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Abstract
Most of the modern day engineering systems use rotor dynamics for the transmission of
power. The slightest imbalance in the rotor system can create a massive loss in the energy
transfer and the system’s life. This study explores the dynamic behavior of multidisc shaft
systems with rotating unbalance, a crucial area in mechanical engineering, by integrating
analytical modeling, mathematical formulations, and finite element simulations using ANSYS.
The shaft is modeled as a flexible Euler-Bernoulli beam, considering the gyroscopic effect,
while the discs are considered rigid bodies with unbalance present in a disc. The equations of
motion are derived using Extended Hamilton’s principle and solved to evaluate the system’s
forced vibration response. For the system considered, which is rotating at the speed of 1500
RPM, in both transverse directions, the amplitude at the end of the shaft was found to be
41.495 micrometers, considering the unbalance of 0.0001kgm present at first disc positioned
at one-third length of the shaft. The amplitude was 18.46 micrometers at the position of the
second disc situated at two-thirds length of the shaft. The analytical results were considered
with the numerical results of ANSYS, and variation in result was found to be less than 10
percent.

©JIEE Thapathali Campus, IOE, TU. All rights reserved

1. Introduction
Rotors and rotating parts are foundational in engineer-
ing applications like pumps, compressors, turbines, and
generators, where their dynamic behavior directly im-
pacts operational efficiency and structural integrity [1].
The transmission of power is the main motive for the
use of the disc and shaft systems. Rotating machinery
must be closely monitored to detect faults, which may
arise due to operating conditions or manufacturing de-
fects. Rotating unbalance occurs when mass is unevenly
distributed around the rotational axis. A rotor is consid-
ered unbalanced when its inertial axis, or center of mass,
does not align with its geometric axis. This misalign-
ment creates a moment, causing the rotor to wobble.
The combination of mass unbalance and radial acceler-
ation due to rotation generates centrifugal forces, which
increase bearing loads and induce vibrations within the
system [2].

∗Corresponding author:
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The field of vibration analysis on a shaft rotor system
is still under research. Different researchers have con-
tributed to this field. Geradin et al [3] analyzed a three-
dimensional modelling of the rotating system for the
calculation of critical speed and analyzing its stability.
Shaw et.al [4] studied the dynamic response of an unbal-
anced rotating shaft. They investigated the steady state
solution for the synchronous rotation of the shaft. Hos-
seini et. al [5] found the natural frequency of a simply
supported rotating shaft with non-linearity, including
the effect of rotary inertia and gyroscopic. The equa-
tion of motion was derived using Hamilton’s principle
and the resonance curve. Luintel et.al [6] focused on
the dynamic response of continuous shafts with various
end conditions. The equation of motion for the bending
vibration of the shaft was derived using Hamilton’s prin-
ciple. The assumed mode method was applied to obtain
the governing equation for both simply supported and
fixed-end shafts. Free vibration analysis was conducted
to determine the critical frequencies for each case. Also,
Luintel et.al [7] formulated the polynomial mode shape
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functions for continuous shafts with various end condi-
tions. The equation of motion for the continuous shaft
system, considering various end conditions like simply
supported, both ends fixed, and one end fixed and the
other free, was derived. The assumed mode method
was employed to solve the equation of motion, resulting
in the calculation of three mode shape functions for all
cases.
Furthermore, Ojha et.al [8] studied the behavior of three-
disc arrangements: equal mass at equal distances, vary-
ing masses at equal distances, and equal mass at differ-
ent distances. Using an extended form of Hamilton’s
principle, the equations of motion are derived and trans-
formed into time-domain equations via the assumed
mode method. Modal parameters and critical speeds
for forward and backward whirl are determined. The
analytical results closely match the simulation findings,
validating the model’s accuracy. Pradhan et.al [9] fo-
cused on the modal analysis of a multi-disc rotor sys-
tem, finding the natural frequency with an analytical
approach closely validated by the finite element method.

Ameen et.al [10] studied modal parameters for the free-
free boundary condition of a circular cross-section shaft.
The parameters natural frequency, mode shape and
damping ratios were studied using Experimental Modal
Analysis (EMA) and were validated using Finite Ele-
ment Modelling (FEM). Saleem et.al [11] focused on
the Deflected Shape of the Shaft (DSS) of a rotating ma-
chine, which was found for determining the unbalance
in the machine component. Fast Fourier Transform
(FFT) was used for vibration data. Kumar et.al [12]
performed experimental studies to find the unbalance
in the rotor. By performing the spectrum analysis and
phase analysis, the cause of the high vibration was deter-
mined. Miranda et.al [13] present an experimental and
numerical analysis of the transverse vibration of a fixed-
free beam, focusing on mode shapes and frequencies.
Numerical results from ANSYS finite element analysis
align well with experimental findings. A finite element
method for eigenvalue analysis of damped gyroscopic
systems, more especially, flexible rotors on fluid film
journal bearings, was created in ref. [14] .They exam-
ined the impact of effective damping on eigenvalues in
rotor-bearing systems and examined natural frequencies
under varied operating conditions using the Galerkin
weighted residual method on Reynolds’ equation.
Existing research on forced vibrations primarily focuses
on simpler single-disc shaft systems, neglecting the addi-
tional complexities introduced by multiple discs. There
is a gap in understanding the response of a multi-disc
shaft system subjected to rotating unbalance, which may
result from manufacturing defects, eccentricity in design
or installation, wear, and material loss. This research

aims to fill this gap by developing a comprehensive
model to analyze the forced vibrations of multi-disc
cantilever shaft systems under rotating unbalance. The
goal is to provide insights into the system’s dynamic
behavior.
The main objective of this research is to study the forced
vibration behavior of a multi-disc cantilever shaft system
subjected to rotating unbalance. To achieve the main
objective, a mathematical model will be formulated for
a two-disc shaft system, and the model will be analyzed
analytically, evaluating the steady-state response at var-
ious positions along the length of the shaft. The model
will be validated through ANSYS simulation.

2. Development of Mathematical
model

2.1. Mathematical modelling of Disc
The rotor dynamic system consists of two discs and a
rotating shaft. The disc is assumed to be rigid. The
axis 𝑦 represents the longitudinal direction of the shaft,
𝑥 represents the transverse direction in the horizontal
plane, and 𝑧 represents the transverse direction in the
vertical plane. The global coordinate system 𝑋, 𝑌 ,𝑍 is
fixed, and the rotating frame labeled 𝑥, 𝑦, 𝑧, fixed with
the center of the disc, moves with the rotating shaft. The
coordinate system is illustrated in Figure 1.
The angular speed vector [𝜔𝑥, 𝜔𝑦, 𝜔𝑧] defined about

Figure 1: Global Coordinate System and Rotating
Frame
the reference frame 𝑥, 𝑦, 𝑧 at the center of the disc is
given in Ref.[1] as:

⎡

⎢

⎢

⎣

𝜔𝑥
𝜔𝑦
𝜔𝑧

⎤

⎥

⎥

⎦

=
⎡
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⎢

⎣

−𝜓̇ 𝜙 + 𝜃̇
𝜙̇ + 𝜓̇ 𝜃
𝜓̇ + 𝜃̇ 𝜙

⎤

⎥

⎥

⎦

(1)

Where 𝜃, 𝜙, and 𝜓 are the Euler angles.
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The displacements of the center of mass of the disc in
the 𝑋 and 𝑍 directions of the inertial reference frame
are denoted by 𝑢 and 𝑤, respectively. If 𝑀𝐷 represents
the mass of the disc, then the kinetic energy of the disc
is the sum of translational kinetic energy and rotational
kinetic energy.

𝑇𝐷 = 1
2
𝑀𝐷

(

𝑢̇2 + 𝑤̇2)

+ 1
2
(

𝐼𝐷𝑋𝜔
2
𝑋 + 𝐼𝐷𝑌𝜔2

𝑌 + 𝐼𝐷𝑍𝜔2
𝑍
)

(2)

Where 𝐼𝐷𝑋 , 𝐼𝐷𝑌 , and 𝐼𝐷𝑍 are the mass moments of
inertia of the disc about 𝑥, 𝑦, and 𝑧, respectively.
The disc is rotated about the 𝑦-axis with constant rota-
tional speed Ω. Then, 𝜙̇ = Ω (rate of spin, constant),
and 𝜃 and 𝜓 are very small.
Then Equation 2 becomes

𝑇𝐷 = 1
2
𝑀𝐷

(

𝑢̇2 + 𝑤̇2) 1
2
𝐼𝐷𝑋

(

𝜃̇2 + 𝜓̇2)

+ 1
2
𝐼𝐷𝑌

(

Ω2 + 2Ω 𝜓̇ 𝜃
)

(3)

Where 𝐼𝐷𝑌 Ω 𝜓̇ 𝜃 accounts for the gyroscopic ef-
fect.
2.2. Mathematical modelling of Shaft
The shaft is assumed to be a beam with a constant cir-
cular cross section and is characterized by strain and
kinetic energy. Figure 2 illustrates the shaft’s cross-
section along with two reference frames: the inertial
frame, where displacements are measured as 𝑢 and 𝑤
along the 𝑋 and 𝑍 axes, and the rotating frame con-
cerning the center of the cross-section of the shaft along
the 𝑥 and 𝑧 axes.
The kinetic energy of the shaft, represented by 𝑇𝑠, is:

𝑇𝑠 =
1
2
𝜌𝑠𝐴𝑠 ∫

𝐿

0

(

𝑢̇2 + 𝑤̇2) 𝑑𝑦 + 1
2
𝜌𝑠𝐼𝑠 ∫

𝐿

0

(

𝜃̇2 + 𝜓̇2)

𝑑𝑦 + 𝜌𝑠𝐼𝑠𝐿Ω2 + 2𝜌𝑠𝐼𝑠Ω∫

𝐿

0
𝜓̇ 𝜃 𝑑𝑦

(4)
Where 𝜌𝑠, 𝐼𝑠, and 𝐴𝑠 denote the density, mass moment
of inertia, and cross-sectional area of the shaft, respec-
tively.
The strain energy of the shaft due to bending is given
by:

𝑉𝑠 =
1
2
𝐸𝐼𝑧𝑧 ∫

𝐿

0

[

(

𝑢′′
)2 +

(

𝑤′′)2
]

𝑑𝑦 (5)

Figure 2: Cross-section of shaft with two frames

Figure 3: Rotating Unbalance taken as point mass (𝑚𝑢)

2.3. Rotating unbalance in Disc
The mass unbalance is represented as a point mass (𝑚𝑢)positioned at a distance d from the shaft’s center.
As the unbalance point mass (𝑚𝑢) is much smaller than
the disc’s mass. The expression for the kinetic energy
of unbalanced mass, which acts as a non-conservative
force, is given by:

𝑊𝑛𝑐 = 𝑚𝑢Ω𝑒 (𝑢̇ cosΩ𝑡 + 𝑤̇ sinΩ𝑡) (6)

2.4. Problem formulation
A model for two-discs mounted on a shaft used to study
forced vibrations due to rotating unbalance. The system
consists of two rigid discs: the first disc is present at
one-third of the length of the shaft, and the second disc
is present at two-thirds of the length of the shaft, as
shown in Figure 4. The rotating unbalance is present in
the first disc.

The total kinetic energy for the system is given by:
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Figure 4: A wireframe modelling of the shaft-disc sys-
tem

𝑇 = 𝑇1𝐷 + 𝑇2𝐷 + 𝑇𝑆

= 1
2
𝑀1𝐷 ∫

𝐿

0

(

𝑢̇2 + 𝑤̇2) 𝛿𝑑
(

𝑦 − 𝐿
3

)

𝑑𝑦+

1
2
𝐼1𝐷𝑋 ∫

𝐿

0

(

𝜃̇2 + 𝜓̇2) 𝛿𝑑
(

𝑦 − 𝐿
3

)

𝑑𝑦+

1
2
𝐼1𝐷𝑌 ∫

𝐿

0

(

Ω2 + 2Ω𝜓̇𝜃
)

𝛿𝑑
(

𝑦 − 𝐿
3

)

𝑑𝑦

+ 1
2
𝑀2𝐷 ∫

𝐿

0

(

𝑢̇2 + 𝑤̇2) 𝛿𝑑
(

𝑦 − 2𝐿
3

)

𝑑𝑦+

1
2
𝐼2𝐷𝑋 ∫

𝐿

0

(

𝜃̇2 + 𝜓̇2) 𝛿𝑑
(

𝑦 − 2𝐿
3

)

𝑑𝑦

+ 1
2
𝐼2𝐷𝑌 ∫

𝐿

0

(

Ω2 + 2Ω𝜓̇𝜃
)

𝛿𝑑
(

𝑦 − 2𝐿
3

)

𝑑𝑦

+ 1
2
𝜌𝑠𝐴𝑠 ∫

𝐿

0

(

𝑢̇2 + 𝑤̇2) 𝑑𝑦 + 1
2
𝜌𝑠𝐼𝑠 ∫

𝐿

0

(

𝜃̇2 + 𝜓̇2)

𝑑𝑦 + 𝜌𝑠𝐼𝑠𝐿Ω2 + 2𝜌𝑠𝐼𝑠Ω∫

𝐿

0
𝜓̇ 𝜃 𝑑𝑦

(7)
The total potential energy for the shaft is given by Equa-
tion 5.
2.5. Equation of motion
The equation of motion for the model is found using the
Extended Hamilton principle.
Using the Extended Hamilton principle,

∫

𝑡2

𝑡1

(

𝑇 − 𝑉 +𝑊𝑛𝑐
)

𝑑𝑡 = 0 (8)

1
2
𝑀1𝐷 ∫

𝑡2

𝑡1
∫

𝐿

0
𝛿
(

𝑢̇2 + 𝑤̇2) 𝛿𝑑
(

𝑦 − 𝐿
3

)

𝑑𝑦 𝑑𝑡

+ 1
2
𝐼1𝐷𝑋 ∫

𝑡2

𝑡1
∫

𝐿

0
𝛿
(

𝜃̇2 + 𝜓̇2) 𝛿𝑑
(

𝑦 − 𝐿
3

)

𝑑𝑦 𝑑𝑡

+ 1
2
𝐼1𝐷𝑌 ∫

𝑡2

𝑡1
∫

𝐿

0
𝛿
(

Ω2 + 2Ω𝜓̇𝜃
)

𝛿𝑑
(

𝑦 − 𝐿
3

)

𝑑𝑦 𝑑𝑡

+ 1
2
𝑀2𝐷 ∫

𝑡2

𝑡1
∫

𝐿

0
𝛿
(

𝑢̇2 + 𝑤̇2) 𝛿𝑑
(

𝑦 − 2𝐿
3

)

𝑑𝑦 𝑑𝑡

+ 1
2
𝐼2𝐷𝑋 ∫

𝑡2

𝑡1
∫

𝐿

0
𝛿
(

𝜃̇2 + 𝜓̇2) 𝛿𝑑
(

𝑦 − 2𝐿
3

)

𝑑𝑦 𝑑𝑡

+ 1
2
𝐼2𝐷𝑌 ∫

𝑡2

𝑡1
∫

𝐿

0
𝛿
(

Ω2 + 2Ω𝜓̇𝜃
)

𝛿𝑑
(

𝑦 − 2𝐿
3

)

𝑑𝑦 𝑑𝑡

+ 1
2
𝜌𝑠𝐴𝑠 ∫

𝑡2

𝑡1
∫

𝐿

0
𝛿
(

𝑢̇2 + 𝑤̇2) 𝑑𝑦 𝑑𝑡

+ 1
2
𝜌𝑠𝐼𝑠 ∫

𝑡2

𝑡1
∫

𝐿

0
𝛿
(

𝜃̇2 + 𝜓̇2) 𝑑𝑦 𝑑𝑡

+ 𝜌𝑠𝐼𝑠𝐿Ω2 + 2𝜌𝑠𝐼𝑠Ω∫

𝑡2

𝑡1
∫

𝐿

0
𝛿 (𝜓̇ 𝜃) 𝑑𝑦 𝑑𝑡

− 1
2
𝐸𝐼𝑧𝑧 ∫

𝑡2

𝑡1
∫

𝐿

0

[

(

𝑢′′
)2 +

(

𝑤′′)2
]

𝑑𝑦 𝑑𝑡

+ 𝑚𝑢Ω𝑒∫

𝑡2

𝑡1
∫

𝐿

0
𝛿 (𝑢̇ cosΩ𝑡 + 𝑤̇ sinΩ𝑡) 𝛿𝑑

(

𝑦 − 𝐿
3

)

𝑑𝑦 𝑑𝑡 = 0
(9)

On Solving we get equation of motion as:
𝑀1𝐷 𝑢̈ 𝛿𝑑

(

𝑦 − 𝐿
3

)

+𝑀2𝐷 𝑢̈ 𝛿𝑑
(

𝑦 − 2𝐿
3

)

− 𝐼1𝐷𝑋 𝑢′′ 𝛿𝑤 𝛿𝑑
(

𝑦 − 𝐿
3

)

− 𝐼2𝐷𝑋 𝑢′′ 𝛿𝑤 𝛿𝑑
(

𝑦 − 2𝐿
3

)

− 𝐼1𝐷𝑌 𝑤′′ 𝛿𝑑
(

𝑦 − 𝐿
3

)

− 𝐼2𝐷𝑌 𝑤′′ 𝛿𝑑
(

𝑦 − 2𝐿
3

)

+ 𝜌𝑠𝐴𝑠 𝑢̈ − 𝜌𝑠𝐼𝑠 𝑢′′ − 2𝜌𝑠𝐼𝑠Ω𝑤′′ + 𝐸𝐼𝑧𝑧 𝑢iv

= 𝑚𝑢Ω2 𝑒 sinΩ𝑡 𝛿𝑑
(

𝑦 − 𝐿
3

)

(10)
𝑀1𝐷 𝑤̈ 𝛿𝑑

(

𝑦 − 𝐿
3

)

+𝑀2𝐷 𝑤̈ 𝛿𝑑
(

𝑦 − 2𝐿
3

)

− 𝐼1𝐷𝑋 𝑤′′ 𝛿𝑑
(

𝑦 − 𝐿
3

)

− 𝐼2𝐷𝑋 𝑤′′ 𝛿𝑑
(

𝑦 − 2𝐿
3

)

+ 𝐼1𝐷𝑌 Ω 𝑢′′ 𝛿𝑑
(

𝑦 − 𝐿
3

)

+ 𝐼2𝐷𝑌 𝑢′′ 𝛿𝑑
(

𝑦 − 2𝐿
3

)

+ 𝜌𝑠𝐴𝑠 𝑤̈ − 𝜌𝑠𝐼𝑠𝑤′′ + 2𝜌𝑠𝐼𝑠Ω 𝑢′′ + 𝐸𝐼𝑧𝑧𝑤iv

= 𝑚𝑢Ω2 𝑒 cosΩ𝑡 𝛿𝑑
(

𝑦 − 𝐿
3

)

(11)
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3. Results
3.1. Separation of variables
For solving the equations of motion defined by equations
10 and 11, the separation of variables method was used.
The solution to the given equations was assumed to be
the product of two independent functions: one space-
dependent, 𝜓𝑖(𝑦), and the other time-dependent, 𝑞𝑖(𝑡).The transverse displacement in the horizontal plane is
assumed to be given by equation 12, and in the vertical
plane is given by equation 13.

𝑢𝑖(𝑦, 𝑡) = 𝜓𝑖(𝑦) 𝑞𝑖𝑢(𝑡) (12)

𝑤𝑖(𝑦, 𝑡) = 𝜓𝑖(𝑦) 𝑞𝑖𝑤(𝑡) (13)

3.2. Shape function
A shape function defines the displacements of a structure
in terms of spatial coordinates. This function defines
the mode shape and helps us find the natural frequency
as well as the dynamic response. These functions are
derived from the boundary condition of the system. The
formulation ensures that displacement and slope conti-
nuity are maintained, providing an accurate represen-
tation of the beam’s deformation behavior. The first
three mode shapes for the cantilever beam taken from
ref. [15] as:

𝜓1(𝑦) = 𝑦4 − 4𝐿𝑦3 + 6𝐿2𝑦2 (14)

𝜓2(𝑦) = 𝑦5− 661
182

𝐿𝑦4+ 412
91

𝐿2𝑦3− 163
91

𝐿3𝑦2 (15)

𝜓3(𝑦) = 𝑦6 − 9953
2608

𝐿𝑦5 + 305815
57376

𝐿2𝑦4 − 5560
1793

𝐿3𝑦3

+ 115
176

𝐿4𝑦2

(16)

3.3. Galerkin method
The Galerkin method is a technique used to convert
continuous problems governed by differential equations
into discrete problems for easier solutions. The Galerkin
method approximates the solution by expanding it in
terms of basis functions, typically chosen to satisfy the
problem’s boundary conditions. The method minimizes
the residual (error) between the exact and approximate
solutions by selecting test functions equal to the basis
functions. This leads to a system of algebraic equations
that can be solved to find the unknown coefficients.
For solving the equation of motion, the Galerkin method
is used. The residual required for solving the equation

using the Galerkin method are:

𝑅1 =𝑀1𝐷 𝑢̈ 𝛿𝑑
(

𝑦 − 𝐿
3

)

+𝑀2𝐷 𝑢̈ 𝛿𝑑
(

𝑦 − 2𝐿
3

)

− 𝐼1𝐷𝑋 𝑢′′ 𝛿𝑤 𝛿𝑑
(

𝑦 − 𝐿
3

)

− 𝐼2𝐷𝑋 𝑢′′ 𝛿𝑤 𝛿𝑑
(

𝑦 − 2𝐿
3

)

− 𝐼1𝐷𝑌 𝑤′′ 𝛿𝑑
(

𝑦 − 𝐿
3

)

− 𝐼2𝐷𝑌 𝑤′′ 𝛿𝑑
(

𝑦 − 2𝐿
3

)

+ 𝜌𝑠𝐴𝑠 𝑢̈ − 𝜌𝑠𝐼𝑠 𝑢′′ + 2𝜌𝑠𝐼𝑠Ω𝑤′′ + 𝐸𝐼𝑧𝑧 𝑢iv

− 𝑚𝑢Ω2 𝑒 sinΩ𝑡 𝛿𝑑
(

𝑦 − 𝐿
3

)

(17)

𝑅2 =𝑀1𝐷 𝑤̈ 𝛿𝑑
(

𝑦 − 𝐿
3

)

+𝑀2𝐷 𝑤̈ 𝛿𝑑
(

𝑦 − 2𝐿
3

)

− 𝐼1𝐷𝑋 𝑤′′ 𝛿𝑑
(

𝑦 − 𝐿
3

)

− 𝐼2𝐷𝑋 𝑤′′ 𝛿𝑑
(

𝑦 − 2𝐿
3

)

− 𝐼1𝐷𝑌 Ω 𝑢′′ 𝛿𝑑
(

𝑦 − 𝐿
3

)

− 𝐼2𝐷𝑌 𝑢′′ 𝛿𝑑
(

𝑦 − 2𝐿
3

)

+ 𝜌𝑠𝐴𝑠 𝑤̈ − 𝜌𝑠𝐼𝑠𝑤′′ − 2𝜌𝑠𝐼𝑠Ω 𝑢′′ + 𝐸𝐼𝑧𝑧𝑤iv

− 𝑚𝑢Ω2 𝑒 cosΩ𝑡 𝛿𝑑
(

𝑦 − 𝐿
3

)

(18)
Using the Galerkin Method,

∫

𝐿

0
𝜓𝑖(𝑦)𝑅1 𝑑𝑦 = 0 (19)

Putting equations 14 and 17 in equation 19, we get,

[

𝑀1𝐷 𝜓
2
𝑖
|

|

|𝑦=𝐿∕3
+𝑀2𝐷 𝜓

2
𝑖
|

|

|𝑦=2𝐿∕3
− 𝐼1𝐷𝑋 𝜓 ′′

𝑖 𝜓𝑖
|

|

|𝑦=𝐿∕3

− 𝐼2𝐷𝑋 𝜓 ′′
𝑖 𝜓𝑖

|

|

|𝑦=2𝐿∕3
+ 𝜌𝑠𝐴𝑠 ∫

𝐿

0
𝜓2
𝑖 𝑑𝑦

− 𝜌𝑠𝐼𝑠 ∫

𝐿

0
𝜓 ′′
𝑖 𝜓𝑖 𝑑𝑦

]

𝑞1𝑈 −
[

𝐼1𝐷𝑌 Ω𝜓 ′′
𝑖 𝜓𝑖

|

|

|𝑦=𝐿∕3

+ 𝐼2𝐷𝑌 Ω𝜓 ′′
𝑖 𝜓𝑖

|

|

|𝑦=2𝐿∕3
+ 2𝜌𝑠𝐼𝑠Ω∫

𝐿

0
𝜓 ′′
𝑖 𝜓𝑖 𝑑𝑦

]

𝑞̇1𝑊

+
[

𝐸𝐼𝑧𝑧 ∫

𝐿

0
𝜓 ′′′′
𝑖 𝜓𝑖 𝑑𝑦

]

𝑞1𝑈

= 𝑚𝑢Ω2 𝑒 sinΩ𝑡 𝜓𝑖
|

|

|𝑦=𝐿∕3

(20)

∫

𝐿

0
𝜓𝑖(𝑦)𝑅2 𝑑𝑦 = 0 (21)
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Putting equations 14 and 18 in equation 21, we get,

[

𝑀1𝐷 𝜓
2
𝑖
|

|

|𝑦=𝐿∕3
+𝑀2𝐷 𝜓

2
𝑖
|

|

|𝑦=2𝐿∕3
− 𝐼1𝐷𝑋 𝜓 ′′

𝑖 𝜓𝑖
|

|

|𝑦=𝐿∕3

− 𝐼2𝐷𝑋 𝜓 ′′
𝑖 𝜓𝑖

|

|

|𝑦=2𝐿∕3
+ 𝜌𝑠𝐴𝑠 ∫

𝐿

0
𝜓2
𝑖 𝑑𝑦

− 𝜌𝑠𝐼𝑠 ∫

𝐿

0
𝜓 ′′
𝑖 𝜓𝑖 𝑑𝑦

]

𝑞1𝑈 +
[

𝐼1𝐷𝑌 Ω𝜓 ′′
𝑖 𝜓𝑖

|

|

|𝑦=𝐿∕3

+ 𝐼2𝐷𝑌 Ω𝜓 ′′
𝑖 𝜓𝑖

|

|

|𝑦=2𝐿∕3
+ 2𝜌𝑠𝐼𝑠Ω∫

𝐿

0
𝜓 ′′
𝑖 𝜓𝑖 𝑑𝑦

]

𝑞̇1𝑊

+
[

𝐸𝐼𝑍𝑍 ∫

𝐿

0
𝜓 ′′′′
𝑖 𝜓𝑖 𝑑𝑦

]

𝑞1𝑈

= 𝑚𝑢Ω2 𝑒 cosΩ𝑡 𝜓𝑖
|

|

|𝑦=𝐿∕3

(22)
Comparing equation 20 with equation 23, we have:

𝑀𝑖 𝑞1𝑈 − 𝐶𝑖 𝑞̇1𝑊 +𝐾𝑖 𝑞1𝑈 = 𝐹𝑖 sinΩ𝑡 (23)
Comparing equation 22 with equation 24, we have:

𝑀𝑖 𝑞1𝑊 + 𝐶𝑖 𝑞̇1𝑈 +𝐾𝑖 𝑞1𝑊 = 𝐹𝑖 cosΩ𝑡 (24)
We get,
𝑀𝑖 =𝑀1𝐷 𝜓

2
𝑖
|

|

|𝑦=𝐿∕3
+𝑀2𝐷 𝜓

2
𝑖
|

|

|𝑦=2𝐿∕3

− 𝐼1𝐷𝑋 𝜓 ′′
𝑖 𝜓𝑖

|

|

|𝑦=𝐿∕3
− 𝐼2𝐷𝑋 𝜓 ′′

𝑖 𝜓𝑖
|

|

|𝑦=2𝐿∕3

+ 𝜌𝑠𝐴𝑠 ∫

𝐿

0
𝜓2
𝑖 𝑑𝑦 − 𝜌𝑠𝐼𝑠 ∫

𝐿

0
𝜓 ′′
𝑖 𝜓𝑖 𝑑𝑦

(25)

𝐶𝑖 = 𝐼1𝐷𝑌 Ω𝜓 ′′
𝑖 𝜓𝑖

|

|

|𝑦=𝐿∕3
+ 𝐼2𝐷𝑌 Ω𝜓 ′′

𝑖 𝜓𝑖
|

|

|𝑦=2𝐿∕3

+ 2𝜌𝑠𝐼𝑠Ω∫

𝐿

0
𝜓 ′′
𝑖 𝜓𝑖 𝑑𝑦

(26)

𝐾𝑖 = 𝐸𝐼𝑍𝑍 ∫

𝐿

0
𝜓 ′′′′
𝑖 𝜓𝑖 𝑑𝑦 (27)

𝐹𝑖 = 𝑚𝑈 Ω2 𝑒 𝜓1
|

|

|𝑦=𝐿∕3
(28)

3.4. Steady state solution of temporal
equation

For solving equations 23 and 24, the solution can be
sought in the form of:

𝑞𝑖𝑢 = 𝐴𝑖 sinΩ𝑡 + 𝐵𝑖 cosΩ𝑡 (29)

𝑞𝑖𝑤 = 𝐶𝑖 sinΩ𝑡 +𝐷𝑖 cosΩ𝑡 (30)

Putting equations 29 and 30 into 23 and 24, we have the
following values:

𝐵𝑖 = 0

𝐶𝑖 = 0

𝐴𝑖 =
𝐹𝑖

𝐾𝑖 − Ω2𝑀𝑖 + Ω𝐶𝑖
(31)

𝐷𝑖 =
𝐹𝑖

𝐾𝑖 − Ω2𝑀𝑖 + Ω𝐶𝑖
(32)

Substituting these values into equations 29 and 30, we
get the solution as:

𝑞𝑖𝑢 =
𝐹𝑖

𝐾𝑖 − Ω2𝑀𝑖 + Ω𝐶𝑖
sinΩ𝑡 (33)

𝑞𝑖𝑤 =
𝐹𝑖

𝐾𝑖 − Ω2𝑀𝑖 + Ω𝐶𝑖
cosΩ𝑡 (34)

The transverse displacements are found to be:

𝑢𝑖(𝑦, 𝑡) = 𝜓𝑖(𝑦) 𝑞𝑖𝑢(𝑡)

= 𝜓𝑖(𝑦)
𝐹𝑖

𝐾𝑖 − Ω2𝑀𝑖 + Ω𝐶𝑖
sinΩ𝑡

(35)

𝑤𝑖(𝑦, 𝑡) = 𝜓𝑖(𝑦) 𝑞𝑖𝑤(𝑡)

= 𝜓𝑖(𝑦)
𝐹𝑖

𝐾𝑖 − Ω2𝑀𝑖 + Ω𝐶𝑖
cosΩ𝑡

(36)

4. Results and discussion
The results for the proposed model are found using the
basic parameters given in Table 1.
4.1. Analytical results

4.1.1. Modal Mass, Damping, and Stiffness
Using the above parameters in equation 23, 24, 25, and
26 we get modal mass, damping and stiffness for the first
three modes of vibrations as shown in Table 2.
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Table 1: Basic System Parameters

System Parameters Value
Shaft length (𝐿𝑠) 0.6 m
Shaft Diameter (𝐷𝑠) 0.014 m
Disc Outer Diameter (𝐷𝑜) 0.2 m
Density of shaft (𝜌𝑑) 7680 kg/m3

Mass of Disc (𝑀𝐷) 1.5 kg
Density of shaft (𝜌𝑠) 7680 kg/m3

Modulus of Elasticity (𝐸) 207 × 109 N/m2

Unbalanced mass (𝑚𝑢) 0.01 kg
Eccentricity (𝑒) 0.01 m
Rotational velocity (Ω) 157.08 rad/s

Table 2: Modal Parameters of the System
Mode Mass (kg) Damping

(N.s/m)
Stiffness
(N/m)

Force (N)

First 0.104766545 0.280256323 874.180065 0.16975799
Second 8.41847E-05 -0.00283514 17.48043436 -0.013826187
Third 0.00000125400231202.82716E-05 0.614539851 0.00106145

4.1.2. Displacement function at different positions
of Shaft in horizontal plane

The transverse displacement 𝑢(𝑦, 𝑡) at different positions
is given by equation 35. Using equations 15, 16, 17, 26,
27, 28, and 29 in equation 35, we get the displacements
as shown in Table 3.
The graphical representation of transverse displacement
in the Horizontal plane at various shaft positions is
shown in Figure 5.

Figure 5: Transverse displacement in horizontal plane
at different position of shaft at the rotating speed of 1500
RPM

4.1.3. Displacement function at different positions
of Shaft in vertical plane

The transverse displacement 𝑤(𝑦, 𝑡) at different posi-
tions is given by equation 36. Using equations 15, 16,

17, 26, 27, 28, and 29 in equation 36, we get the displace-
ment shown in Table 4. The graphical representation of
transverse displacement in the Vertical plane at various
shaft positions is shown in Figure 6.

Figure 6: Transverse displacement in the vertical plane
at different positions of the shaft at the rotating speed
of 1500 RPM

4.2. Harmonic analysis: Validation Using
ANSYS

4.2.1. Geometric model with point mass
To validate the result obtained from the Analytical
results, a model was created on ANSYS Workbench
2024R1 to evaluate the result. The disc was assumed to
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Table 3: Transverse displacement 𝑢(𝑦, 𝑡) at various shaft positions

Mode At one-third of the shaft
(𝑦 = 𝐿∕3)

At two-thirds of the shaft
(𝑦 = 2𝐿∕3)

At the end of the shaft
(𝑦 = 𝐿)

First −7.01𝜇m sin 157.08𝑡 −22.62𝜇m sin 157.08𝑡 −39.597𝜇m sin 157.08𝑡
Second 5.18𝜇m sin 157.08𝑡 2.90𝜇m sin 157.08𝑡 −7.5036𝜇m sin 157.08𝑡
Third 0.77𝜇m sin 157.08𝑡 0.815𝜇m sin 157.08𝑡 5.57𝜇m sin 157.08𝑡
Superposition
of all modes

−1.05𝜇m sin 157.08𝑡 −18.46𝜇m sin 157.08𝑡 −41.5𝜇m sin 157.08𝑡

Table 4: Transverse displacement 𝑤(𝑦, 𝑡) at various shaft positions
Mode At one-third of the shaft

(𝑦 = 𝐿∕3)
At two-thirds of the shaft
(𝑦 = 2𝐿∕3)

At the end of the shaft
(𝑦 = 𝐿)

First −7.01𝜇m cos 157.08𝑡 −22.62𝜇m cos 157.08𝑡 −39.597𝜇m cos 157.08𝑡
Second 5.18𝜇m cos 157.08𝑡 2.90𝜇m cos 157.08𝑡 −7.5036𝜇m cos 157.08𝑡
Third 0.77𝜇m cos 157.08𝑡 0.815𝜇m cos 157.08𝑡 5.57𝜇m cos 157.08𝑡
Superposition
of all modes

−1.05𝜇m cos 157.08𝑡 −18.46𝜇m cos 157.08𝑡 −41.5𝜇m cos 157.08𝑡

be a point mass with rigid characteristics placed at the
one-third and two-thirds end of the shaft, as shown in
Figure 7.

Figure 7: Geometric modelling of shaft with disc as-
sumed as a point mass

4.2.2. Meshing of model
The model was meshed using body sizing with an ele-
ment size of 0.0025m, as shown in Figure 8.
4.2.3. Boundary condition and rotating

force
For performing harmonic response analysis of a two-
disc cantilever shaft system in ANSYS, the system con-
sists of a shaft with two point masses, labeled as A and
B. A represents the first disc positioned at one-third of
the length of the shaft while B represents the second
disc positioned at two-thirds end of the shaft. A rotating
force (D) with a magnitude of 1.0×10-4kg m is applied
at point A, introducing an unbalanced excitation to the
system. The current analysis is set at 0 Hz, indicating

Figure 8: Meshing of the model

that no dynamic excitation is being applied yet, which
suggests that the system is in a static or initial setup
phase before running a frequency sweep. The setup is
shown in Figure 9.

Figure 9: Boundary condition and rotating force

4.2.4. Displacement results
Applying the boundary conditions, the frequency re-
sponse was found at the different positions of the shaft.
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The amplitude at the end of the shaft (y=L) on both
the horizontal and vertical planes was found to be 43.6
micrometers at 25 Hz, as shown in Figures 10 and 11,
respectively.

Figure 10: Frequency response at y=L in horizontal
plane

Figure 11: Frequency response at y=L in horizontal
plane

Also, the amplitude was calculated at two-thirds of end
of shaft (y=2L/3), and the amplitude was found to be
20.3 micrometers on both the horizontal and vertical
planes as shown in figure as shown in Figure 12 and 13
respectively.

Figure 12: Frequency response at y=2L/3 in horizontal
plane

4.3. Comparison of analytical and
ANSYS

The amplitude found from Analytical and ANSYS are
tabulated in Table 5.
From the above table, it is observed that the analytical

results closely approximate the ANSYS result.

Figure 13: Frequency response at y=2L/3 in horizontal
plane

5. Conclusion and reccomendations
This study analyzed the forced vibration response of a
multi-disc shaft system with rotating unbalance, com-
bining analytical modeling and finite element simula-
tions using ANSYS. The shaft was modeled as a flexible
Euler-Bernoulli beam incorporating gyroscopic effects,
while the discs were treated as rigid bodies with unbal-
ance. The equations of motion were derived using the
extended Hamilton’s principle and solved to obtain the
system’s dynamic response.
The result indicates that taking higher modes improves
the accuracy of the result. For a shaft rotating at the
speed of 1500 RPM, the transverse displacement at the
free end of the shaft was found to be 41.5 micrometers
on both the horizontal and vertical planes. The ampli-
tude of vibration at the two-third of the length of the
shaft is 18.46 micrometers analytically. The ANSYS
result closely matches the analytical result.
The incorporation of material damping and higher
modes of vibration while maintaining computational
feasibility can result in better accuracy of the result. Fur-
ther research may involve the study of nonlinear effects.
In addition, damping devices such as magnetic, piezo-
electric, or viscoelastic dampers may be optimized to en-
hance vibration control of high-speed rotation systems.
Finally, the integration of machine learning (ML) and
real-time condition monitoring for vibration analysis
can advance more efficient fault detection and predic-
tive maintenance strategies.
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Table 5: Comparison of Analytical and ANSYS results

S.N Position on the shaft Amplitude on Horizontal Plane Amplitude on Vertical Plane
Analytical ANSYS Error

(%)
Analytical ANSYS Error

(%)
1 At position 𝑦 = 𝐿

(end of shaft)
41.5 𝜇m 43.6 𝜇m 5.06% 41.5 𝜇m 43.6 𝜇m 5.06%

2 At position 𝑦 = 2𝐿∕3
of the shaft

18.46 𝜇m 20.3 𝜇m 9.967% 18.46 𝜇m 20.3 𝜇m 9.967%
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