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Abstract
The robotics sector struggles to integrate vision-based navigation on a bipedal humanoid
robot capable of performing human-like tasks. Although the use of ultrasonic sensors and
infrared sensors is a traditional method for object detection, it has significant drawbacks such
as low range, high cost and sensitivity to the environment. “Enhancing Humanoid Robot
Functionality Through Vision-Based Navigation with Fall Recovery and Object Manipulation”
proposes to give vision to the robot, making it capable of transporting objects from one
location to another. The two ESP32-CAMs are used as a stereo camera for image capturing,
employing the use of YOLOv11 for object detection, and the principle of the stereo camera
for depth calculation. With the use of one of the most robust and accurate object detection
algorithms available, the project aims to enhance object transportation within the visual
range of the robot. The final robot can navigate intelligently and grab objects using image
processing. The developed humanoid robot encompasses the feature of automatic fall recovery
in simulation and natural human movement patterns through kinematical calculations,
showcasing potential applications in hazardous environments, industrial automation and
interplanetary exploration.
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1. Introduction
The concept of a humanoid robot has been around for
quite a long time and has long captured the imagination
of researchers and the public. Humanoid robots are de-
signed to replicate human form and functionalities, with
human-like structures that incorporate two arms, two
legs, a torso, and a head. With evolving automation sys-
tems, the relevance of the integration of human-like ma-
chines in the industrial and service sectors has increased,
along with expectations of improved task efficiency, ac-
curacy, and autonomy [1]. The popularity of humanoid
robots, increased by Sci-Fi movies, has further fueled
interest and innovation in this field.
Practical developments of humanoid robots, such as
Hanson Robotics’ Sophia, capable of facial expressions
and conversation, and Boston Dynamics’ bipedal sys-
tems capable of dynamic movements, including jumping
and rolling, show the real-world potential of humanoid
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robots [2][3]. Similarly, events like Robo-One in Japan
demonstrate innovation and agility in bipedal robots
through competitions, encouraging the practical and
entertainment value of these systems.
A typical humanoid robot is designed to mimic the hu-
man structure by implementing major joints such as the
neck, shoulder, elbow, hand, pelvis, knee, and ankle,
each requiring its own motor and range of motion [4]. A
key advantage of humanoid robots lies in their structure,
which enables them to operate in human-centric envi-
ronments without the need to redesign existing tools and
infrastructures [1]. As AI, machine learning, and hard-
ware continue to advance, the use of techniques such
as reinforcement learning and imitation learning allows
robots to learn and replicate complex human behaviors
from the data [5][6].
However, significant challenges remain in developing
humanoid robots, particularly in the domain of vision-
based navigation. Unlike wheeled robots, bipedal robots
need to maintain balance while navigating uneven and
dynamic environments [7]. Real-time decision mak-
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ing, visual perception and object manipulation require
accurate sensors and high-performance computing [8],
which are often expensive and difficult to integrate ef-
ficiently and effectively within the constraints of a hu-
manoid platform.
This work aims to develop a cost-effective humanoid
robot addressing the challenge of integrating vision-
based navigation for object recognition using a stereo-
camera setup. The robot is designed to recognize ob-
jects, estimate distance using stereo vision, and perform
autonomous navigation, pick and place task utilizing
YOLOv11 object detection model [9], and geometric
methods for distance estimation, allowing it to navigate
visually to the object’s location [7][10].
The novelty of this work lies in the integration of low-
cost stereo vision using ESP32-CAM modules with
a lightweight YOLOv11n-based perception pipeline
and a servo-driven humanoid platform, enabling vision-
guided navigation and object manipulation using afford-
able hardware. While the system demonstrates reliable
performance for short-range perception and basic loco-
motion, its capabilities are limited by actuator torque
constraints, predefined motion trajectories, and reduced
depth accuracy at longer distances, which are addressed
as directions for future improvement.

2. Related works
Vision-based perception and object manipulation have
been extensively studied in mobile and humanoid
robotics. An integrated framework combining SLAM-
based navigation and vision-guided grasping using
YOLO-GGCNN was proposed in [11], demonstrating
effective object detection and grasp prediction in un-
known environments. Similarly, object detection and
recognition techniques for robotics pick-and-place tasks
have been explored using feature extraction and classifi-
cation methods to localize objects in clustered scenes
[12]. These approaches highlight the importance of
vision-driven perception for manipulation tasks but of-
ten rely on computationally intensive architectures and
high-end hardware platforms.
Stereo vision has been widely adopted for distance esti-
mation in robotic systems due to its passive sensing na-
ture. In [13], a stereo camera setup was used to estimate
the distance between a camera and a human face using
pixel disparity, achieving acceptable accuracy at short
ranges while requiring frequent calibration. Although
stereo vision provides depth perception without active
sensors, its accuracy degrades with increasing distance
and limited image resolution, which remains a practical
challenge for compact robotic platforms.

Vision-based navigation and path planning for hu-
manoid robots have also been investigated. A vision-
based obstacle detection and path-finding system for
the NAO humanoid robot was developed using Support
Vector Machines for classification and A* algorithms
for path planning [14][15]. While effective in structured
environments, such systems typically depend on pro-
prietary hardware and predefined vision sensors, lim-
iting their adaptability and accessibility for low-cost
platforms.
Kinematic modeling and motion generation form the
foundation of humanoid robot locomotion. Geometric
inverse kinematics solutions for bipedal robots with
varying degrees of freedom have been presented in
[16], simplifying analytical computation through De-
navit–Hartenberg parameterization. More comprehen-
sive kinematic models for high-DOF humanoids, includ-
ing the Bioloid Premium platform, have been developed
to achieve precise motion control of both upper and
lower body segments [17]. Other studies have focused
on biologically inspired humanoid designs, emphasiz-
ing lower-limb kinematics, distributed control archi-
tectures, and sensor integration for improved stability
and motion execution [18]. Beyond kinematics, motion
planning and balance control strategies have been ex-
plored through walking pattern generation, trajectory
planning, and stability criteria such as Center of Gravity
(COG) and Zero Moment Point (ZMP). Vision-based
following systems using depth sensors and PID control
have also demonstrated effective relative positioning be-
tween robots in dynamic environments [19][20]. More
recently, learning-based approaches such as rapid mo-
tor adaptation using reinforcement learning have shown
promising results in dynamic legged robots, enabling
terrain adaptability and payload variation handling, al-
beit at the cost of significant computational resources
and complex training pipelines [21].
While these studies provide valuable insights into hu-
manoid robot perception, locomotion, and manipula-
tion, many rely on simulation-heavy workflows, pro-
prietary platforms, or expensive sensing hardware, lim-
iting real-world accessibility and reproducibility. In
contrast, the work presented in this paper focuses on
a cost-effective, modular humanoid robot design us-
ing off-the-shelf components, integrating stereo vision
and deep-learning-based object detection to achieve au-
tonomous navigation and manipulation within practical
hardware constraints.

3. System overview
The overview of system is shown in Figure 1.
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Figure 1: Block Diagram of the System

3.1. Humanoid Robot
The Humanoid Robot is a robotic system made up of
a LU9685 16-Channel Servo Controller to control the
servo motors, MG996R servo motors to move the robot’s
joints, and ESP32-CAMs to record images. An ESP32
micro-controller uses the generated commands from the
computer’s server to control the robot’s arms and legs.
An MPU6050 gyroscope (IMU) sensor is included to
identify the equilibrium state. The mechanical struc-
ture of the robot is fabricated using 3D-printed compo-
nents.
3.2. Node Server
WebSockets facilitate real-time data exchange between
the Node.js server and connected devices. The servo
control generator, equipped with essential data for the
ESP32 to operate servo motors, receives instructions
from the Image Processing Unit. Additionally, the

Node.js server transmits image data from the ESP32-
CAM to the Image Processing Unit for analysis and
processing.
3.3. Image Processing Unit
A distance calculator that determines the separation be-
tween the item and the robot is part of the image process-
ing unit. This unit determines the distance by using the
YOLOv11 to recognize objects in the stream that was
received from the stereo camera configuration.
3.4. Power Supply Unit
The power supply unit is responsible for delivering elec-
trical energy to the entire humanoid robot system. It
comprises a 3S Li-Po battery, a 9A Buck Converter, and
a 5V 40A Switch Mode Power Supply, ensuring reliable
and efficient power management.

4. Materials and methods
4.1. Robot design and kinematics
The robot comprises 19 DOFs, each consisting of a servo
motor to represent its joints. The division of Degree of
Freedom in each part of the robot’s body is as below
(Figure 2):

• Head: 1 DOF for Neck Joint
• Torso: 0 DOFs (Circuits and Controllers)
• Arms: 3 DOFs in each arm for a total of 6 DOFs

with 2-Shoulder, 1-Elbow
• Legs: 6 DOFs in each leg for a total of 12 DOFs

with 3-Pelvis, 1-Knee, 2-Ankle

Figure 2: Robot’s design with all DOFs

The coordinated actuation of leg joints enables forward,
lateral, and rotational locomotion, while arm joints facil-
itate object grasping and assist in balance during walk-
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ing. The neck DOF allows horizontal head rotation to
support object detection and distance estimation using
the stereo camera system. Robot motion is generated
using forward and inverse kinematics derived in simu-
lation and adapted for real-world execution. Joint tra-
jectories are represented as discrete angle frames, with
intermediate values obtained through linear interpola-
tion to ensure smooth motion. The kinematic structure
of the robot is modeled using the Denavit-Hartenberg
(DH) convention, as illustrated in Figure 3.

Figure 3: Basic Kinematics Structure of the Robot

For each joint, the homogeneous transformation matrix
is defined using Equation 1.
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The overall transformation from the base frame to the
end effector is obtained by sequential multiplication of
individual joint transformations.

𝑇 4
0 = 𝑇 1

0 ⋅ 𝑇 2
1 ⋅ 𝑇 3

2 ⋅ 𝑇 4
3 (2)

Each leg is modeled as an independent kinematic chain,
with the left and right legs being mirror configurations.
The corresponding DH parameters for a single leg are
summarized in Table 1. The computed joint angles are
mapped directly to servo actuators to generate walking,

rotation, and manipulation motions. Basic gait stability
is maintained by lowering the robot’s center of gravity
and increasing the effective support polygon through
foot placement. Symbolic DH parameters are presented
to preserve generality across mirrored leg configurations
[22].

Table 1: DH-Parameters Configuration for Legs

Joint Pair 𝒅 [m] 𝜽 [deg] 𝒓 [m] 𝜶 [deg]
Hip_Yaw – Hip 𝑑1 𝜃1 0 90
Hip – Thigh 𝑑2 𝜃2 𝑎2 −90
Thigh – Knee 0 𝜃3 𝑎3 0
Knee – Ankle 0 𝜃4 𝑎4 0
Ankle – Feet 𝑑5 𝜃5 𝑎5 90
Feet – FootTip 𝑑6 𝜃6 𝑎6 90

4.2. Electronic Architecture
The robot is controlled by an ESP32-WROOM-32 mi-
crocontroller, which manages sensing, communication,
and motion commands. Since the ESP32 lacks suffi-
cient PWM outputs to drive all 19 servo motors, a 16-
channel servo controller (LU9685-20CU) based on the
STC8H microcontroller is used. The servo controller
communicates with the ESP32 via the I2C protocol. An
MPU6050 IMU is connected on the same I2C bus to
provide accelerometer and gyroscope data for motion
monitoring. The overall electronic architecture and cir-
cuit configuration are shown in Figure 4.

Figure 4: Circuit diagram of the electronic system of
the Robot

Servo motors are powered using a 5V, 20A SMPS. To
avoid controller resets caused by voltage drops during
current transients, the ESP32 and ESP32-CAM mod-
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ules are powered separately through a 5V buck converter
supplied by a 3-Cell Li-Po battery. The ESP32-CAM
modules operate independently of the motor power cir-
cuit and transmits images directly to a remote server
via Wi-Fi, while the ESP32 receives motion commands
wirelessly.
4.3. Object detection and distance

estimation
Object detection is performed using YOLOv11n model
trained on a custom cube dataset. The trained model is
deployed on a remote server using the ONNX runtime,
enabling inference within a Node.js environment. Ob-
ject bounding boxes are detected independently from
the stereo camera pair, as shown in Figure 5, and used
for distance estimation.

Figure 5: Stereo Camera setup for distance estimation

Distance to the object is computed using the horizontal
pixel disparity between the bounding boxes obtained
from the two cameras. The distance d is calculated using
Equation 3.

𝑑 = 𝑓 +
𝑁𝑑𝑐

2𝑝𝑐 tan 𝜃
(3)

where 𝑓 is the camera focal length, 𝑝𝑐 is the pixel offset
between stereo images, 𝑁 is the image width in pixels,
and 𝑑𝑐 is the baseline distance between the cameras.
The parameters tan 𝜃 and 𝑓 are calibrated using two
known reference distances 𝑑1 and 𝑑2 with corresponding
pixel offsets 𝑝1 and 𝑝2, as expressed in Equation 4 and
Equation 5.

tan 𝜃 =
𝑁𝑑𝑐

2
(

𝑑1 − 𝑑2
)

(

1
𝑝1

− 1
𝑝2

)

(4)

𝑓 = 𝑑1 −
𝑁𝑑𝑐

2𝑝1 tan 𝜃
(5)

4.4. Control logic and fall recovery
The robot employs a hybrid control strategy combining
closed-loop and open-loop control. Closed-loop control
is used during navigation to compensate for motion
inconsistencies arising from actuator variability, surface
friction, and mass distribution. After each motion cycle,
visual feedback from the stereo vision system is used
to re-localize the target object and correct positional
drift.
Open-loop control is applied during the final approach
and grasping phase due to mechanical constraints of
the robot. The head mechanism provides only a sin-
gle rotational degree of freedom about the vertical axis,
limiting vertical field-of-view adjustment. When the
object moves outside the camera’s view at close range,
a predefined forward motion followed by a grasp se-
quence is executed without further visual feedback. This
strategy assumes consistent gait execution over short
distances.
Fall detection and recovery are based on data from the
MPU6050 IMU. Pitch (𝜃) and roll (𝜙) angles are com-
puted using accelerometer readings.
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⎛
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If either angle exceeds a predefined threshold for a sus-
tained duration, the robot is classified as fallen and the
current motion is halted. Due to hardware limitations,
the fall recovery motions are implemented and validated
in simulation only, while the physical robot performs
fall detection and notification through a mobile applica-
tion.
4.5. Simulation setup
To simulate the robot’s motion dynamics, the designed
humanoid model was exported from the CAD environ-
ment in .OBJ format with non-essential components
merged to reduce mesh complexity. The optimized
model was imported into CoppeliaSim and scaled to
match the real-world dimensions of the physical robot.
To improve simulation stability and computational effi-
ciency, the model was convex decomposed using Cop-
peliaSim’s built-in tools, converting complex geome-
tries into primitive convex shapes.
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Robot joints were manually defined according to the
kinematic structure, with each joint configured in po-
sition control mode to emulate servo motor behavior.
Physical parameters, including component mass and
joint torque limits, were adjusted to approximate real-
world dynamics. Motion control and joint behavior
were implemented using the simulation environment’s
scripting interface, while rigid-body dynamics and colli-
sion handling were managed using the PyBullet physics
engine.

5. Implementation
5.1. Simulation implementation
To accurately emulate real-world behavior, the mass
distribution and joint torque values in the simulation
were matched to the physical robot. Component masses,
including motors and batteries, were assigned such that
the total robot mass was approximately 2 kg, while joint
torque limits were set to 6 Nm. Joint motions were
programmed using Lua scripts, where predefined joint
angle sequences were executed frame by frame. Each
motion sequence consisted of multiple frames, with the
robot transitioning between states based on the imple-
mented control logic.
5.2. Motor initialization
Motor initialization is required to maintain an upright
posture before executing any motion. During initializa-
tion, each servo motor is set to its predefined reference
angle through the servo controller, ensuring stable load
distribution across joints. Without this step, the robot
cannot support its own weight and collapses due to un-
balanced torque. Initialization is performed at system
startup by sequentially assigning the starting joint angles
to all motors.
5.3. Dynamic environment implementation of

Data from walking simulation
Walking motions were executed in a dynamic simulation
environment incorporating gravity, friction, and colli-
sion effects. Although the robot was stable under static
conditions, rapid transitions between motion frames
caused excessive momentum and instability. To mitigate
this, the execution time for each frame was increased,
reducing abrupt joint movements. Additional intermedi-
ate frames were introduced between unstable transitions
to maintain balance during motion execution. These in-
termediate configurations were generated through man-
ual motion refinement, resulting in improved stability
throughout the walking cycle.
5.4. Physical implementation of pick-drop

motion
Motion data obtained from simulation could not be di-
rectly applied to the physical robot due to differences

in mechanical compliance and surface interaction. The
bending angle of the robot was therefore adjusted to
prevent forward collapse before executing the pick-
and-place sequence. After calibration, the arm motion
closely followed the simulated trajectory, enabling suc-
cessful object pickup.
5.5. Physical implementation of rotation

motion
Rotation motions derived from simulation were trans-
ferred to the physical robot with minor adjustments. To
achieve smooth and stable rotation, the transition time
between frames was increased to compensate for ac-
tuator limitations and environmental variations. This
approach resulted in consistent rotational motion under
real-world conditions.

6. Results and discussion
6.1. Object detection model training and

performance
The YOLOv11n (nano) object detection model was
trained on a custom cube dataset intended for robotic
manipulation. Preliminary testing using non-target ob-
jects (e.g., coffee bottles and foam cubes) was conducted
to assess generalization before final training on the cube
dataset. The final dataset comprised 10,719 training
images, 602 validation images, and 257 test images,
manually annotated using assisted labeling techniques.
Data augmentation was applied to improve robustness
under varying illumination and viewing conditions. The
model was trained for 110 epochs, achieving reliable ob-
ject detection confidence suitable for real-time distance
estimation (Figure 6).

Figure 6: Detection of Cubical object by trained Model

Detection performance was evaluated using standard
metrics. The F1-confidence curve (Figure 7a) shows a
near-unit area under the curve, indicating balanced preci-
sion and recall across confidence thresholds. Similarly,
the Precision-Recall curve (Figure 7b) demonstrates
consistently high classification accuracy. Bounding box
localization performance is illustrated in Figure 8a and
Figure 8b, where mAP50-95 reached 88.9%, indicat-
ing robust generalization across IoU thresholds, while
mAP50 peaked at 99.3%, reflecting excellent detection
capability under relaxed overlap constraints.
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(a) (b)

Figure 7: F1 (7-a) and PR-Curve (7-b) of trained model

(a) (b)

Figure 8: mAP50-95 (8-a) and mAP50 (8-b) of model for Bounding Box

6.2. Simulation results
All robot motions were validated in simulation prior to
physical implementation. Walking, rotation, sideways
motion, pick-and-place actions, and fall recovery be-
haviors were successfully executed using frame-based
joint trajectories. Fall recovery sequences performed as
intended in simulation for both forward and backward
fall scenarios (Figure 9). Minor discrepancies were ob-
served due to physics engine limitations, particularly
in friction and contact modeling, highlighting the in-
herent differences between simulated and real-world
environments.
6.3. Distance estimation performance
Distance estimation accuracy was evaluated using the
stereo camera setup across multiple trials. The system
achieved its highest accuracy within the 10–60 cm range,
where calculated distances closely matched ground truth
values. For example, an actual distance of 29 cm was
estimated as 28 cm. At larger distances (e.g., 75 cm),
estimation error increased due to reduced pixel dispar-
ity. Excluding the farthest measurement, the average

distance estimation accuracy was 93.37%, decreasing
to 90.52% when all data points were included (Figure
10).
Accuracy degradation at longer distances was primarily
caused by the limited resolution of the ESP32-CAM,
which reduced detectable pixel shifts and lowered de-
tection confidence. Lowering the confidence thresh-
old from 80% to 70% and increasing resolution from
HVGA to VGA partially mitigated this issue, improving
bounding box coverage and distance estimation consis-
tency.
6.4. Physical Robot performance
The assembled robot consists of one SG90 micro servo
for the neck and eighteen MG996R metal gear servos
for major joints (Figure 11). Motor initialization en-
sured a stable standing posture before motion execution
(Figure 12a). After calibration, the robot achieved sta-
ble forward walking, rotation, and sideways motion,
with motion sequences adapted from simulation and
refined for real-world execution (Figure 12b and Figure
13).
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(a) (b)

Figure 9: Fall recovery in simulation

Figure 10: Error in Distance Estimation

The robot covered approximately 30 cm over five walk-
ing cycles, with an average displacement of 5.5 cm per
cycle and a positional variation below 1.5 cm (Figure
14). Rotational motion achieved an average turning an-
gle of 12° per cycle, enabling effective alignment with
target objects. Sideways motion allowed lateral correc-
tion when objects were not centered within the camera’s
field of view.
Pick-and-drop actions were successfully executed af-
ter modifying the bending component of the motion
to maintain stability (Figure 15). Removing excessive
torso bending enabled reliable grasping and placement
of the target cube while preserving balance.
6.5. Simulation vs real world

comparision
Notable differences were observed between simulation
and physical execution due to idealized simulation con-
ditions and real-world mechanical constraints. Motion
smoothness, fall recovery capability, and distance esti-
mation accuracy varied between environments. A sum-
mary comparison is provided in Table 2, highlighting
key deviations in torque handling, sensory accuracy, and

Figure 11: Assembled Robot

motion execution.
6.6. Technical challenges
Three primary technical challenges were identified.
First, a trade-off between distance estimation accu-
racy and computational performance was observed, as
higher image resolutions improved stereo accuracy but
increased processing load and thermal stress on the
ESP32-CAM modules. Second, servo angle variability
introduced cumulative errors during locomotion; with
up to ±2° deviation per joint, a single leg could ex-
perience an effective error of up to 12°, significantly
affecting walking stability. Third, the object detection
model was trained on a cube-specific dataset to enable
reliable proof-of-concept validation under limited re-
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(a)
(b)

Figure 12: Motor Initialization (12-a) and Forward Walking (12-b) motions

(a)

(b)

Figure 13: Rotation (13-a) and Sideways (13-b) motions
Table 2: Simulation vs real world comparison

Parameter Physical Simulation
Motor torque 4.8 kg cm 5 kg cm
Fall recovery Not implemented Implemented
Distance estimation Below 15 cm and above 60 cm, low accuracy Highly accurate
Per-turn rotation 12 degrees 13 degrees
Pick-up motion Cannot bend to pick the object Can bend to pick the object
Walking stability Transition frames for stability No transition frames used
Smoothness 4-ms delay between motions No delay required
Visual sensor Stereo camera setup Vision sensor
Real-time streaming May lag No lag

sources, which constrained immediate generalization to
other object types. Importantly, the perception frame-
work is modular, allowing object generalization through
retraining or replacement of model weights without
hardware modification.

7. Conclusion
This study presented the design and implementation
of a low-cost humanoid robot capable of vision-based
navigation and object manipulation using stereo vision
and lightweight deep-learning models. A pair of ESP32-
CAM modules was employed as a stereo camera system,
demonstrating reliable object detection and distance es-
timation despite hardware constraints. While distance
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Figure 14: Walk cycle vs Distance covered

Figure 15: Pick and drop motion

estimation accuracy decreased at larger ranges due to
reduced pixel disparity, the approach proved effective
within practical operating distances for manipulation
tasks. Motion planning and execution were supported
through simulation-based kinematic modeling, which
provided a structured framework for generating walk-
ing, rotation, sideways, and pick-and-place motions. Al-
though direct deployment of simulated motion data to
physical hardware was limited by servo torque con-
straints and actuator variability, iterative refinement
enabled stable real-world motion execution. The re-
sults highlight both the feasibility and the limitations of
servo-driven humanoid platforms built using affordable
components.
Overall, the proposed system demonstrates that func-
tional humanoid behavior integrating perception, lo-
comotion, and manipulation can be achieved at low
cost, making it suitable for educational and experimen-
tal robotics research. The work establishes a practical
baseline for future enhancements in adaptive control
and sensing.

8. Future work
The current system executes motion using predefined
frame-based trajectories, which limits adaptability to

surface conditions and environmental variations. Fu-
ture work will focus on implementing dynamic balance
control by incorporating force-sensing resistor (FSR)
sensors for real-time Zero Moment Point (ZMP) esti-
mation and closed-loop gait adjustment. Reinforcement
learning–based control strategies may further enhance
adaptability across varying terrains.
Perception capabilities can be extended beyond cube-
specific detection by training the YOLO model on
multi-object datasets or fine-tuning pre-trained mod-
els through transfer learning. The modular perception
pipeline allows model replacement without hardware
modification. Additionally, integrating oriented bound-
ing box (OBB) detection would enable object orienta-
tion estimation, improving grasp planning and selec-
tive manipulation. Higher-resolution camera modules
may further improve stereo depth accuracy at longer
distances. These enhancements would significantly im-
prove the robot’s autonomy, robustness, and applicabil-
ity in more complex and dynamic environments.
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