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ABSTRACT

Wetlands are one of the most valuable ecosystems on the Earth for both humans and 
nature. Large-scale of wetlands have been transformed into agriculture and urban 
region in response to human demands and requirements. Accurate mapping and 
monitoring of large-scale wetlands are of high importance but also challenging. The 
growing availability of large volumes of open-access satellite data and development 
of advanced machine-learning algorithms has been providing new opportunities for 
mapping and monitoring earth system and environment. Google Earth Engine (GEE)- 
a cloud-based computing platform, has been effectively applied in various areas of 
mapping ranging from forestry, agriculture, hydrological studies. This study uses high 
spatial resolution satellite data from Sentinel-1, Sentinel-2 and terrain indices for 
mapping and monitoring of wetlands of Pokhara Metropolitan city of central Nepal. 
We implemented different types of wetland classification models on the GEE platform 
using the Random Forest (RF) classifier. The model with lowest out-of-bag error was 
chosen as the final model for the preparation of the final classified wetland map. 
The overall accuracy and kappa coefficient of the classified map were 98% and 0.97 
respectively. The study demonstrated the possibility of rapid monitoring of wetlands 
and other land characteristics using the Google Earth Engine platform.
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INTRODUCTION

Wetlands are one of the most 
valuable ecosystems on the Earth 
for both humans and nature. They 
play a significant role in reducing 
global greenhouse gas emissions 
and addressing climate change, 
while also exerting a substantial 
influence on biodiversity and 
the interconnectedness of water 
systems. (Millennium Ecosystem 

Assessment, 2005). It is believed 
that their role contributes essential 
support to a minimum of seven 
out of the 17 primary sustainable 
development goals outlined by the 
United Nations. (Ramsar Convention 
Secretariat, 2016). However, the 
demand and needs of humans have 
resulted in converting large scale 
forests, agriculture, and wetland 
into industrial, settlement and urban 
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land which results in change in 
precipitation pattern, and drought, 
dryness of whole ecological system 
(Millennium Ecosystem Assessment, 
2005). Over the past two decades, 
mapping of wetland has increased 
due to the better availability of high-
quality remote sensing data and 
tools (Mohammadimanesh et al., 
2016). However, extensive mapping 
of wetlands using remote sensing 
data has always been expensive and 
challenging (Mohammadimanesh et 
al., 2016).

The increasing accessibility of large 
volume of satellite data and the 
advancement in machine learning 
algorithms have simplified the 
process of mapping and monitoring 
the Earth's systems and environment 
(Mahdianpari et al., 2019). This 
has opened a new avenue for the 
application of advanced spatial and 
temporal mapping of wetlands (Hird 
et al., 2017). The initiation of powerful 
cloud computing resources such as 
NASA Earth Exchange, Amazon’s Web 
Service and Google cloud platform 
have addressed the difficulty of 
collecting, storing, analyzing, and 
manipulating multi-temporal 
ecosystem data of broad geographical 
region (Mahdianpari, 2019). Google 
Earth Engine (GEE) is an open-
access cloud-based platform which 
has capability to store and process 
largescale data (Gorelick et al., 2017). 
It contains an extensive collection 
of geospatial datasets and satellite 
images, enabling the development 

of algorithms and visualizations of 
results through web-based platforms 
within a reasonable processing 
timeframe. (Sazib et al., 2018). 
Besides, to its storage and widely 
used machine learning algorithms, 
it allows batch processing using Java 
Script on a dedicated application 
programming interface (API) (Kumar 
& Mutanga, 2018). 

Mapping of wetlands of various 
sizes can play a crucial role in 
supporting conservation strategies, 
promoting sustainable management, 
and facilitating the advancement of 
wetland mapping at both national 
and global scales. (Ozesmi & Bauer, 
2002). The Copernicus programs of 
the European Space Agency (ESA) 
(d’Andrimont et al., 2018) produces 
“12-days SAR Sentinel-2 and 10 
days optical Sentinel-2 (multi-
spectral Instrument, MSI) images 
that provides an unprecedented 
opportunity to collect high spatial 
resolution data for global wetland 
mapping” (Mahdianpari, 2019). The 
primary objective of the Sentinel 
Missions is to offer comprehensive, 
unrestricted, and accessible data to 
the scientific community, enabling 
worldwide environmental monitoring 
(Aschbacher & Milagro-Pérez, 2012, 
(Mahdianpari, 2019). The combined 
use of Sentinel-1 and Sentinel-2, Earth 
Observation (EO) data offers new 
openings to be explored in different 
applications, especially for mapping 
phenomena of highly dynamic nature 
like wetlands (Mahdianpari, 2019).

Cahudhary et al., 2022
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The development of advanced 
machine learning tools and geospatial 
science has contributed for large-
scale, reliable, and repeatable wetland 
mapping and monitoring around the 
globe (Hird et al., 2017). Many studies 
have demonstrated the potential 
of fusion of Optical and Synthetic 
Aperture Radar (SAR) data for the 
wetland classification (Bourgeau-
Chavez et al., 2015; Bwangoy et al., 
2010; Niculescu et al., 2020). The use 
of SAR data for wetland mapping is 
critical for monitoring areas with 
significant cloud cover (Mahdianpari, 
2019). This is because SAR sensors 
are unaffected by overcast and wet 
conditions and solar radiation. They 
are more sensitive to the structure, 
texture, and dielectric properties of 
land surfaces than optical sensors; 
(Adeli et al., 2020; Sun et al., 2020); 
whereas the optical sensors are 
sensitive to the reflective and spectral 
characteristics of ground targets 
(Mahdianpari, 2019, Mahdianpari, 
et al., 2018). Furthermore, the 
topography strongly influences the 
location and size of wetlands, and 
the reflectance patterns tend to be 
more reliable and consistent than the 
surface-vegetation or local-moisture 
conditions captured by optical and 
radar backscatter signals (Hird et 
al., 2017). Therefore, for accurate 
delineation of wetland information, 
it is possible to bring topographic 
information and multi-source remote 
sensing data together for integrated 
analysis. The goal of the study is to use 

SAR, topographic, and optical remote 
sensing data to map and monitor 
the wetland areas in the Pokhara 
Metropolitan area. 

MATERIALS AND METHODOLOGY
Study Area

This research was carried on the 
Pokhara Metropolitan City (Fig. 
1). It is the administrative center 
of Gandaki province and is located 
200 kilometers west of Kathmandu, 
Nepal's capital city. It was recently 
proclaimed the largest metropolitan 
city, with an area of 464.24 square 
kilometers. The altitude ranges 
from 827 meters (2,713 feet) in the 
southern part to 1,740 meters (5,710 
feet) in the northern part. It lies in 
the Mahabharata Range, Midlands, 
and the Great Himalayan Range of 
Nepal between longitudes 83°48'E 
and 84°13'11"E and latitudes 
28°4'39"N and 28°36'18"N. The 
study area encompasses the basin 
that has extended from subtropical 
to the temperate and alpine climates 
in its northern region. The area 
receives a high precipitation rate of 
approximately 3000 mm per year 
(Rimal et al, 2013; Tripathee et al., 
2016). This city encompasses nine 
clusters of lakes (Phewa, Begnas, 
Rupa, Dipang, Maidi, Khaste, 
Neurani, Kamalpokhari, and Gunde) 
of ecological importance listed 
as 10th Ramsar Site/Wetlands 
bearing international gratitude and 
safeguarding the livelihoods and 
ecosystem.

Cahudhary et al., 2022
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Data sets and Their Preprocessing

Table 1 summarizes the properties 
of each of the data set used in this 
study. The research methodology 
we followed is proposed by Hird et 
al. & Sun et al. (Hird et al., 2017; Sun 
et al., 2020). We have used spectral 
band 2 (blue), band 3 (green), band 
4 (red), and band 8 (NIR) from 
the sentinel-2 and used to derive 
two variables called Normalized 
Difference Vegetation Index (NDVI) 

and Normalized Difference Water 
Index (NDWI) (Mahdianpari, 2019). 
Three sets of SAR backscatter data 
from Sentinel-1 SAR C-band Level-1 
Ground Range Detected (GRD) 
images (Sun et al., 2020) are vertical-
vertical polarization (VV), the 
standard deviation of vertical-vertical 
polarization (VVsd) and normalized 
polarization (POL), and two digital 
elevation model (DEM)-based 
topographic indexes as the input for 
the machine learning model.

Figure 1: The study Area, Pokhara Metropolitan, Kaski

Cahudhary et al., 2022
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Table 1: Overview of Sentinel-1, Senttinel-2 and DEM used for the study.

Data Derived 
Variable 

Spatial 
Resolution Description Source

Sentinel-1 VV, VVsd, VV-
VH/VV+VH 
(pol)
VVrVH

10m Level-1 Ground 
Range Detected 
(GRD), VV and 
VH polarization 
(10m)

https://scihub.
copernicus.eu/

Sentinel-2 Band2, and3, 
Band4, 
Band8, NDVI, 
NDWI

10m Visible-Near 
Infrared optical 
imagery (10m)

https://scihub.
copernicus.eu/

SRTM 1
Arc-Second 
Global

TWI, TPI 30m Digital surface 
model(30m)

https://earthexplorer.
usgs.gov/

SAR Imagery

This study uses a total of 138 
Sentinel-1 Level-1 SAR pictures in 
descending orbits. This imagery was 
collected between May to October 
of 2018 2019, and 2020 “using the 
Interferometric Wide (IW) swath 
mode with a spatial resolution of 10m 
and a swath of 250km with an average 
incidence angle of between 30 and 
45 degrees” (Mahdianpari, 2019) to 
calculate the backscatter coefficient 
for each pixel in the image. GEE 
already has preprocessed Sentinel-1 
radar images in its database, and the 
following are the processes that GEE 
takes throughout the preprocessing 
process (ESA step, 2016; Google Earth 
Engine, 2020).

 1. Applied orbit files. 

 2. GRD border noise removal.
 3. Thermal noise removal
 4. Radiometric calibration
 5. Terrain Correction 

The remaining processing steps 
were performed using the GEE  
platform. For Sentinel-1 time-series 
data, backscatter normalization 
plays a vital role (Weiß, 2018). The 
technique that is widely used for this 
task is the cosine correction method 
(Hird et al., 2017), which was used in 
this study in terms of the ellipsoidal 
incidence angles. The normalization 
of backscatter coefficients was 
performed because backscatter 
values of a specific non-wetland area 
with a small incidence angle returns 
higher backscatter values than the 
data of the same are required with a 
higher incidence angle.

Cahudhary et al., 2022
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Optical Data

The images acquired by Sentinel-2 
were a level 2A Bottom of Atmosphere 
(BOA) product that had been 
atmospherically adjusted in GEE. Total 
13 Sentinel 2A images were used in 
this mapping process for the mapping 

of wetland and water bodies. Firstly, 
low noise and cloud image were 
filtered by applying selection criteria 
to cloud percentage less than 20% and 
the quality assessment band (QA60) 
was used for cloud masking provided 
in the metadata of Sentinel product 
to detect and mask out clouds and 

Figure 2: Flowchart of the methodology followed in the study.

Cahudhary et al., 2022
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circus. To obtain a stable and higher 
resolution pixel value, the visible 
bands (red, green, blue and near-
infrared) with a resolution of 10m 
were selected and applied to obtain 
a multi-year seasonal median image 
from the collection. The indices that 
were calculated from the Sentinel-2 
images are NDVI and NDWI. NDVI is 
sensitive to photo synthetically active 
biomass and can distinguish between 
vegetation and non-vegetation, as 
well as between wetland and non-
wetland areas (Becker & Choudhury, 
1988) while the Normalized 
Difference Vegetation Index (NDVI. 
The NDWI was used as additional 
model input to the NDVI, and it was 
known to be effective. Its sensitivity 
to open water has been used in 
wetland classification as a method 
of distinguishing land from water 
(McFeeters, 1996). The normalized 
difference vegetation index (NDVI) 
and Normalized Difference Water 
Index (NDWI) were calculated as 
follows (McFeeters, 1996): 

NDVI = (NIR− Red)/ (NIR+ Red), and

NDWI = (Green − NIR)/ (Green + NIR)

Topographic Data

Topographic position index and 
Topographic Wetness Index (TWI) 
were derived using DEM SRTM data 
obtained from the United States 
Geological Survey (USGS), which is 
a worldwide open-access DEM with 
a spatial resolution of 30 meters 

(Survey, 2015). To ensure consistency 
with the remote sensing data, the 
DEM data was re-gridded to a spatial 
resolution of 10 meters prior to 
being used to calculate TWI and 
Topographic Position Index (TPI). 
The DEM-based topographic wetness 
index (TWI) (Wilson & Fothringgham, 
2008) and TPI (Beven & Kirkby, 
1979) were used to represent the 
topographic information in this study. 
TPI indicates the height of each cell 
(i.e., pixel) in relation to the average 
elevation of its neighbors. It reflects 
the topography of the surrounding 
region and can be used to denote low-
lying areas that are wetlands. It is 
calculated as.

TPI=z_i-z ̅r(ⅈ)
Where Zi i is the elevation of pixel or 
cell and is the average elevation of 
all the pixels within a given radius, 
r. TWI indicates the potential soil 
water storage condition of a pixel. 
It is calculated using an equation 
taking slope, flow direction, and 
flow accumulation into account 

 
𝑇𝑇𝑇𝑇ⅈ= 𝑙𝑙𝑙𝑙 �

𝑠𝑠𝑠𝑠𝑠𝑠
𝑡𝑡𝑡𝑡𝑙𝑙𝜙𝜙

� 

Where SCA is the special catchment 
area, and  is the slope angle. In this 
study, we used the open geographic 
information system (GIS) software 
System for Automated Geoscientific 
Analyses (SAGA) (Conrad et al., 2015) 
to calculate TPI and TWI. The TPI and 
TWI ranged from-28.2 to 17.6 and 
from -21.6 to 4.4, respectively.

Cahudhary et al., 2022
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Multi-year monthly Composite

Several researchers have used Landsat 
data to create Landsat composite 
images of a wide region that are 
almost cloud-free (Flood, 2013; Roy 
et al., 2010) using techniques which 
will reduce contamination by cloud 
and other problems. For the purposes 
of vegetation monitoring, a commonly 
used technique is the Maximum NDVI 
Composite, used in conjunction with 
variety of other constraints. The 
current paper proposes an alternative 
based on the medoid (in reflectance 
space. Few studies have performed 
thorough examination of Sentinel-2 
data for similar studies  (Mahdianpari 
et al., 2019). Recent research has also 
analyzed Landsat data using a variety 
of composite methods, including 
seasonal and annual composites 
(Flood, 2013). 

In this research, a Google Earth Engine 
(GEE) platform was used to create a 
multi-year seasonal composite of a 
study area. This was done since the 
research location is often clouded 
and rainy, making it difficult to 
gather enough cloud-free optical 
data for classification purposes. As 
a result, we created a multi-year 
seasonal composite (optical) for 
spectral signature analysis in order to 
determine the month with the most 
semantic information about wetlands 
and water bodies.

Training and validation sample 
data

To improve the accuracy and the 
quality of the final classification of the 
result, training and validation points 
are one of the critical steps in the 
whole process (Millard & Richardson, 
2015). Google earth engine has been 
the main source of information for 
collecting training and validation data 
to ensure that training and validation 
points are represented in the defined 
land cover classes and avoid the 
mixed pixel issues. 

Three land cover types dominate the 
area representing land cover class 
1 (wetland), 2 (vegetation) and 3 
(non-vegetation). For each land cover 
class, a set of 300 random points 
were collected for training purposes 
in the GEE environment. Similarly, a 
set of 300 validation points (100 in 
each class) were randomly collected 
for each study area. All the training 
and validation points were collected 
based on high-resolution google 
earth engine imagery (Gorelick et al., 
2017). The sample points were used 
to perform supervise classification 
and accuracy assessment. In each 
model of classification, the following 
results were generated.

Classification

The classification of different land 
cover classes can be performed 
either by pixel or object-based 
approach. Many studies have been 

Cahudhary et al., 2022
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widely demonstrated that object-
based approaches can provide 
more accurate results when using 
high and very high-resolution data 
(Cai et al., 2020; Mahdianpari et al., 
2019). In this study, considering the 
resolution of the image used to carry 
out the supervised classification, a 
pixel-based approach was used in 
this study which has been a widely 
used approach in the scientific 
community for the classification of 
land cover according to Tamiminia et 
al. (2020) narrative. For the mapping 
of wetland and water bodies, we 
choose three land cover classes to 
perform the classification: Wetland 
and water bodies, vegetation, and 
non-vegetation land.

Random Forest classification

Random Forest (RF) classifier is 
considered one of the most widely 
used algorithms for land cover 
classification using remote sensing 
data (Amani et al., 2019; Pavlov, 2019; 
Teluguntla et al., 2018). RF is a non-
parametric classifier, composed of a 
group of tree classifiers, and can handle 
high dimensional remote sensing 
data (Belgiu & Drăgu, 2016). Random 
forest is more robust compared to the 
decision tree algorithm and easier to 
execute to SVM (Rodriguez-Galiano et 
al., 2012), and another factor making 
RF more popular than other machine 
learning algorithms is that only two-
parameters (ntree and mtry) are 
required to be optimized (Maxwell 

et al., 2018).  It “uses bootstrap 
aggregating (bagging) to produce an 
ensemble of decision trees by using 
a random sample from the given 
training data; it also determines 
the best splitting of the nodes by 
minimizing the correlation between 
trees. To assign each pixel it is based 
on the majority vote of tree can be 
adjusted by two input parameters 
namely the number of trees (ntree), 
which is generated by randomly 
selecting samples from the training 
data, and the number of variables 
(m try), which is used for tree node 
splitting” (Pavlov, 2019, Mahdianpari, 
2019).

In this study, the Random Forest (RF) 
algorithm was used to train and predict 
the wetland and water bodies of 
Pokhara Municipality. Large-analysis 
of 349 GEE peer-review articles over 
the last 10 years shows that the RF 
algorithm is the most frequently used 
classification algorithm for satellite 
imagery (Tamiminia et al., 2020). 
Taking into consideration all the 
reasons, we chose RF for the present 
study. Based on a trial-and-error 
approach, the parameter n-tree was 
assessed for the following values for 
each model (a) 100, (b) 200, (c) 400, 
(d) 500 while n-tree was set to the 
default value (square root of the total 
number of features). A value of 300 
was then found to be appropriate in 
this study, with the lowest OOB (out 
of bag error) as shown in table 3. 

Cahudhary et al., 2022
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RESULTS

Classified Wetland map with 
different input variable

The entire study design consists of 
three stages, as shown in Figure 2. The 
workflow's initial step is to preprocess 
all acquired data. The Sentinel-1 and 
Sentinel-2 images were processed 
in Google Earth Engine, while the 
TPI and TWI were obtained from 
the DEM using the SAGA software. 
The accuracies of RF models are 
illustrated in table 2. The percentage 
of wetland pixels based on the S2 
model as shown in Figure 3(b) was 
3.18 percent, followed by vegetation 
pixels, which was 57.2 percent and 
non-vegetation pixels, which was 
39.5 percent. The percentage of 
wetland pixels in the OSmodel, which 
is presented in the Figure 3(c), is 2.98 
percent, with the pixel covering 57.23 

percent of the vegetation area and 
39.78 percent of the non-vegetation 
pixels.  Similarly, the OST model as 
shown in the Figure 3(d) revealed 
the lowest percentage of wetland 
pixels (2.94%) while it was highest 
for vegetation (57.78%) followed 
by non-vegetation pixel (39.28%) 
of the study region. Furthermore, 
the S1model Fig. 4(a) detected more 
pixels of wetland than the combined 
results of the two previous models. 
Wetland area accounted 8 percent 
of the total area while it was 54.8 
percent for vegetation and 37 
percent for non-vegetation. The 
overall accuracies of the S1model and 
S2model, was lower (77%) compared 
to other models which was 98 percent 
as shown in the table 2. Consequently, 
the OSTmodel was chosen to predict 
the final wetland map of the Pokhara 
Metropolitan city based on the OOB 
error.

Table 2 : Overall Accuracies, out-of-bag (OOB) error and Kappa coefficient of different 
classification model.

RF Model ntrees OOB Overall Accuracy Kappa coefficient
S1model 300 0.1988 77% 0.66
S2model 300 0.015 98% 0.97
OSmodel 300 0.02 98% 0.97
OSTmodel 300 0.015 98% 0.97

Classification accuracies of 
different models

We calculated the producer-user 
relationship and the overall accuracy 
of several models based on the 
Random Forest classifier. We used 

the identical training sample and 
validation data points for all models 
and evaluated the classification 
accuracy of wetlands and water 
bodies. The accuracy of several 
models is summarized in Table 3.

Cahudhary et al., 2022
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S1 model
The overall accuracy of the S1 model 
was 77 percent, while the producer 
accuracy and user accuracy of the 
S1 model for wetland class were 93 
percent and 83 percent, respectively.  
Additionally, the vegetation class 
has consumer accuracy of 77% 
and producer accuracy of 73%, 
respectively. In the same way, the 
consumer accuracy of the non-
vegetation class was 71 percent, 
and the producer accuracy was 67 
percent.

S2 model 
The overall accuracy of the S2model 
was 98 percent, with consumer 
accuracy in the class wetland being 99 
percent and producer accuracy being 
99 percent. In a similar manner, the 
vegetation class contains producers 
with 100 percent accuracy and 
consumers with 96 percent accuracy, 
whereas the non-vegetation class 
contains producers with 98 percent 
accuracy and consumers with 95 
percent accuracy.

OS model
The overall accuracy of the OSmodel 
was 98 percent, with the wetland 
class achieving producer accuracy of 
99 percent and consumer accuracy 
of 99 percent in the process. A 100 
percent classification accuracy 
for producers and a 95 percent 
classification accuracy for consumers 
were obtained in the vegetation class. 
Similarly, the consumer accuracy 
for the non-vegetation class was 99 
percent, while the producer accuracy 
was 100 percent.

OST model
OST model achieved an overall 
accuracy of 98 percent, with the 
wetland class including producers 
with accuracy of 100 percent and 
consumers with accuracy of 99 
percent. Vegetation class with 
producer accuracy of 100 percent 
and consumer accuracy of 96 percent. 
Similar to the non-vegetation class, 
producer accuracy was 95 percent, 
and consumer accuracy was 100 
percent in the non-vegetation class.

S2model bS1model a

Cahudhary et al., 2022
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Variable Importance of Different 
model

Figure 5 shows a summary of the 
impact of different parameters on 
the achievement of classification 
using Random Forest classification. 
Observations have shown that the 
variables that are important have a 

high rank of significance. The NDWI 
and the NDVI are the most significant 
indices in the identification of wetland 
and water bodies as well as vegetation 
and non-vegetation classes. Similarly, 
the indices VVmean, VVsd, Npol, 
VVrVH are the most essential for 
distinguishing wetland and water 
bodies, respectively. 

Figure 3: The Classified Map of Different Models

Models
Wetland Vegetation Non-vegetation

OA (%)
UA PA UA PA UA PA

S1 83 93 77 73 71 67 77

S2 99 99 96 100 98 95 98

OS 99 99 95 100 98 95 98

OST 99 100 96 100 100 95 98

Table 3: Showing the User accuracies and Producer accuracies of different model.

OSTmodel d
OSmodel c

Cahudhary et al., 2022
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Spectral analysis of multi-year 
monthly composite 

To evaluate the capability of various 
spectral bands and vegetation 
indicators, spectral analysis of all land 

cover classes was conducted. Figure 
5 shows the statistical distribution 
of reflectance for NDVI, NDWI, 
and other visible band of monthly 
composites from October, November, 
and December 2018 to 2020. 

Figure 4:  Variable importance of different input variable used in different models.

Cahudhary et al., 2022
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As demonstrated, all visible bands 
are unsatisfactory in distinguishing 
between wetland and water 
bodies, whereas vegetation indices, 
such as the NDVI, are superior in 
distinguishing between vegetation 
and non-vegetation. Similarly, NDWI 
is critical in distinguishing wetlands 
and water bodies from other land 
covers. Furthermore, the use of NIR 
bands has been shown to be useful in 
distinguishing between various land 
cover classifications.

Variation of area per classes in 
different model

The area corresponding to each land 
cover class was determined using the 
results of various models we looked 
at. According to the S2 model, the 
wetland area was 14.84 hector, the 
vegetation area was 266.43 hector, 
and the non-vegetation area was 

Figure 5: Spectral analysis of multi-year monthly composite curve

184.40 hector. Similarly, the S1 model 
resulted in more wetland area than 
the combined results of the other 
models, with wetland area accounting 
for 37.43 hectors, vegetation area by 
255.66 hectare and non-vegetation 
other area by 172.58-hectare. While 
wetland coverage in the OSmodel 
resulted 13.89 hector, it was 266.53 
hectors for vegetation and 185.25 
hectares for non-vegetation areas. 
The OST model also revealed the 
smallest wetland area, which was 
13.67 hectors, while it was highest 
for the vegetation area, which is 
269.05 hectares and non-vegetated 
area which was, 182.91 hectares.  
Comparing the classification results 
with the ESRI land cover 2020 map, 
it can be seen that vegetation land 
has the highest land cover area with 
303.29 hectares, followed by non-
vegetation at 147.82 hectares and 
wetland at 14.54 hectares.

Cahudhary et al., 2022
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Evaluation of Classified map

Table 3 displays the overall accuracies 
(OA) and kappa coefficient for 
various classification scenarios. 
The utilization of optical imagery 

yielded more favorable classification 
outcomes compared to SAR imagery 
(Mahdianpari, 2019). As illustrated, 
the optical imagery (S2model) 
resulted higher accuracy compared to 
the radar imagery (S1model).

Table 4:  Area of different land cover class in hectares

Figure 5 . Classified map (a) OST Model and Esri land cover map 2020 (b).

Land cover
Area of  different land cover in hectares

S1model S2model OSmodel OSTmodel ESRI land cover
Wetland 37.43 14.84 13.89 13.67 14.54

Vegetation 255.66 266.43 266.53 269.05 303.29
Non-Vegetation 172.58 184.40 185.25 182.91 147.82

(a) (b)

The final classified map was 
created using the OSTmodel, which 
incorporates optical, radar and 
topographic data. We obtained an 
overall accuracy of 98 percent and a 
Kappa coefficient of 0.97. This model 

was chosen based on the random 
classifiers out-of-bag (OOB) error. 
For the classification of wetlands 
and water bodies, the model with the 
lowest out-of-bag error was chosen. 
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Figure 5(a) is the final classified map 
using OST model for the study area. 
We compared the wetland and water 
bodies of Pokhara Metropolitan 
map with the ESRI Global land cover 
map of 2020, Fig. 5(b).  The findings 
indicated that patterns of the two 
wetlands maps were comparable 
in identifying water bodies. 
Nevertheless, there were minor 
variation in them. Therefore, our data 
indicated that total area of wetlands 
of Pokhara were larger than the ESRI 
land cover map of 2020. The total 
area of water bodies was 14.54 ha in 
the ESRI global land cover map 2020 
(Karra et al., 2021).

DISCUSSION

The variable importance and spectral 
analysis results showed that the NIR 
band is superior to the visible band 
(blue, green, and red) for identifying 
wetland. When it comes to vegetation 
indexes, the NDVI has shown to 
be the most helpful. This result is 
explained by the fact that the NDVI is 
very sensitive to photosynthetically 
active biomass in the environment 
(Xiong et al., 2017). The obtained 
variable importance values indicate 
that the optical variable NDWI 
was considerably higher than the 
radar variables. When it comes 
to recognizing water bodies and 
other land cover classifications, the 
Synthetic Radar Aperture (SAR) 
indices VVmean and the ratio of 
VV and VH (VVrVH) are significant. 
As our results demonstrate, the 

pixel percentage of wetland class 
in Sentinel-1 is significantly higher 
than that in the S2model. The result 
concures with other  studies which 
have demonstrated that Sentinel-1 
has great potential for monitoring 
dynamics changes in water surface 
area and providing more detailed 
information about temporal 
classification, such as classification 
of flood frequencies or surface water 
dynamic (Tian et al., 2017; Xing et al., 
2018).

In the classification for general 
wetland delineation, the accuracy 
of sentinel-2 and the combined use 
of Sentinel-1 and Sentinel-2 were 
satisfactory, while the accuracy of the 
sole use of Sentinel-1 was quite low, 
as shown in table 3. The advantage 
of optical images over SAR images is 
seen across all evaluation indices in 
this research. It suggests that optical 
indices (e.g., NDVI) and the difference 
between water and non-water 
classes represented by the NDWI 
index are more effective for wetland 
mapping than the feature derived 
from dual-polarimetric SAR data. The 
finding is consistent with the result 
of earlier research (Hird et al., 2017; 
Mahdianpari 2019). The finding from 
(Mahdianpari et al., 2019)highlighted 
that there is limited capacity of 
Sentinel-1 C-band sensors operating 
in VV/VH mode capture difference in 
forest and high-vegetated wetlands. 
Earlier studies have revealed use of 
the L- or P-band radar system and 
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HH polarization are more suitable 
for this purpose (Wang et al., 1995). 
Advanced SAR-based information 
products, such as decomposition 
techniques for removing scatter 
processes, would be useful in gaining 
a more deep understanding of the 
function that SAR data may play in a 
modelling approach(Furtado et al., 
2016; Mahdianpari et al., 2017).

Although optical data were superior 
to SAR, higher classification accuracy 
was achieved while SAR composites 
were integrated with the optical and 
topographical composites. This is 
because the optical and SAR data 
are based on the range and angle 
measurement and gather data on 
the chemical and physical properties 
of the wetland vegetation (Chen et 
al., 2017). As a result, including both 
kinds of observations improves the 
discriminating of backscattering or 
spectrally similar wetland classes (Van 
Beijma et al., 2014). The combination 
of SAR, optical composite, and 
topographic data were shown to be 
extremely beneficial for increasing 
overall classification accuracy in 
previous studies (Hird et al., 2017), 
despite the fact that the OSmodel 
and OSTmodel produced very similar 
results in our study.

When employing the image 
mosaicking method over a lengthy 
time period is required, it is possible 
that classification mistakes may rise 
in regions with substantial inter-
annual variation (Kelley et al., 2018). 

Although this image mosaicking 
method is critical for overcoming the 
constraint of frequent cloud cover 
when mapping land cover using 
optical remote sensing data at a large 
geographical scale, this constraint was 
reduced to a reasonable extent in our 
research. The use of such multi-year 
seasonal composites has previously 
been emphasized, given their ability 
to capture surface condition changes 
useful for wetland mapping.

CONCLUSION 

As a consequence of recent 
advancements in geospatial science, 
“cloud-based computing resources 
and open-access EO data have 
spurred a paradigm shift in the field 
of land cover mapping” (Mahdianpari, 
2019), replacing static maps with 
more dynamic and application-
specific maps. Using Google Earth 
and Copernicus Sentinels high 
spatial resolution remote sensing 
data, this study produced the first 
map of wetlands and water bodies 
in the Pokhara Metropolitan region 
of Nepal, using multi-year monthly 
composite sentinel-1, sentinel-2, and 
topography data. 

In this research, we created a process 
for mapping and monitoring the 
wetland in the study region, which 
was based on the Google Earth Engine 
cloud-based platform and made 
use of the random forest classifier, 
open-access and multiple remote 
sensing data, as well as topographic 
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information form digital elevation 
model. The classified map that was 
generated with overall accuracy of 98 
%, kappa coefficient of 0.97 and out-
of-bag error of 0.015. The research 
showed the feasibility of monitoring 
wetland and other land features 
quickly utilizing the GEE platform, 
machine learning techniques, and 
currently available high-resolution 
satellite data. 
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