test Results on Annual Level GDP Series, 1960-2018

Augmented Dickey-Fuller test statistic
t-Statistic   Prob.*
 3.008146  1.0000

Test critical values: 1% level -3.568308
5% level -2.921175
10% level -2.598551

*MacKinnon (1996) one-sided p-values.

Source.Author’s computation using level GDP series in Eviews 10 version 
A log transformation of level GDP series were also conducted taking natural 
logarithm of GDP to see whether the natural logarithm of GDP series (LnGDP) 
would ensure the stationarity. The ACF and PACF of LnGDP series showed 
the similar pattern as to that of level GDP series and the result of ADF unit 
root test again revealed no sufficient evidence to reject the null of unit root 
in LnGDP series. Hence, in the next step, the autocorrelation and partial 
autocorrelation functions using first difference operator of LnGDP series have 
been examined to confirm the stationarity in first difference log GDP series, 
D(LnGDP). The results are reported in Figure 3 showing correlogram of ACF 
and PACF of D(LnGDP) series. An observation of Figure 3 shows that most of 
the ACF and PACF are within 95 per cent confidence inter  vals up to specified 
24 lags (only reported up to 10 lags here). So, first difference log GDP series 
is said to be stationary.

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.051 0.051 0.1597 0.689
2 -0.379 -0.383 9.1091 0.011
3 -0.051 -0.006 9.2747 0.026
4 0.047 -0.111 9.4144 0.052
5 -0.016 -0.041 9.4305 0.093
6 0.019 -0.000 9.4548 0.150
7 0.074 0.055 9.8298 0.198
8 -0.124 -0.145 10.908 0.207
9 0.208 0.337 13.992 0.123

10 0.136 -0.015 15.323 0.121

Figure 3. The Correlogram for First Difference of Log GDP Series, 1960-2018

Table 2 shows the results of ADF unit root test for stationary on first difference 
series of log GDP. The appropriate lag length was selected based on the Akaike 
Information Criterion (AIC). The test statistic employed to ensure data stationary 
is again the Augmented Dickey-Fuller (ADF) test. The reported values are test 
statistic with corresponding p-value. The results in Table 2 reveal the fact that 
there is sufficient evidence to reject the null hypothesis of unit root at 1 per cent 
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level as p-value of the test statistic is less than 1 per cent. Hence, the results of 
this workout confirm at 1 per cent level that the first difference of log GDP series 
is stationary. Therefore, the tentative order of differencing is identified as d = 1.
Table 2
The ADF Unit Root Test Results on First Difference of Log GDP Series, 1960-2018

Augmented Dickey-Fuller test statistic
t-Statistic   Prob.*
-7.483295  0.0000

Test critical values: 1% level -3.552666
5% level -2.914517
10% level -2.595033

*MacKinnon (1996) one-sided p-values.
Source. Author’s computation using first difference of log GDP series in Eviews 10 version
The tentative orders of autoregressive and moving average processes have been 
determined by examining the ACFs and PACFs of the first difference of log GDP 
series in Figure 3 computed for 24 lags. The ACF of D(LnGDP) series in Figure 
3 shows that autocorrelation is significant at lag order 2 and the ACF shows good 
exponential decay and a damped sine-wave pattern after lag 2. The ACF at lag 2 
shows larger and significant negative spike. This implies that the autocorrelations 
of the successive pairs of observations in time period 2 is not within sampling error 
of zero. All other autocorrelations thereafter are within 95 per cent confidence limit. 
Hence, the tentative order of moving average process can be 2 (that is, q = 2).
The Figure 3 also shows the partial autocorrelation functions (PACFs) for 
the first difference of log GDP series. The partial autocorrelation for lag 2 
is -0.383 and it is significantly different from zero. Also, there is a negative 
significant spike at lag 2 and other partial autocorrelations are within 95 per 
cent confidence limit. So, the tentative order of autoregressive process also 
can be 2 (that is, p = 2). In Figure 3, both ACF and PACF have almost the same 
pattern. So, this is an ARIMA process. The pattern is typical to autoregressive 
and moving average processes of lowest order 0 to highest order 2, that is, 
tentative AR(p) = 2 and MA(q) = 2. Thus, the study identified the tentative 
order of autoregressive parameter (p), order of differencing parameter (d), 
and order of moving average parameter (q). These are tentative orders of 
autoregressive and moving average components because the judgment 
about order of these parameters is made very subjectively in Box -Jenkins 
process. Therefore, multiple ARIMA (p, d, q) models are tested for a range of 
values of p and q to establish a more accurate model.  

4.2 Estimation of the model and diagnostic checking
In this study, estimation of the best ARIMA model is based on volatility, standard 
error of regression, adjusted R- square, Akaike Information Criterion (AIC) and 
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Schwarz Information Criterion (SIC). An ARIMA model is said to be the best 
if it has the least volatility measured by Sigma-square (SIGMASQ). Lowest 
value of sigma-square makes predictive power of the estimated model the most 
efficient. Similarly, the best model must have higher adjusted R-square (Adj. 
R2), and lower values of standard error of regression (SER), AIC and SIC. 
The study estimated more models of 0, 1 and 2 orders in autoregressive and 
moving average process in order to determine the right specification based 
on Akaike Information Criterion (AIC). The correlogram of D(LnGDP) series 
suggests the necessity of introduction of both analysed variable lags and the 
lags of the error in the process of estimation. The results of estimated models 
of ARIMA family are reported in Table 3. This shows choices of ARIMA models 
based on SIGMASQ, Adj. R2, SER, AIC and SIC.  
Table 3
Test Results of ARIMA(p, d, q) Model Fitting

Model SIGMASQ Adj. R2 SER AIC SIC
ARIMA (0,1,1) 0.0092 -0.0254 0.0983 -1.7501 -1.6435
ARIMA (1,1,0) 0.0092 -0.0336 0.0987 -1.7427 -1.6361
ARIMA (1,1,1) 0.0078 0.1058 0.0918 -1.8296 -1.6875
ARIMA (2,1,0) 0.0079 0.1171 0.0912 -1.8951 -1.7885
ARIMA (0,1,2) 0.0078 0.1322 0.0905 -1.9107 -1.8041
ARIMA (2,1,1) 0.0079 0.1049 0.0919 -1.8651 -1.7230
ARIMA (1,1,2) 0.0077 0.1206 0.0911 -1.8809 -1.7388
ARIMA (2,1,2) 0.0078 0.1163 0.0913 -1.8766 -1.7345
Source. Author’s computation running various ARIMA family models in Eviews 10 version
Table 3 indicates that the best model among all fitted models is ARIMA (0,1,2), 
which has the highest adjusted R-square and the lowest values of SER, AIC 
and SC. At this stage, it is necessary to emphasise that lower values of AIC 
and SIC are not only the necessary conditions for the best model. These 
criteria are simply used to establish first a model with lower AIC and SIC, 
which later has to be passed through parameter significant test and residual 
diagnostic test.   
Table 4 exhibits the estimate of parameter along with corresponding standard 
errors, t-statistics, and p-values for the ARIMA(0,1,2) Model. Also reported 
are the statistics of fit consisting of adjusted R-square, standard error of 
regression, F-statistic, AIC and SC. (*) sign indicates that results are significant 
at 1 per cent level. It can be seen from Table 4 that the coefficient of MA(2) is 
highly significant at 1 per cent level. The model also represents a goodness 
of fit to the sampled data. It implies that the ARIMA(0,1,2) model comfortably 
explains the data and is suitable for forecasting.
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Table 4
Estimation Results of ARIMA(0,1,2) Model [Dependent Variable: D(LnGDP)]

Variable Coefficient Std. Error t-Statistic Prob.  
C 0.0692* 0.0070 9.8369 0.0000
MA(2) -0.4273* 0.1039 -4.112 0.0001
SIGMASQ 0.0078* 0.0013 6.1333 0.0000
R-squared 0.1627 Mean dependent var 0.0696
Adjusted R-squared 0.1322 S.D. dependent var 0.0971
S.E. of regression 0.0905 Akaike info criterion -1.9107
Sum squared resid. 0.4500 Schwarz criterion -1.8041
Log likelihood 58.4105 Hannan-Quinn criter. -1.8692
F-statistic 5.3428 Durbin-Watson stat 1.8586
Prob(F-statistic) 0.0076
Inverted MA Roots   .65
Source. Author’s computation running ARIMA (0, 1, 2) model in EViews 10 version
In selecting a good model, the need for parsimonious model has been considered. 
A parsimonious model produces better results than an over-parameterised model. 
With many variables, the goodness of fit of the model improves with an increasing 
R-square. But such model is penalized with a reducing adjusted R-square, which 
may tilt towards zero or even become negative if there are too many irrelevant 
variables added to the model. Similarly, too many variables consume degrees of 
freedom more. As a result, those variables contribute little to the significance of 
the dependent variable.  

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.068 0.068 0.2852
2 -0.015 -0.020 0.2999 0.584
3 -0.010 -0.007 0.3060 0.858
4 0.042 0.043 0.4187 0.936
5 0.039 0.033 0.5162 0.972
6 -0.008 -0.011 0.5202 0.991
7 0.155 0.160 2.1658 0.904
8 -0.126 -0.154 3.2640 0.860
9 0.167 0.204 5.2341 0.732

10 0.022 -0.022 5.2708 0.810

Figure 4. Correlogram of Residuals for ARIMA (0,1,2) Model

Before forecasting with the final model, it is necessary to perform various 
diagnostic tests in order to validate the goodness of fit of the model. 
A very strict assumption, in choosing the most accurate model, is that 
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residuals are assumed to have white noise, and uncorrelated. Thus, 
the adequacy of the Box-Jenkins model is evaluated by examining the 
residuals. For a randomly distributed residuals, the autocorrelations and 
partial autocorrelations are statistically zero. If they are not, the fitted 
model is not correct. The autocorrelations and partial autocorrelations of 
the residuals up to fixed lags are calculated to test for autocorrelation. For 
this purpose, the model residual autocorrelations for 24 lags have been 
examined in this study using the Ljung- Box Q statistic tests for serial 
autocorrelation. Figure 4 and 5 present correlogram of the residual and 
correlogram of squared residual, respectively with autocorrelations and 
partial autocorrelations of the of ARIMA(0,1,2) model. Also reported are 
the corresponding p-values. 

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.011 0.011 0.0071 0.933
2 0.185 0.185 2.1290 0.345
3 -0.026 -0.030 2.1705 0.538
4 -0.119 -0.158 3.0777 0.545
5 -0.111 -0.104 3.8900 0.565
6 -0.008 0.050 3.8944 0.691
7 -0.079 -0.044 4.3187 0.742
8 0.054 0.025 4.5193 0.807
9 0.070 0.071 4.8625 0.846

10 0.082 0.062 5.3480 0.867

Figure 5. Correlogram of Residuals Squared for ARIMA (0,1,2) Model

As reported in Figure 4 and 5, the correlogram of the residuals and correlogram 
of squared residuals are both flat. It indicates that all information has been 
captured by the model. As it can be observed, p-values are all above 5 per cent 
level of significance. Employing Ljung-Box Q statistic, the result indicates that 
model residual autocorrelations and partial autocorrelations of all lags are not 
significantly different from zero. This implies that all the spikes are within the 95 
per cent confidence limit, residuals are random and the model is a good fit to data. 
The best fitted ARIMA (0, 1, 2) model includes zero lag order of autoregression, 
first difference operator, and 2 lag order of moving average components. Finally, 
the forecast will be based on the ARIMA(0,1,2) model.
Figure 6 presents inverse roots of AR and MA characteristic polynomials for 
the stability of the selected ARIMA(0,1,2) model. The inverse roots of AR/MA 
polynomials show whether the estimated model is stable (stationary) or not. If all 
roots are less than one and fall inside the unit circle, the model is said to be stable. 
In otherwise case, the impulse response standard errors are not considered 
valid. An observation of Figure 6 demonstrates that the selected ARIMA model is 
stable as inverse roots of the characteristic polynomials are inside the unit circle 
meaning that they are less than unit.
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ARIMA(0,1,2) is used to fit the D(LnGDP) series, and the result is shown in Figure 
7. The figure shows actual values by solid line, fitted values by upper dotted line 
and residual of the model by lower dotted line. The actual, fitted and residual graph 
shows the actual and fitted values of the dependent variable and the residuals from 
the regression. The actual values are the sum of fitted values and residuals. The 
residuals are shown with a bound of plus minus one estimated standard error. A 
visual observation of Figure 7 shows that there is a good fit of actual and fitted values 
of dependent variable because maximum values of residuals are within the bound of 
plus minus one estimated standard error.  
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Figure 6. Inverse Roots of AR/MA Polynomials
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4.3 Forecasting
Before providing an in-sample forecast of GDP, it is necessary to check whether 
there is any structural break in the model. For this purpose, Chow break point 
test has been conducted. Chow breakpoint test fits the equation separately for 
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each subsample to see whether or not there are significant differences in the 
estimated equation. If there is a significant difference, it shows a structural break 
in the relationship. To carry out Chow test, it is necessary to partition the data 
into at least two sub-samples selecting a breakpoint. It tests the null hypothesis 
that there is no break at specified breakpoint. For the purpose of this study, the 
year 2003 has been selected as the breakpoint because there are some major 
events (such as cease fire between rebels and government in January and 
pulling out of peace talks with government in August ending seven-month truce, 
and resurgence of violence and frequent clashes between students/activists and 
police during the following months) took place during this in year in the history of 
Nepal. The results of Chow test are revealed in Table 5. 
Table 5
Results of Chow Breakpoint Test for Structural Break: 2003

F-statistic 2.1026 Prob. F(3,52) 0.1111
Log likelihood ratio 7.0438 Prob. Chi-Square(3) 0.0705
Wald Statistic 6.9356 Prob. Chi-Square(3) 0.0740
As shown in Table 5, all test statistics (F-statistic, log likelihood ratio and Wald 
statistic) are not significant at 5 per cent level. It supports the hypothesis that there 
is no sufficient evidence to reject the null of no structural break. Hence, it can be 
concluded that there is no structure break in the selected ARIMA(0,1,2) model.   
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Figure 8. In-Sample Forecast of GDP

The essence of fitting the ARIMA model is to forecast future values of the series. 
Therefore, after the validation of ARIMA(0,1,2) model through diagnostic checking 
procedure, the model has been used in this study to provide an in-sample forecast 
for the annual GDP series, 1960 – 2018. It is appropriate to choose the predicted 
value ahead for forecasting because ARIMA model is adequate for the forecasting. 
The Figure 8 shows in-sample forecast of GDP for the period, 1960-2018. The 
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forecasted value of LnGDP fall within plus-minus two estimated standard error. The 
Theil Inequality Coefficient is 0.06, which is closer to zero. It implies that forecast 
value of time series is closer to the observed values. So forecast is better.  
Finally, the predicted values of annual GDP series for the year 2016 through 
2018 for in-sample forecasting are reported in Table 6 along with 95 per cent 
confidence interval of estimates. 
Table 6
Actual and Predicted Values of Annual GDP using ARIMA (0,1,2) Model for 2016-
2018 Periods

Year Actual Predict 95% Confidence Interval
Lower Upper

2016 21.19 23.26 19.33 27.75
2017 24.88 22.70 18.87 27.08
2018 28.81 28.07 23.34 33.49
Source. Author’s computation running forecast command in Eviews 10 version
The actual data of 3 years in-sample forecasting period are from 2016 to 2018. 
The ARIMA model forecasts documented in this study are not significantly different 
from actual because all actual annual GDP series observed in 3 years fall within 
95 per cent confidence interval of estimates. Hence, ARIMA(0,1,2) model can 
best capture the GDP movement in Nepal for the sample period. The result of 
this study confirms to Touama (2014), who indicates that ARIMA (0, 1, 2) model 
is adequate to forecast the Jordanian GDP with greater forecasting accuracy.

5. Conclusion and Implications
This study attempted to establish appropriate ARIMA model to describe non-
seasonal time series data using Box-Jenkins methodology. For the purpose, time 
series data on annual GDP from the period mid-July, 1960 to mid-July, 2018 were 
examined as the sample time series data. The time series data set included a 
total of 59 annual observations. Initially the level series was found non-stationary. 
The unit root test of level series data suggested for the first differencing of log 
GDP to produce the stationary series. So that first order differencing of log GDP 
was applied to make the series stationary. The ADF unit root test on the first 
difference of log GDP series was conducted again to confirm the stationarity 
of data. The ADF test suggested the stationarity of first difference of log GDP 
series. Going through the process of identification and estimation, several ARIMA 
family models were estimated. Diagnostic checking on all estimated models was 
conducted based on SIGMASQ, Adj. R2, SER, AIC and SIC for selecting the most 
efficient model. The results of diagnostic check established the ARIMA(0,1,2) 
model as the most efficient model. The estimated parameters of ARIMA (0, 1, 2) 
were significant at 1 per cent level. The selected model was also used to provide 
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the in-sample forecasts for each of the year from the 1961 to 2018. The proposed 
model performed best for in-sample forecasting. These results are consistent 
to the findings of Touama (2014) in Jordanian context, who documented the 
adequacy of ARIMA (0, 1, 2) model in forecasting Jordanian GDP with greater 
accuracy. Overall, the Box-Jenkins methodology of time series forecasting used 
in this study is considered to have the robust forecast of the annual GDP series 
for the given period as all observed annual GDP series during the forecast period 
are within the 95 per cent confidence interval of estimate. 
One basic limitation of this study is the length of GDP data points used. Although ARIMA 
modelling process can be applied if the length of data points exceeds 50 observations, it is 
still not adequate. Nepal has not yet adopted the practice of announcing GDP in quarterly 
basis and therefore study was confined to the use of annual GDP series limiting the 
number of annual observations to 59. This study examined the movement in aggregate 
GDP in Nepal to test the efficient ARIMA model. In Nepal, however, there are different 
sectoral components of GDP such as industrial, agriculture and service sector GDP. The 
movement in these components of GDP may follow different patterns, and hence unique 
ARIMA models may be efficient to capture the movement in each of these components 
of GDP. Therefore, future studies are suggested to test the efficient forecasting models 
for sectoral GDP. Moreover, this study was simply confined to the selection of best 
performing ARIMA model in capturing GDP movements in Nepal. There are several 
other econometric forecasting models such as neural networks, vector autoregression 
models and so on. Therefore, future studies may be directed towards a comparison of 
these several forecasting models.     
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