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Automatic Modulation Classification (AMC) is a core technology for future wireless
communication systems, enabling the identification of modulation schemes without prior
knowledge. This capability is essential for applications in cognitive radio, spectrum
monitoring, and intelligent communication networks. We propose an AMC system based
on a hybrid Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM)
architecture, integrated with a Software Defined Radio (SDR) platform. The proposed
architecture leverages CNNs for spatial feature extraction and LSTMs for capturing temporal
dependencies, enabling efficient handling of complex, time-varying communication signals.
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The system’s practical ability was demonstrated by identifying over-the-air (OTA) signals
from a custom-built FM transmitter alongside other modulation schemes. The system was
trained on a hybrid dataset combining the RadioML2018 dataset with a custom-generated
dataset, featuring samples at Signal-to-Noise Ratios (SNRs) from 0 to 30 dB. System
performance was evaluated using accuracy, precision, recall, F1 score, and the Area Under the
Receiver Operating Characteristic Curve (AUC-ROC). The optimized model achieved 93.48%
accuracy, 93.53% precision, 93.48% recall, and an F1 score of 93.45%. The AUC-ROC
analysis confirmed the model’s discriminative power, even in noisy conditions. This paper’s
experimental results validate the effectiveness of the hybrid CNN-LSTM architecture for
AMC, suggesting its potential application in adaptive spectrum management and advanced
cognitive radio systems.
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1. Introduction

Automatic Modulation Classification (AMC) is a vital
technology in modern wireless communication systems,
enabling modulation identification without prior signal
knowledge. This capability facilitates efficient spectrum
use, interference detection, and enhanced security in ap-
plications like cognitive radio networks and defense
systems. The rapid expansion of connected devices, par-
ticularly within the Internet of Things (IoT) and smart
cities, has significantly increased radio frequency spec-
trum congestion. Traditional AMC methods, such as
likelihood-based approaches, are often incapable of han-
dling real-world signal variations like noise, fading, and
Doppler shifts. To address these limitations, recent deep
learning research has produced hybrid models combin-
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ing Convolutional Neural Networks (CNNs) and Long
Short-Term Memory (LSTM) networks. These mod-
els can extract both spatial and temporal signal features,
resulting in improved classification accuracy and robust-
ness under challenging channel conditions.

2. Related Work

Early Automatic Modulation Classification (AMC) tech-
niques mainly used maximum likelihood (ML) and
feature-based (FB) methods. While ML methods are
optimal theoretically, their high computational com-
plexity limits real-time use [1, 2]. FB methods rely
on handcrafted features, requiring expert knowledge
and often struggling in complex environments [1, 3].
Cyclostationary-based and approximate entropy fea-
tures improved performance in low SNR conditions
by exploiting signal periodicities [4, 2].

The introduction of deep learning (DL), especially Con-
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volutional Neural Networks (CNNs), marked a major
shift by automatically extracting features and signifi-
cantly improving classification accuracy and speed [3].
Hybrid models combining CNNs with Long Short-Term
Memory (LSTM) networks effectively capture both spa-
tial and temporal dependencies, enhancing performance
in dynamic environments [5, 6]. Complex-valued net-
works further improved handling of inherently complex
radio signals [7].

Recent work focuses on addressing intra-class diversity
and noise robustness using multi-scale networks and de-
noising autoencoders [8, 9, 10]. Advanced architectures
combining CNNs, LSTMs, and transformers capture
both spatial and sequential signal features for better
adaptability to channel impairments [11]. Manifold
learning and multimodal fusion approaches, integrating
time, frequency, and phase information, have demon-
strated superior classification accuracy in challenging
scenarios [12, 13, 14, 15].

Furthermore, unsupervised and semi-supervised learn-
ing techniques, including generative adversarial net-
works (GANS), have been explored to mitigate the need
for large labeled datasets. Transfer learning and do-
main adaptation methods improve generalization across
varying channel conditions [15]. Effective signal rep-
resentation and preprocessing methods, such as time-
frequency analysis, cooperative contrast learning, and
multi-feature fusion, play critical roles in enhancing
classification performance [16, 17, 18, 19].

Finally, real-time AMC implementations leveraging
FPGA, RFSoC hardware, and SDR integrated with
DL architectures have enabled low-latency, high-
performance modulation classification systems suited
for practical deployment [20, 21].

Despite these advancements, existing literature predom-
inantly relies on synthetic datasets and simulation-based
analysis, often overlooking the complex channel impair-
ments and signal distortions inherent in real-world envi-
ronments. Furthermore, architectures utilizing CNNs
or LSTMs separately often struggle to capture both spa-
tial and temporal dependencies simultaneously, limiting
robust classification under varying SNR conditions. We
address these gaps by proposing a novel hybrid CNN-
LSTM architecture that efficiently integrates both fea-
ture types to outperform standalone baselines. Uniquely,
we move beyond simulation by implementing a cus-
tom SDR testbed to evaluate the model’s performance
on over-the-air (OTA) signals, ensuring practical, real-
world applicability.

3. Methodology

As depicted in Figures 2 and 4, the AMC system con-
sists of six major components: signal generation and
OTA transmission using GNU Radio and SDR hardware,
1/Q signal reception using RTL-SDR, transformation
of the signal into amplitude, phase, and I/Q domains,
CNN-based spatial feature extraction, temporal model-
ing through LSTM, and final classification into modula-
tion categories.

3.1. Signal Acquisition Using SDR

The SDR-based signal acquisition begins with the gen-
eration of modulated signals in GNU Radio. Multi-
ple modulation schemes such as BPSK, QPSK, AM,
FM, 8PSK, 16QAM, and GMSK are synthesized in real
time. These signals are either looped back virtually or
transmitted over-the-air via an SDR transmitter. The
receiving end utilizes RTL-SDR hardware to capture
the signals. This device comprises an RF front-end for
downconversion, an ADC for digitization, and a USB
interface that streams raw I/Q samples to the host PC
for downstream processing.

3.2. Dataset Generation

The AMC model is trained on a hybrid dataset com-
prising both publicly available and custom-generated
signals. The publicly available portion comes from
the RadioML2018.01a dataset, which contains labeled
1/Q samples across multiple modulation schemes un-
der varying channel conditions. To complement this,
we constructed an additional dataset using GNU Ra-
dio, where signals were synthetically generated for a
similar set of modulation types. This custom dataset
includes both clean signals and noisy variants injected
with Additive White Gaussian Noise (AWGN).

Signal modulation was carried out using GNU Radio
flowgraphs, supporting schemes such as m-PSK, AM,
FM, m-QAM, GMSK, and GFSK. The modulated sig-
nals were either virtually looped back or transmitted
over-the-air using Software Defined Radios (SDRs). Re-
ception was handled by an RTL-SDR device, which per-
forms RF downconversion and digitization, streaming
the raw I/Q samples to a host machine.

The complete dataset generation and validation process
is illustrated in Figure 1, which shows both the signal
synthesis flow and the validation pipeline used to ensure
signal integrity and class balance across modulation

types.

3.3. Preprocessing and Input

Representation
After acquisition, each I/Q sample stream is processed
into a format suitable for deep learning. Every signal
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Figure 1: Dataset generation and validation pipeline
implemented in GNU Radio for creating both clean
and AWGN-corrupted signal samples across multiple
modulation schemes

instance, composed of 1024 I/Q samples, is segmented
into eight overlapping windows of 224 samples. The
50% overlap ensures better temporal continuity and in-
creases the effective training sample size.

For each segmented window, three signal representa-
tions are derived. First, the amplitude is computed as:

Alnl = VI[n]* + Qln}? ey

which captures the signal envelope. Second, the phase
is extracted as:

¢[n] = arctan (%) 2)

which captures frequency variations. Third, the raw
1/Q values are retained to preserve the baseband vector
information.

Each of these one-dimensional sequences is reshaped
into a 224 X 224 two-dimensional matrix using repeti-
tion and tiling operations. These matrices of amplitude,
phase, and I/Q are then stacked along the third axis to
form a unified 224 x 224 X 3 tensor. This tensor re-
sembles an RGB image where each channel encodes a
distinct physical property of the signal. This 3-channel
representation is used as input to the CNN backbone of
the model. The complete preprocessing pipeline from
I/Q samples to feature tensor construction is visualized
in Figure 2, while an example of the final tensor is shown
in Figure 3.

3.4. Modified AlexNet

The classification model integrates a spatial feature ex-
tractor based on a modified AlexNet and a temporal
model based on an LSTM network. This hybrid struc-
ture enables joint exploitation of spatial patterns across

Signal Acquisition
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Figure 2: Input preprocessing pipeline showing trans-
formation of I/Q samples into amplitude, phase, and 1I/Q
representations for CNN-LSTM model input
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o pE—

Figure 3: Preprocessed RGB image of Amplitude, I/Q
and Phase

each window and sequential dependencies between win-
dows. The convolutional component of the network
is based on a modified version of the AlexNet archi-
tecture, adapted to process 224 X 224 X 3 tensors rep-
resenting amplitude, phase, and I/Q information. To
reduce parameter overhead and promote generalization,
the original fully connected layers from AlexNet are
removed. The CNN comprises five convolutional lay-
ers with ReLU activations. The first and second layers
are followed by Local Response Normalization (LRN)
and max-pooling to stabilize learning and reduce spatial
dimensions.

Specifically, Convl uses an 11 X 11 kernel with stride
4 and outputs 96 feature maps. Conv2 applies a 5 X 5
kernel with 256 filters. Conv3 to Conv5 employ 3 X 3
kernels with 384, 384, and 256 filters, respectively. The
final output of the convolutional stack is a feature map
of size 13 X 13 X 256.

To compress this output into a compact representation,
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global average pooling (GAP) is applied, producing a
256-dimensional feature vector.

3.5. Temporal Modeling via LSTM

The LSTM module processes sequences of 256-
dimensional CNN feature vectors extracted from eight
overlapping windows of each I/Q signal. The input
to the LSTM has shape (B, 8,256), where B denotes
the batch size. The model uses a single unidirectional
LSTM layer with a hidden size of 256 and includes a
dropout of 0.6 to prevent overfitting.

Modified AlexNet Architecture
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Figure 4: CNN-LSTM hybrid architecture: AlexNet-
based feature extractor, LSTM for temporal modeling,
and classification head

The LSTM captures temporal dynamics across succes-
sive windows by maintaining a memory cell and using
gates to regulate information flow. The internal LSTM
operations for each timestep ¢ are governed by:

Ji=oWylh_y.x]+by) 3
i, = c(Wilh,_y,x,]1+b;) “4)
¢ = tanh(W_[h,_;,x,]1 + b,) 5)
G=f0c¢_1+i,0¢ 6)
0, = oc(W,[h,_;,x,]+b,) @)
h; = 0, © tanh(c,) (8)

Here, f;,i,,0; represent the forget, input, and output
gates; ¢, is the cell state, and 4, is the hidden state at
timestep ¢.

The final LSTM output is flattened into a 2048-
dimensional vector to be fed into the classification net-
work.

3.6. Fully Connected Classification

The flattened output from the LSTM is passed through a
fully connected classifier to predict the modulation type.
The classification head consists of two dense layers with
512 and 256 neurons, respectively. Both layers use
leaky ReLLU activations to maintain gradient flow in the
presence of negative activations. The final output layer
is a softmax layer with 9 units, corresponding to the
number of modulation classes in the dataset.

The training process optimizes a categorical cross-
entropy loss, defined as:

N C

Lop=- 2 Z Yij log(f’i,j) )

i=1 j=1

where N is the number of samples, C is the number of
classes, Vi is the true label, and i j is the predicted
probability.

We ran several trainings to tune hyperparameters
(dropout rate, number of neurons in the first hidden
layer, learning rate) in a systematic way in order to get
the best generalization on the validation set. The Adam
optimizer was used. Early stopping on validation loss
was performed to avoid unnecessary training and to
lessen the danger of overfitting. The data was split into
80% for training, 10% for validation, and 10% for test-
ing. The final model evaluation was done by metrics like
accuracy, precision, recall, F1-score, and AUC-ROC
together with confusion matrix visualization to measure
the performance of class-wise prediction.

Table 1: Hyperparameter settings tested during model
optimization

Trial Drop Factor L1 LR (x107%)
1-3 0.4 1024 1.0,0.5,1.5
4-6 0.4 512 1.0,0.5,1.5
7-9 0.5 1024 1.0,0.5,1.5

10-12 0.5 512 1.0,0.5,1.5

13-15 0.6 1024 1.0,0.5,1.5

16-18 0.6 512 1.0,0.5,1.5

4. Results and Discussion

We conducted various trials to evaluate the performance
of the proposed system, focusing on different batch
sizes and hyperparameter tuning as described in Ta-
ble 1.

4.1. Model Training and Validation
Performance

First, we trained the model with batch sizes of 16 and

32 and then performed hyperparameter tuning to further

improve the model performance.
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Figure 5: Training and validation curves over 10 epochs
for the optimized CNN-LSTM model
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Figure 6: Training and validation curves over 10 epochs
for attention based model

Based on the hyperparameter tuning results, we selected
the best model with a validation loss of 0.251 and a
training loss of 0.251 trained for 5 iterations over 7352
seconds. The best parameters were a drop factor of 0.6,
number of neurons in first hidden layer of 512, and a
learning rate of 0.00015, which we used for the final
model training. We trained the model with a batch size
of 32, achieving a final accuracy of 93.48% on the test
set. The training and validation curves for the optimized
model are shown in Figure 5.

To further optimize the model, we conducted a com-
parative experiment by replacing the LSTM’s hidden
state single flattening mechanism with a single-headed
temporal attention layer. This alternative approach was
designed to identify and focus on the most salient time
steps within the 8-sequence windows. Instead of flatten-
ing the 8 hidden state outputs (an 8 X 256 matrix) into
a 2048-dimensional vector, the attention model com-
puted a weighted average of these outputs. This process
compressed the sequence into a single 256-dimensional
vector before classification. This modification resulted
in degraded performance, with accuracy dropping to
93.34% and the F1-score decreasing to 93.22%, as illus-
trated in Figure 6.

4.2. Confusion Matrix Analysis

The confusion matrices presented in Figure 7 provide a
comparative analysis of the model’s classification capa-
bilities. Figure 7(a) illustrates the proposed optimized
model, while Figure 7(b) represents the comparative
attention-based model.

Across the proposed model in Figure 7(a), there is strong

(a) Tuned Model (b) Attention Model

True Label

o | 2| s | s R

i% 4 b %
Predicted Label Predicted Label

Figure 7: Confusion matrices comparing the classifica-
tion performance of the Proposed CNN-LSTM (a) and
the Attention model (b) across nine modulation schemes

diagonal dominance, indicating high overall accuracy.
The primary misclassifications remain between 16QAM
and 64QAM (Classes 3 and 4), which is expected due to
the inherent similarity of their constellation structures
under noisy conditions.

In contrast, the attention-based model in Figure 7(b)
reveals a significant performance degradation, partic-
ularly in distinguishing analog modulation schemes.
Substantial confusion is evident between AM-DSB-SC
and AM-SSB-SC (Classes 5 and 6), indicated by the
high off-diagonal values in those regions. This suggests
that the attention mechanism struggles to preserve the
fine-grained spectral features required to separate these
closely related analog signals, a limitation that the pro-
posed optimized model successfully overcomes.

We evaluated the model’s accuracy, precision, recall,
and F1 score across different batch sizes and hyper-
parameter configurations. We summarize the results
in Table 2, showing that the model maintains strong
classification performance across configurations, with
notable improvement after tuning. The optimized model
achieved an accuracy of 93.48%, precision of 93.53%,
recall of 93.48%, and F1 score of 93.45%, significantly
outperforming both the baseline and the single-headed
attention configurations.

4.3. Receiver Operating Characteristic (ROC)
Analysis

The ROC curves in Figure 8 demonstrate the model’s
outstanding ability in identifying modulation classes.
As depicted in Figure 8(a), the Tuned Model attains Area
Under the Curve (AUC) almost 1.00 for most classes,
thus the classification is reliable. That means that BPSK,
QPSK, 8PSK, FM, and GMSK can be perfectly sepa-
rated. Although 16QAM and 64QAM have slightly
lowered AUC values (0.9848 and 0.9855) because of
their tightly packed constellation structures, the model
is still highly discriminative.

Conversely, the Attention Model (Figure 8(b)) shows a
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Table 2: Performance Metrics Comparison Across Different Model Configurations and Architectures

Configuration Accuracy Precision Recall F1 Score
(%) (%) (%) (%)
Batch Size 16 91.46 91.46 91.46 91.33
Batch Size 32 91.34 91.47 91.34 91.30
Batch Size 32 (Tuned) 93.48 93.53 93.48 93.45
Single Headed Attention 93.34 93.56 93.34 93.22

(a) Tuned Model ROC Curves (b) Attention Model ROC Curves

1 ) — —

5. 3 08 T 0 02
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Figure 8: Comparative ROC curves showing the su-
perior discriminative capability of the Proposed CNN-
LSTM model (a) over the Attention model (b)

clear performance decline. Specifically, the ROC curves
for the two analog modulations (AM-DSB-SC and AM-
SSB-SC) deviate significantly from the top-left corner,
with their AUC values falling to 0.97. This demon-
strates that the proposed flattening design preserves
essential temporal features for analog signals, which
are otherwise lost during the attention-based compres-
sion.

4.4. Precision-Recall and F1 Stability

The PR curves depicted in Figure 9 also mirrors these
findings. For the CNN-LSTM Model (Figure 9(a)), the
simplest modulation types hold great precision through-
out the recall range. The complex classes 16QAM and
64QAM may experience a decrease in precision at high
recall levels, however, the curves are still there and sta-
ble. The Attention Model (Figure 9(b)), on the other
hand, experiences an extreme drop in precision for AM-
SSB-SC and AM-DSB-SC that confirms the attention
mechanism’s difficulty in separating these signals from
noise.

Comparing the two models, the F1 score analysis in
Figure 10 reveals that the proposed model is more ro-
bust than the Attention-based one. The CNN-LSTM
model that has been proposed keeps its accuracy at a
high level and stable in all confidence thresholds (the
curves with the flat top are the indication), whereas the
Attention Model is quite unstable. The example of the
same is the AM-SSB-SC class, performance of which
drops drastically on increasing confidence thresholds,
thus confirming that the proposed architecture is more

Figure 9: Precision-Recall curves illustrating the stabil-
ity of the Proposed CNN-LSTM model (a) versus the
degradation observed in the Attention model (b)

(a) Tuned Model F1 Scores (b) Attention Model F1 Scores

g 2 08 0 g 3

0T 3
Confidence Threshold

Figure 10: F1 score analysis highlighting the robustness
of the Proposed CNN-LSTM model (a) compared to the
instability of the Attention model (b)

adaptable to varying modulation schemes and noise con-
ditions.

To further ascertain real-world feasibility, we performed
rigorous over-the-air (OTA) testing using a custom-built
FM transmitter (Figure 11) and commercial broadcast
signals. While most benchmark studies rely heavily
on simulation, our approach integrates hardware imple-
mentation to confirm performance in live RF environ-
ments. We address this by training and testing on a
uniform SNR distribution from 0 to 20 dB, covering
both low and high noise scenarios. Despite this chal-
lenging range, our model achieves 93.48% test accuracy,
demonstrating robust performance across all SNR levels.
This reflects the effectiveness of our training strategy,
balanced dataset, and optimized CNN-LSTM configura-
tion, which enable high performance even with heavily
distorted signals. Compared to models reviewed in the
literature, our method shows clear improvement. By en-
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Figure 11: Frequency Modulation (FM) transmitter cir-
cuit schematic used for testing

suring general performance across the entire SNR range,
rather than only at moderate or high SNRs, the proposed
system is more reliable and better suited for real-world
environments with variable noise levels.

4.5. Limitations and Future Works

While the results are promising, the limitations of the
current approach must be acknowledged. The persistent
confusion between high-order QAM schemes (16QAM
and 64QAM) implies that the existing feature extraction
may not fully capture the subtle differences in dense con-
stellation patterns under noisy conditions. Furthermore,
the model’s performance degrades when transitioning
from synthetic data to physical RF environments. On
recorded real-world I/Q data, accuracy remained high
at approximately 86%. However, in a live, real-time en-
vironment, accuracy dropped to approximately 80% due
to operational complexities. This decay indicates that
real-world factors, such as multipath fading, Doppler ef-
fects, and carrier frequency offsets, significantly impact
classification performance.

The insufficient performance of the simplified attention
mechanism, which compresses the 8-step sequence into
a single vector, likely discards critical discriminative
information. In contrast, our proposed model’s method
of flattening all hidden states preserves the complete,
uncompressed temporal feature map. This allows the
subsequent fully connected layers to acquire the com-
plex patterns necessary for differentiating spectrally sim-
ilar modulation schemes. This experiment validates our
architectural decision, demonstrating that using the full
temporal sequence is more beneficial for this task than
a summarized attention-based context vector.

5. Conclusion

This research demonstrates the effectiveness of a hy-
brid CNN-LSTM architecture for AMC in realistic RF
environments. The proposed system integrates SDR
hardware with deep learning to achieve 93.48% classifi-
cation accuracy across nine modulation schemes, under
challenging SNR conditions from O to 20 dB.

Our experimental findings highlight critical aspects of
feature representation. In summary, the CNN com-
ponent excels at capturing spatial patterns from 1/Q
data, while the LSTM layers model temporal depen-
dencies. Most importantly, our comparative analysis
demonstrated that preserving the full sequence of LSTM
hidden states (via flattening) outperforms a temporal
attention mechanism for this application. Although com-
putationally faster, the attention-based method created
an information bottleneck that severely degraded classi-
fication performance for complex analog modulations
(AM-DSB-SC/SSB-SC). The ROC analysis confirmed
near-perfect discrimination for most classes, with AUC
values approaching 1.00.

Our approach achieves 93.48% accuracy across this
stringent 0—20 dB range, surpassing the approximately
90% accuracy reported in similar studies. Notably, while
many models report greater than 95% accuracy at high
SNR (greater than 14 dB), their performance degrades
significantly below 10 dB. Our method maintains con-
sistent performance across the entire range, indicating
superior generalization.

The practical implications extend to cognitive radio, dy-
namic spectrum access, and military communications,
where reliable modulation identification is critical. The
demonstrated robustness across varying noise condi-
tions, combined with SDR integration, positions this
approach as a viable solution for deployment in real-
world RF environments where signal quality is not guar-
anteed. The system’s ability to maintain high accuracy
under challenging conditions makes it particularly valu-
able for signal intelligence in contested electromagnetic
environments.

Dinanath Padhya et al. /JIEE 2025, Vol. 8, Issue 1.

Page 38



CNN-LSTM hybrid Architecture for over-the-air Automatic Modulation Classification using SDR

References

[1]

[2]

[3]

[4]

[5]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

Grimaldi D, Rapuano S, Vito L D. An automatic digi-
tal modulation classifier for measurement on telecommuni-
cation networks[J/OL]. IEEE Transactions on Instrumenta-
tion and Measurement, 2007, 56: 1711-1720. DOI: 10.1109/
TIM.2007.895675.

Ramkumar B. Automatic modulation classification for cog-
nitive radios using cyclic feature detection[J/OL]. IEEE
Circuits and Systems Magazine, 2009, 9. DOI: 10.1109/
MCAS.2008.931739.

Meng F, Chen P, Wu L, et al. Automatic modulation clas-
sification: A deep learning enabled approach[J/OL]. IEEE
Transactions on Vehicular Technology, 2018, 67: 10760-10772.
DOLI: 10.1109/TVT.2018.2868698.

Dobre O A. Signal identification for emerging intelligent radios:
classical problems and new challenges[J/OL]. IEEE Instrumen-
tation & Measurement Magazine, 2015, 18(2): 11-18. DOI:
10.1109/MIM.2015.7066677.

Zhou Q, Jing X, He Y, et al. Lstm-based automatic modulation
classification[C/OL]// 2020 IEEE International Symposium on
Broadband Multimedia Systems and Broadcasting (BMSB).
2020: 1-4. DOI: 10.1109/BMSB49480.2020.9379677.

Zhang Z, Luo H, Wang C, et al. Automatic modulation classifi-
cation using cnn-Istm based dual-stream structure[J/OL]. IEEE
Transactions on Vehicular Technology, 2020, 69(11): 13521-
13531. DOI: 10.1109/TVT.2020.3030018.

Tu Y, Lin Y, Hou C, et al. Complex-valued networks for
automatic modulation classification[J/OL]. IEEE Transac-
tions on Vehicular Technology, 2020, 69: 10085-10089. DOI:
10.1109/TVT.2020.3005707.

Zhang H, Zhou F, hui Wu Q, et al. A novel automatic modula-
tion classification scheme based on multi-scale networks[J/OL].
IEEE Transactions on Cognitive Communications and Network-
ing, 2021, 8: 97-110. DOI: 10.1109/tccn.2021.3091730.

Wu Z, Zhou S, Yin Z, et al. Robust automatic modulation clas-
sification under varying noise conditions[J/OL]. IEEE Access,
2017, 5: 19733-19741. DOI: 10.1109/ACCESS.2017.2746140.
An T, Lee B. Robust automatic modulation classification in low
signal to noise ratio[J/OL]. IEEE Access, 2023, 11: 7860-7872.
DOI: 10.1109/ACCESS.2023.3238995.

Huynh-The T, Pham V Q, Nguyen T V, et al. Automatic
modulation classification: A deep architecture survey[J/OL].
IEEE Access, 2021, 9: 142950-142971. DOI: 10.1109/
ACCESS.2021.3120419.

Li S, Wang X, Wang J. Manifold learning-based automatic
signal identification in cognitive radio networks[J/OL]. IET
Commun., 2012, 6: 955-963. DOI: 10.1049/iet-com.2010.0590.
Qi P, Zhou X, Zheng S, et al. Automatic modulation clas-
sification based on deep residual networks with multimodal
information[J/OL]. IEEE Transactions on Cognitive Commu-
nications and Networking, 2021, 7: 21-33. DOI: 10.1109/
TCCN.2020.3023145.

Zhang Z, Wang C, Gan C, et al. Automatic modulation classifi-
cation using convolutional neural network with features fusion
of spwvd and bjd[J/OL]. IEEE Transactions on Signal and In-
formation Processing over Networks, 2019, 5: 469-478. DOI:
10.1109/TSIPN.2019.2900201.

Deng W, Xu Q, Li S, et al. Cross-domain automatic modu-
lation classification using multimodal information and trans-
fer learning[J/OL]. Remote. Sens., 2023, 15: 3886. DOI:
10.3390/rs15153886.

Liu X, Li C J, Jin C, et al. Wireless signal representa-
tion techniques for automatic modulation classification[J/OL].
IEEE Access, 2022, 10: 84166-84187. DOI: 10.1109/
access.2022.3197224.

Bai J, Wang X, Xiao Z, et al. Achieving efficient feature repre-
sentation for modulation signal: A cooperative contrast learning

[18]

[19]

[20]

[21]

approach[J/OL]. IEEE Internet of Things Journal, 2024, 11:
16196-16211. DOI: 10.1109/J10T.2024.3350927.

Huang S, Jiang Y, Gao Y, et al. Automatic modulation clas-
sification using contrastive fully convolutional network[J/OL].
IEEE Wireless Communications Letters, 2019, 8: 1044-1047.
DOI: 10.1109/LWC.2019.2904956.

Zheng Q, Zhao P, Wang H, et al. Fine-grained modulation
classification using multi-scale radio transformer with dual-
channel representation[J/OL]. IEEE Communications Letters,
2022, 26: 1298-1302. DOI: 10.1109/Ilcomm.2022.3145647.
Tridgell S, Boland D, Leong P H, et al. Real-time automatic
modulation classification[ C/OL]// 2019 International Confer-
ence on Field-Programmable Technology (ICFPT). 2019: 299-
302. DOI: 10.1109/ICFPT47387.2019.00052.

Lin C, Yan W, Zhang L, et al. A real-time modulation recog-
nition system based on software-defined radio and multi-skip
residual neural network[J/OL]. IEEE Access, 2020, 8: 221235-
221245. DOI: 10.1109/ACCESS.2020.3043588.

Dinanath Padhya et al. /JIEE 2025, Vol. 8, Issue 1.

Page 39


https://doi.org/10.1109/TIM.2007.895675
https://doi.org/10.1109/TIM.2007.895675
https://doi.org/10.1109/MCAS.2008.931739
https://doi.org/10.1109/MCAS.2008.931739
https://doi.org/10.1109/TVT.2018.2868698
https://doi.org/10.1109/MIM.2015.7066677
https://doi.org/10.1109/BMSB49480.2020.9379677
https://doi.org/10.1109/TVT.2020.3030018
https://doi.org/10.1109/TVT.2020.3005707
https://doi.org/10.1109/tccn.2021.3091730
https://doi.org/10.1109/ACCESS.2017.2746140
https://doi.org/10.1109/ACCESS.2023.3238995
https://doi.org/10.1109/ACCESS.2021.3120419
https://doi.org/10.1109/ACCESS.2021.3120419
https://doi.org/10.1049/iet-com.2010.0590
https://doi.org/10.1109/TCCN.2020.3023145
https://doi.org/10.1109/TCCN.2020.3023145
https://doi.org/10.1109/TSIPN.2019.2900201
https://doi.org/10.3390/rs15153886
https://doi.org/10.1109/access.2022.3197224
https://doi.org/10.1109/access.2022.3197224
https://doi.org/10.1109/JIOT.2024.3350927
https://doi.org/10.1109/LWC.2019.2904956
https://doi.org/10.1109/lcomm.2022.3145647
https://doi.org/10.1109/ICFPT47387.2019.00052
https://doi.org/10.1109/ACCESS.2020.3043588

