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ABSTRACT

For REDD+ (reducing emissions from deforestation and forest degradation), 
sustainable management of forests, and protection and enhancement of forest carbon 
stocks procedures to be successful, accurate measurement of forest above-ground 
biomass (AGB) are essential. Sentinel imaging that was launched since 2014 provides 
an opportunity for mapping and monitoring AGB in forests. The aim of this study is 
to analyze the relationship between AGB and vegetation indices (VIs) derived from 
Sentinel-2 imagery in theChure region of Sainamaina municipality. For this, we used 
72 sample plots and 7 different VIs. TheARVI(Atmospherically Resistant Vegetation 
Index) and EVI2 (Enhanced Vegetation Index - 2) shows strong correlation (i.e. r = 
0.861 and 0.861) and coefficient of determination value (R2=0.7414 and 0.7415)
respectively. Overall, Sentinel-2 multispectral images vegetation indices can produce 
good results for reporting the AGB.
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INTRODUCTION

“Forests have a crucial function 
in reducing CO2 levels in the 
atmosphere and the global climate 
system”(Alkama and Cescatti 2016; 
Pan et al., 2013, Nunes et al 2020). 
As carbon plays a vital part in the 
earth's carbon cycle, biomass and 
carbon stock assessment in tropical 
forests have recently received wider 
interests(Basuki et al., 2009). IN 
order to quantify the contributions 
of forests as carbon sources or 
sinks and to promote sustainable 

forest management, estimation of 
forest biomass and carbon stock is 
crucial. The quantification of forest 
biomass and carbon stock is crucial 
in assessing the contributions of 
forests as carbon sources or sinks 
and in promoting sustainable forest 
management practices. (Mauya et al., 
2015; Temesgen et al., 2015)

One way to assess biomass involves 
a conventional technique that 
involves destructively measuring 
aboveground biomass (AGB) by 
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removing trees. While this approach 
offers relatively accurate results, it is 
costly and time-consuming due to the 
need for extensive fieldwork(Attarchi 
and Gloaguen 2014). The alternative 
way is to employ a non-destructive 
technique of data collectionlike 
Remote Sensing (RS) to estimate 
biomass from spectrally recorded 
information (Kumar et al., 2015). Due 
to the accessibility  and accuracy of 
high-resolution images, RS data now 
plays a crucial role in the calculation of 
biomass across largepartsof tropical 
areas(Wahlang & Chaturvedi, 2020). 
Remote sensing (RS) technology 
nowadays is a widely used tool for  
biomass assessment  (Kankare et al., 
2013; Maynard et al., 2007; Wannasiri 
et al., 2013). Based on repetitive data 
gathering with little effort, RS may 
obtain forest information over broad 
areas at an affordable price and with 
satisfactory precision(Lu 2006).

The interpretation of biomass 
and land cover involves utilizing 
mathematical transformations of 
the original spectral reflectance, 
which are commonly referred to as 
vegetation indices (VIs)(He et al., 
2005; Rahman et al., 2003). Satellite-
based vegetation indices (VIs) are 
frequently used in numerous studies 
to estimate biomass (Foody et al., 
2003; Hurcom & Harrison 1998; Li, 
Zhou, & Xu 2021; Lourenço 2021; 
Pandit et al., 2018; Schlerf et al., 
2005 Sch; Utari et al., 2020). Some  
studies suggest that there exists 
a noteworthy positive correlation 

between vegetation indices (VIs) 
and biomass(Boyd, 1999; Das & 
Singh 2012; Heiskanen, 2006; 
Hurcom & Harrison 1998; Steininger, 
2000). However, other studies 
have demonstrated unsatisfactory 
outcomes(Foody et al., 2003; Schlerf 
et al., 2005). 

The European Space Agency's 
Copernicus program was launched 
in 2014 with additional significant 
advancements in radiometric, 
geographical, and temporal 
resolution to the global repository 
of open access data (Astola et al., 
2019; Li et al., 2021). For instance, the 
operational actors notice a significant 
difference when the spatial resolution 
is increased from 30 m of Landsat 8 
to 10 m of Sentinel-2, which permits 
calculation of variables (such AGB per 
ha) at the lower scale levels of forest 
plots and stands. In comparison to 
Landsat-8, Sentinel-2 (especially A 
and B) includes more spectral bands, 
including three Vegetation Red Edge 
(VRE) and one Narrow Near Infrared 
(NNIR) band (13 Sentinel-2 vs. 7 
bands) (Biswas et al. 2020; Forkuor 
et al., 2017). It is anticipated that the 
VRE bands will help with better AGB 
estimation and mapping(Qiu et al., 
2017).

Limited research has been 
undertaken in Nepal regarding 
the utilization of remote sensing 
(RS) technologies, particularly in 
estimating aboveground biomass 
(AGB)with few detailed ground-
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based quantifications of biomass. 
There is paucity of knowledge on 
forest biomass in the Chure region 
due to its geological fragility to 
undertake destructive methods. 
Further, application of satellite data 
with ground data is yet at early stage 
in Nepal and Cure region is not an 
exception. Thus, the goal of this study 
is to analyze the relationship between 
AGB and different VIs (derived from 
Sentinel-2 images) of forest of Chure 
region, Nepal

MATERIALS AND METHODS

Study area:

This study was conducted in 
Sainamaina Municipality (Fig.1). It 
is an area locatedin Chure region 
of Lumbini province in Rupandehi 
district of Nepal. The geographical 
location of study area is 83015’44’’ 

Figure 1: Location Map of Study Area

E to 83021’01’’ E longitude and 
27038’48’’ N to 27046’05’’ N latitude. 
Area of Chure region of Sainamaina 
municipality is 9235.11 ha. The 
research area includes undulating 
topography and typical of tropical 
forests. Major species of this region 
are “Shorearobusta, Syzygiumcumini, 
Lagerstroemia parviflora, 
Mallotusphilippinensis, Anogeissus 
latifolia"(Poudel et al., 2023). The 
terrain slope of the study area ranges 
from flat land (00) to steep slopes 
(upto 65.70) with an elevation 
ranging from 95 meter to 980m above 
mean sea level. The average annual 
precipitation of 2600 mm of which 
80% occurs duringmonsoon period). 
The mean maximum and minimum 
temperatures of the research areas 
has been recorded as 42.5°C and 
7.5°C respectively(Thapa & Poudel, 
2018).

Sampling strategy and field data 
collection

The total area of the study site is 
9235.11 ha which was divided into 
parts within a 2 * 2 km grid Fig. 2 
using ArcMap functionality. The grids 
were selected such that the selected 
grids (area 3622 ha) represented the 
overall vegetation of the study area. 
For the study, the area to be sampled 
was calculated using Equation 1, and 
the total number of sample plots to 
be surveyed was 72 plots which was 
calculated using Equation 2. Field 
information was gathered between 
the month of August and September 
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of 2021. Circulalr plots of  500m2 
(12.62m radius) was employed to 
obtain the tree data from sample 
plots. Sample plots were laid in each 
selected grid and stratified random 
sampling was adopted to distribute 
the plots with each grid. Due to 
inaccessibility, some of the sample 
plots wereshifted to new coordinates. 
The species name, diameter and 
height of each tree with DBH  8 cm in 
each sample plot was measured using 
diameter tape and clinometer. The 
diameter was measure at 1.3 meters 

above the ground. (Askar et al., 2018; 
Maas et al. 2008).

 (1)
(2)

Where n = number of sample plots to 
be surveyed, a = Area to be surveyed, 
500m2 is the area of the sample plot, 
S.I = Sampling Intensity (0.1%), and A 
= Total area of the study site

Figure 2: Grid selection and location of sample plot

  

SI = 𝑎𝑎
𝐴𝐴
×100 

  n = 𝑎𝑎
500

 

Field data analysis of AGB

In this study, the aboveground 
biomass (AGB) was estimated using 
an enhanced and updated allometric 
equation developed by Chave et al. 
(2014) specifically for tropical forest 
trees. Chave et al. (2014) used an 
equation that incorprateddiameter, 

height, and specific density of wood 
for biomass estimation.  Height and 
diameter were measured on-site, 
whereas the specific wood density 
was determined through a number of 
literatures. Species with their default 
specific values (ρ) given by Khanna 
& Chaturvedi (1982); Thakur (2003) 
was used to determine tree level 

Poudel et al., 2022



57
Journal of Forest and Natural Resource Management 3(1) November, 2021-2022

biomass. When specific values were 
unavailable, a general value (ρ= 0.674) 
was utilized (Pandit et al., 2018). The 
calculation of individual biomass and 
subsequent aggregation was done to 
obtain individual plot-level AGB.

AGBest = 0.0673 * (ρ*D2*H) 0.976 (3)

Where AGBestis AGB estimated in 
kilogram, D is DBH in cm, H, is height 
in meter, ρ is wood density in g/cm3, 
0.0673 and 0.976 are constants

Sentinel-2 image acquisition and 
processing

Sentinel-2 level 1C satellite photos 
(Ortho-images with UTM/WGS84, 
44N projection) were downloaded 
from the Copernicus Scientific Hub 
website. The image was taken on April 
20, 2021. This image was particularly 
chosen becauseof its low or negligible 
cloud cover for the period of study. 
The image had previously been 
pre-processed to the Top of the 
Atmosphere (TOA). Sentinel-2 level 
1C was processed to level 2A using 
the ATCOR algorithm through the 
Sen2Cor plugin in Sentinels (Poudel 
et al., 2023). Application Platform 
(SNAP) software to produce a bottom 
of atmosphere (BOA) corrected 
reflectance image.The image other 
than 10 m resolution were resampled 
in SNAP to 10 m resolution using 
reference band source product “Band 
2” tile with resample tool. Finally, the 
image was clipped for the research 
area in ArcMap. 

Vegetation indices and extraction of 
pixel values

Vegetation indices (VIs) are 
mathematical formulas that utilize 
specific spectral bands to emphasize 
the spectral characteristics of green 
plants, enabling their differentiation 
from other features or characteristics. 
(Adan, 2017). It is is calculated by 
adding up the red spectral band 
(Chlorophyll absorbent) with the 
near-infrared band (non-absorbent). 
Some indices include the Short 
Wave Infra-Red (SWIR) band as well 
(Njoku, 2014). The computation 
is achieved by creating a linear 
combination of the band through the 
process of ratioing, differencing, and 
summing while also considering the 
ratio of differences(Hanes, 2013). A 
spectral transformation comprising 
at least two bands is used to boost the 
contribution of an image's vegetation 
features. Seven different vegetation 
indices were used in this study. They 
are Normalized Difference Vegetation 
Index (NDVI), Simple Ratio (SR), Soil-
Adjusted Vegetation Index (SAVI), 
Enhanced Vegetation Index-2 (EVI2), 
Atmospherically Resistant Vegetation 
Index (ARVI), Normalized Difference 
Water Index (NDWI), and Normalized 
Difference Index 45 (NDI45) as 
presented in Table 5. Using the 
raster calculator tool in ArcGIS 10.5 
software, indices were calculated 
incorporating image spectral bands. 
Using the buffer tool, a sample plot 
position (latitude, longitude) was 
exported as a 12.62 m circular plot. 
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Using zonal statistics and a buffered 
circular plot position, the pixel values 
for all VIs were retrieved, and the 

data was exported in CSV format for 
additional analysis.

Statistical analysis

SPSS  and Microsoft Excel were 
used for statistical analysis. The 
relationship between each VI and 
AGB was calculated using linear 
regression models. AGB was used as 
the dependent variable (y) and VI 
was used as the independent variable 
(x) to determine the change in AGB 
as a change in VI and the value of 
r (correlation coefficient) and R2 
(coefficient of determination) was 
obtained. The indices with a high 
value of r and R2 indicate high relation 
between AGB and VIs.

Y = a + bX, (4)
Where, Y is AGB in t h-1, X is VIs and, a 
and bare parameters.

RESULTS

Descriptive statistics of field data

In the field, species enumeration and 
identification were also done. The 
results of 72 sample plots revealed a 
total of 929 trees. The most frequent 
tree species included Shorearobusta 
(34.33%), Bauchanania latifolia 
(12.80%), Anogeissus latifolia 
(10.22%), Terminalia alata 
(10.87%), Lagerstroemia parviflora 
(4.41%), Semecarpus anacardium 
(3.87%), Acacia catechu (2.47%), 
Mallotusphilippinensis (2.36%), 
and Syzygiumcumini (2.26%). The 
average height, DBH and AGB and CS 
of 929 trees was found to be 11.40 
± 0.15 meter, average = 24.20 ± 0.49 

 S.No. VIs Authors 

1.  NDVI = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌−𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌  
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌+𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

 (Gitelson & Merzlyak, 1997) 

2.  SR = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

 (Jordan 1969) 

3.  NDI45 = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌1− 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌1− 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

 (Delegido et al. 2011) 

4.  SAVI = 1.5 × 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌−𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌  
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌+𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌+0.5

 (Huete, 1988) 

5.  NDWI = 𝜌𝜌𝜌𝜌−𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌
𝜌𝜌𝜌𝜌+𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌

 (McFeeters 1996) 

6.  ARVI = 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌−𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌−(𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌−𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 )
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌+𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌+(𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌−𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌 )

 (Kaufman and Tanre 1992) 

7.  EVI2 =2.5 × 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌−𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌  
𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌+2.4×𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌+1 

 (Jiang et al. 2008) 

 

Table 1: VIs with their formula and authors

NIR (Near Infrared), G (Green)

Poudel et al., 2022
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cm, 11.08 ± 0.68 t h-1 , 81.26, average 
= 5.17 ± 0.32 t h-1respectively. Table 
2 presents species with lowest and 

highest AGB t h-1. Total AGB from all 
72 different sample plots was found 
10226.410 t h-1. 

Table 2: Five species with lowest and highest AGB t/h

Five species with lowest AGB t h-1 Five species with highest AGB t h-1

Species AGB t h-1 Species AGB t h-1

Diospyros malabarica 1.066 Shorearobusta 5903.830
Bridelia retusa 1.123 Terminalia alata 1890.237
Bombax cebia 1.755 Anogeissus latifolia 771.249
Woodfordiafruticosa 1.838 Buchanania latifolia 337.081
Azadirachta indica 1.915 Lagerstroemia parviflora 267.301

Comparative r and R2 analysis 
between AGB and VIs

Comparative analysis between 
AGB and 7 different VIs revealed 
the following result as shown in 
Table 3. The table reveals that  all 
Vis show  positive and significant 
correlation between spectral indices 
and observed biomass(p = 0 < 0.05). 
Linear model with high significant 
was ARVI and EVI2 model with 

the R2 value of 0.7414 and 0.7415 
respectively. The R2 value indicates 
that about 74.14% and 74.15% of 
AGB per hectare was explained by 
linear model of model ARVI and 
EVI2 and that remaining about 26% 
was explained by other variables not 
introduced in the model. NDWI shows 
the low correlation coefficient with R2 
of 0.5539. Similarly, NDVI, SR, NDI45 
and SAVI shows R2 of 0.7122, 0.7361, 
0.699 and 0.7122 respectively.

Table 3: VIs with their value of r and R2

NDVI SR NDI45 SAVI NDWI ARVI EVI2

AGB

Pearson 
Correlation

.844** .858** .836** .844** .744** .861** .861**

Sig. 
(2-tailezd)

0.00 0.00 0.00 0.00 0.00 0.00 0.00

R2 0.7122 0.7361 0.699 0.7122 0.5539 0.7414 0.7415
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Figure 3: Computed NDVI, SR, NDI45, SAVI, NDWI, ARVI and EVI2 and relation between these VIs 
and AGB

Discussion

From this study, comparative analysis 
between the AGB and different VIs 
revealed that ARVI and EVI2 has 
strong correlation and coefficient 
of determination. Values of r and R2 

are 0.861 and 0.7414 respectively 
for ARVI while the respective value 
for EVI2 was 0.861 and 0.7415 atthe 
5% level of significance for linear 
regression model. The result shows 
that AGB and all the VIshave strong 
correlation which is highly significant. 

Poudel et al., 2022
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So, AGB predictive model on linear 
regression equation Y = 142.55x + 
0.5469 for ARVI and Y = 65.03x - 
17.537 for EVI2 can be suggested for 
predicting of AGB in Chure region.

Nakano et al. (2013) in their study 
computed 7 VIswhich are SR, NDVI, 
EVI, SAVI, OSAVI, LSWI and GR from 
reflectance data of MODIS and the 
result reveals that all of the vegetation 
indices showed significant positive 
correlation with measured data 
of AGB. Linear regression analysis 
indicated that SR, NDVI and OSAVI 
showed high correlation with AGB 
with R2 = 0.777, R2 = 0.861 and R2 = 
0.845 respectively. Joshi et al. (2019)
in their study used slope-based 
vegetation indices like NDVI, Ratio, 
TVI and CTVI and the result showed 
the correlation between the VIs and 
AGB with correlation coefficient more 
than 0.7 of which NDVI had relatively 
higher correlation (r=0.734). The 
study further revealed that NDVI was 
relatively more significant (r = 0.734, 
R2 = 0.5388 and adjusted R2 = 0.5248) 
for P. roxburghiistudies. Pandit et al. 
(2018)gained R2 value for SAVI, NDVI 
were 0.81 and 0.70 respectively while 
estimating the AGB in sub-tropical 
buffer zone community forest. 
Correlation value of 0.89 and 0.81 
for the indices NDI45 and NDVI was 
obtained by (Nuthammachot et al. 
2020) in private forest in Indonesia. 
Similarly, Askar et al. (2018) gained R2 
value of NDI45, NDVI to be 0.79 and 
0.65 respectively on private forest in 
Indonesia using Sentinel-2. (Priatama 

et al. 2022) calculated correlation 
value of NDVI and SAVI to be 0.73 and 
0.80 using Landsat imagery in post-
mining area. 

NDI45 has shown higher value of r and 
R2 than of NDVI which might be due to 
the use of red-edge region, centered at 
705 (band 5), 740 (band 6), 783 (band 
7), and 865 nm (band 8a). These bands 
have  a lot of potential for monitoring 
various vegetation features (Shoko 
and Mutanga 2017). Furthermore, 
studies such as Askar et al. (2018); 
Fernández-Manso et al. (2016); Guo 
et al. (2017); Nuthammachot et al. 
(2020); Padilla et al. (2017) have 
demonstrated that red-edge VIs 
diminishes saturation, particularly in 
complex vegetation structures(Adan 
2017). Saturation occurs, particularly 
when vegetation reaches maturity 
in the case of crops (Mutanga & 
Skidmore, 2004; Wang et al., 2016) 
while in many cases it is because 
of complex forest structure (Das & 
Singh, 2012; Lu et al., 2016; Sinha et 
al., 2016) causing issues in predicting 
forest AGB (Wernick et al. 2021). In 
such a case, the VIs is unable to detect 
any further increases in biomass 
because saturation occurs when 
vegetation completely covers the 
land, which is frequently expressed 
as full leaf area coverage. In this case, 
the biomass continues to grow while 
the indices remain unchanged (Adan, 
2017). Steininger (2000) reported 
saturation at around 150 t h-1. This 
study concludes the average AGB from 
the field data to be 142.90 t h-1 which 
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is lower than saturation amount. Thus, 
data saturation problem is eliminated 
in this study area due to lower canopy 
and the AGB can be predicted using 
the VIs consisting of the NIR, Blue and 
Red band i.e. ARVI and EVI2.

The degree of the relationship between 
VIs and AGB varies on a number of 
elements, including plant species and 
their surroundings, thus, it is possible 
to explain the inconsistency in the 
relationship between VIs and AGB to 
the variation in biophysical conditions 
of the research area (Anderson and 
Hanson, 1992; Mundava et al., 2014). 
As a result, depending on the local 
environment, one species exhibits 
higher connection on one VI while 
another on another (Joshi et al., 2019).

CONCLUSION

Generally, in this study Sentinel-2 VIs 
as ARVI and EVI2 shows potential 
in biomass estimation than other 
VIs used in this study. This study 
emphasizes the value of VIs in forestry-
related research. Applications for this 
technique include management of 
forest resources and conservation-
related projects. The use of RS 
techniques has made it possible to 
estimate biomass more quickly, more 
effectively, and in a timely manner 
for the scientific management of 
forest resources as opposed to the 
conventional methodology, which 
is labor-intensive, complicated, 
and time-consuming. Thus, freely 
available multispectral Sentinel-2 

data with high spatial, temporal 
resolution are suitable for calculating 
AGB at a small scale over wide areas.
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