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1. Introduction these challenges by distributing control tasks across

multiple controllers thereby, enhancing fault toler-
ance,reducing latency, and improving security. Con-
trollers monitor distinct network segments while main-
taining synchronization to ensure consistency and re-
dundancy. This setup enables faster anomaly detection
and coordinated threat responses. Multi-controller ar-
chitectures also optimize bandwidth, enforce consistent
security, and support critical IoT applications which im-
proves network resilience and performance [3]. In SDN
environments, controller-based management necessi-
tates effective load balancing to prevent bottlenecks and
Balanced multi-controller SDN architectures address sustain Quality of Service (QoS), particularly within dy-
namic and heterogeneous IoT environments where static
strategies often prove inadequate [4]. Consequently,a
balanced multi-controller framework enhances system

Load balancing in SDN ensures efficient traffic distri-
bution, improving resource utilization, scalability, and
QoS through centralized, real-time control,etc. Rein-
forcement learning further enhances load balancing
by optimizing traffic based on network feedback [1].
The convergence of SDN and IoT introduces signifi-
cant cybersecurity challenges, particularly malware at-
tacks, which traditional methods struggle to counter and
therefore require machine learning-driven mitigation
approaches [2].
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efficiency, reduces latency, and optimizes resource uti-
lization.

RL further strengthens this architecture by enabling real-
time, adaptive threat mitigation. When integrated with
multi-controller SDN, RL improves scalability and se-
curity through dynamic threat detection, control load
redistribution, and intelligent decision-making. Con-
trollers can collaboratively detect anomalies, isolate ma-
licious flows, and share learned intelligence to support
real-time reconfiguration, thereby increasing resilience
and performance against evolving cyber threats [5]. In
SDN, managing multiple controllers is vital for scalabil-
ity, but load imbalances can lead to latency and failures.
Static methods fail in dynamic environments, making
RL essential for real-time load balancing.

SDN-enabled IoT networks face increasing malware
threats, with attackers targeting centralized controllers
via Distributed Denial-of-Service (DDoS) attacks and
unauthorized access. Static security solutions can’t
adapt quickly enough to such dynamic threat environ-
ment. Balanced multi-controller setups reduce failure
risks but introduce coordination challenges. Integrat-
ing machine learning enhances adaptive threat detection
and improves the overall security and resilience of SDN-
enabled IoT networks. This work proposes a novel uni-
fied framework that combines Q-learning for dynamic
load balancing with the REINFORCE algorithm inte-
grated with the SIR model for adaptive malware miti-
gation. Q-Learning improves resource utilization and
reduces response time by efficiently distributing work-
loads across controllers, while the REINFORCE-SIR
integration enables adaptive, real-time mitigation of
malware mitigation.

REINFORCE enables real-time threat detection and
response by adjusting security protocols based on
learned patterns. Together, these approaches support
autonomous and intelligent cybersecurity in evolving
IoT environments[6][3].

The proposed framework aims to improve malware mit-
igation; however, it may face certain limitations, in-
cluding a dependence on high-quality training data and
scalability challenges in large IoT networks. The per-
formance of RL algorithms can also vary with the com-
plexity of the attack and the available computational
resources [7]. A key limitation of this work is the re-
liance on synthetic or offline network traffic datasets,
which may not fully capture the complexity and dynam-
ics of real-world IoT malware behavior. Additionally,
all experiments were conducted in a virtual environ-
ment, which may not entirely reflect the conditions and
challenges of live network deployments. The major
contributions of our paper are as follows:

e Introduces a real-time Q-Learning approach to
distribute traffic across multiple SDN controllers,
reducing bottlenecks and enhancing QoS.

e Proposes a reinforcement learning framework us-
ing the REINFORCE algorithm, integrated with
the SIR (Susceptible-Infected-Recovered) model,
to effectively classify and mitigate malware with
improved adaptability and responsiveness.

e Implements a balanced multi-controller SDN de-
sign that enhances scalability, fault tolerance, and
enables coordinated threat detection and isola-
tion.

e Supports real-time, dynamic security policy up-
dates to overcome the limitations of static de-
fenses and ensure adaptability to evolving cyber-
security threats.

This paper is organized into six sections. Section I in-
troduces the problem addressed in the study. Section
II presents a comprehensive literature review of rele-
vant works and identifies the related gap. Section III
describes the methodology adopted for the implementa-
tion of the proposed approach. Section IV reports the
experimental results, while Section V provides a discus-
sion and in-depth analysis of the findings. Section VI
concludes the work and suggests potential directions for
future enhancements.

2. Literature Review

Abha Kumari et al.[8] tackled distributed SDN load
balancing using a Constrained Markov Decision Pro-
cess (CMDP)-based RL framework for dynamic switch
migration. Their optimized online Q-learning ap-
proach, enhanced with Lagrangian multipliers, im-
proves load imbalance by 5-16%, reduces migration
costs by 40-50%, and reduces migration frequency by
over 50%.

Singh et al. [9] presented an ML-based DDoS mitiga-
tion approach for SDN-enabled IoT, using feature selec-
tion to optimize classifiers. KNN with wrapper methods
achieved 98.3% accuracy, outperforming SVM, ANN,
and NB.

Aslam et al. [10] proposed an adaptive ML-based
SDN-enabled DDoS detection and mitigation frame-
work. This multilayered approach uses ensemble voting
across SVM, NB, RF, k-NN, and logistic regression,
outperforming LEDEM and the Content-Oriented Net-
working Architecture (CONA) in accuracy, precision,
recall, and F1 score, while providing real-time detection
and resource optimization.

Wang et al. [11] presented Secure Control and Data
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Plane (SECOD), a resource-efficient SDN application-
layer algorithm for DDoS detection and mitigation in
IoT networks. Validated via simulation and testbed, it
maintains over 98% normal traffic throughput with min-
imal loss. SECOD adapts to IoT traffic without extra
hardware but struggles to differentiate bursty legitimate
traffic from attacks and faces challenges with sophisti-
cated threats such as IP spoofing.

Zolotukhin et al. [6] proposed an RL-based SDN archi-
tecture for real-time attack mitigation, leveraging DQN
and PPO within a virtualized OpenFlow environment.
The system effectively detects and blocks attacks like
SSH brute force, DNS tunneling, and Slowloris DDoS,
balancing security and service quality. Enhancement of
adaptability and manual effort has been reduced in the
work.

Kumar et al. [12] proposed an ML-based SDN load
balancing framework using 12 key features and cluster-
ing over 3.5M+ packets. KMeans, optimized through
Elbow and Silhouette methods, outperforms DBSCAN
in reducing controller overload and improving resource
utilization.

Mishra et al. [13] reviewed SDN-IoT security, spotlight-
ing ML/DL for encryption, authentication, and intrusion
detection in hybrid cloud-edge—fog environments. Em-
phasizing zero-trust and federated learning, they assess
20+ datasets with up to 99.8% accuracy.

Garba et al. [14] proposed an SDN-based DDoS detec-
tion framework for smart homes, integrating a 99.57%
accurate Decision Tree with OpenFlow-based mitiga-
tion and SNORT IDS for controller protection. Real-
world testbed validation shows strong accuracy, pro-
grammability, and hybrid defense.

Lam Dinh et al. [15] introduced a deep RL-based
SDN load balancing framework using Proximal Pol-
icy Optimization/Deep Deterministic Policy Gradient
(PPO/DDPG) with Control Barrier Functions for safe,
QoS-optimized routing. Simulated through Flow and
NS3, PPO-CBF outperforms traditional methods in
delay, loss, and transfer learning. Strengths include
safety assurance, GPU scalability, and dynamic adapt-
ability.

Rostami et al. [16] reviewed 62 studies on QoS-
aware load balancing in SDN-IoT, spanning central-
ized/distributed models and fog—cloud layers, focusing
on delay and throughput. Mininet emerges as the domi-
nant simulation tool, highlighting SDN’s programma-
bility and scalability.

Khozam et al. [17] proposed QoSentry, a DDQN-based
DRL framework for DDoS mitigation in SDN, using
adaptive countermeasures such as bandwidth throttling

and flow redirection. It achieves low latency (<0.25 s),
minimal delay (<0.05 s), and high benign throughput
(~600 kbps—1.4 Mbps) while preserving legitimate traf-
fic, adapting to varying attack patterns, and scaling to
moderate topologies.

Despite notable progress in SDN-enabled IoT load bal-
ancing and security using ML and RL techniques, key
research gaps persist. Most approaches demonstrate
high accuracy and efficiency in simulations but lack real-
world validation, limiting their scalability and robust-
ness. Common challenges include computational com-
plexity, hyperparameter sensitivity, reliance on static
thresholds, limited attack diversity, and insufficient sup-
port for dynamic traffic and protocol variations. Fur-
thermore, few studies address explainability, adversarial
resilience, and deployment overhead, highlighting the
need for adaptive, scalable, and interpretable solutions
validated in real-world SDN-IoT environments.

3. Methodology

3.1. System Design Scenario

The proposed system design integrates a multi-
controller SDN with IoT to achieve scalability, re-
silience, and secure communication. Leveraging
MQTT, RabbitMQ, and ZeroMQ, the architecture ef-
ficiently handles heterogeneous traffic, while a Q-
learning-based load balancing mechanism optimizes
controller selection and resource utilization. Embedded
security modules enable real-time detection and mitiga-
tion of malware, ensuring stable network performance
as device density increases.

3.1.1. Network Topology

P e 8

Figure 1: SDN Layered IOT Architecture.

SDN-based IoT architecture shown in Figure 1 adopts
a multi-layered design to ensure scalability, security,
and efficient communication. The Perception Layer
consists of IoT devices IOT1-10T12) that use Message
Queuing Telemetry Transport (MQTT) for lightweight
publish/subscribe messaging. The Networking Layer
includes switches (S1-S12) and supports MQTT, Rab-
bitMQ, and ZeroMQ for reliable, low-latency communi-
cation. The Middleware Layer comprises controllers
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(C1-C3) that coordinate data flow and device man-
agement. The Application Layer enables function-
alities such as smart home automation, load balancing,
malware detection, scalability analysis, and mitigation
[18].

Security mechanisms address threats from malware fam-
ilies such as Amnesia, Bashlite, Hajime, Mirai, Per-
sirai, and Torii. Controllers interact with MQTT, Rab-
bitMQ, and ZeroMQ to exchange data and commands
with IoT devices. MQTT ensures efficient controller-to-
controller (east-west) communication, with each con-
troller subscribing to shared topics and using QoS for
reliable delivery[19]. ZeroMQ provides brokerless, low-
latency peer-to-peer messaging for high-performance
demands.

Communication lines connect controllers with brokers,
devices with messaging systems, and switches with both,
enabling redundancy and load balancing. DDoS simu-
lations include protocol-based flooding of all malwares
with triggering CPU/memory spikes.Traffic classifica-
tion seperates normal from malicious traffic, while miti-
gation strategies include IP blocking, firmware updates,
logging recovery actions .

3.1.2. Block Diagram for load balancing

MMH . }_. 2y _+g,m
.

Figure 2: Block Diagram for Load Balancing

The block diagram for load balancing in Figure 2
begins by defining the network topology with switches,
controllers, and traffic sources.The Q-table,learning
parameters (epsilon,alpha,gamma), and performance
metrics are then initialized. When a switch connects,
default flow rules are installed. Upon packet arrival,
Ethernet and IP details are extracted, and the Q-learning
algorithm selects the optimal controller based on the
current network state. The Q-table is updated using
rewards,following an epsilon-greedy strategy to balance
exploration and exploitation. Metrics such as latency,
jitter, packet loss, throughput, migration cost, and
load efficiency are monitored. Flow rules are adjusted
according to Q-learning outcomes, and results are
visualized along with the updated Q-table. Scalability
analysis is performed to evaluate the performance
remains stable despite an increase in number of devices

and resource usage in the multi-controller SDN network.

3.2. Load Balancing in SDN using
Q-learning

Q-learning is a model-free reinforcement learning al-
gorithm that enables an agent to learn optimal actions
in dynamic environments through trial and error. The
agent interacts with an environment characterized by
states s, actions a, and rewards r, learning a Q-value
function Q(s, a) that estimates the expected cumulative
reward of taking action a in state s [20]. Action selection
follows an e-greedy policy: with probability e the agent
explores randomly;otherwise exploits the best-known
action a = arg max, Q(s, a). The Q-values are updated
iteratively through the Bellman equation in Equation 1:

O(s,a) « O(s,a)+a <r +y max o', d) - 0, a))
(D

In Q-learning, a € [0, 1] is the learning rate controlling
Q-value updates, and y € [0, 1] is the discount factor
balancing immediate and future rewards. In distributed
SDN-enabled IoT networks, this approach dynamically
optimizes switch-to-controller assignments, improving
efficiency and stability. The Q-function Q(s, a) esti-
mates the expected utility of action a in state s; after
each action, the reward R(s, a) guides learning, while
max, Q(s’, a’) captures the best expected future reward
[21]. Key performance metrics are described in Equa-
tions 2 - 5.

J =1L~ Lyl @
where L; and L,;_; are consecutive packet latencies.

Load distribution is evaluated using the sum of absolute
latency deviations:

N 1 N
DL - ~ > L 3)
i=1 k=1

load imbalance quantified as the standard deviation of
controller loads:

“4)

where C; is the load on controller i and y the average
load, and load deviation for each controller:

Load, — % Y Load, (5)
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Migration cost (MC) captures the overhead of workload
transfers between controllers.

The effectiveness of Q-learning for load balancing in
SDN-enabled IoT networks relies on the quality and
diversity of training data. Incomplete or unrepresenta-
tive datasets omitt realistic traffic patterns or evolving
malware behaviors—can produce policies that fail to
generalize, leading to load imbalance and inefficient
controller assignments. Ensuring comprehensive, real-
istic training data is therefore essential for adaptive and
reliable network management.

3.2.1. Scalability Analysis

The scalability analysis was conducted in a multi-
controller load-balanced environment. The proposed
models characterize system behavior under oI malware
attacks as described by Equations 6 - 8:

Resource utilization and mitigation time:
CPU/Memory = a,, rt+ ., Thitigation = 7 1 (6)

where a,,, §,, are malware-specific coefficients, r is the
message rate, ¢ is the attack duration, y is the mitigation
coefficient, and » is the number of compromised devices
which is given in equation 6.

Network impact:

Throughput = Rye™*, Latency = krt  (7)

where R is initial throughput, 4 is the decay rate, and
k is the latency scaling factor as described in equation
7.

Scalability and control-plane overhead:

Resource = N2,
Throughput = min(r, Rsat) , (®
Overhead = ON log .S

where N is the number of devices, Ry, is the throughput
saturation limit, .S' is the number of switches, and # and 6
are scaling coefficients presented in equation 8.

DDoS traffic volume is influenced by the attack rate,
payload size, and attack duration,leading to bandwidth
saturation under large-scale attacks.

Overall, the impact of attacks increases nonlinearly with
network scale, duration, and intensity, highlighting the
necessity for efficient mitigation and robust scalability
mechanisms.

3.3. Data Preprocessing

In the preprocessing pipeline, missing numeric values
are imputed using the mean of the observed entries, en-
suring the statistical distribution of the feature remains

consistent. For categorical attributes, the most frequent
category (mode) is used for imputation as given in Equa-
tion 9:

mode(C) = arg ml?x count(C = k) ©))

This approach preserves dominant class information
without introducing bias from rare categories. Categor-
ical labels C are then converted into integer represen-
tations through label encoding, enabling compatibility
with machine learning algorithms. The dataset is di-
vided into predictor variables X and the target variable
y for supervised learning tasks.

To retain only the most informative variables, feature se-
lection is applied using Mutual Information (MI), which
measures the dependency between a feature X; and the
target Y as given in Equation 10:

Px,y)
( ’ : xEZXj yezyp(x yloe (P(X)P(Y)> (19

where p(x, y) denotes the joint probability distribution
of X; and Y, and p(x) and p(y) represent their marginal
distributions. A higher MI score indicates a stronger
relationship between the feature and the target, making
the feature more relevant for prediction. After feature
selection,the retained features are standardized using
z-score normalization,as shown in Equation 11:

X J/ = u (11)

0j

This transformation ensures zero mean and unit variance
for each feature, thereby improving convergence during
gradient-based optimization. The dataset is then split
into training, validation, and test subsets using strati-
fied sampling to maintain class proportions p; across
all splits. To address class imbalance, the Synthetic Mi-
nority Oversampling Technique (SMOTE) is employed,
which generates synthetic samples for minority classes
are described in Equations 7 and 8:

Xpew = X; + 6(x,,, — X)),

o~U(Q,1) 12)

where x; is a minority instance, x,,, is one of its nearest
neighbors, and 6 is a random interpolation factor that en-
sures variability in synthetic points. Additionally, class
weights are incorporated into the loss function to penal-
ize misclassification of minority classes proportionally:

w) X

, 13
n,+e (13)
where n;, denotes the number of samples in class k, and €
is a small constant used to prevent division by zero. This
ensures balanced learning and improves generalization
for imbalanced datasets.
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Table 1: Hyperparameter Optimization Results

Parameter Search Space Type Optimal Value
Learning rate (17) [1074,1072] Log-uniform  0.0005
Exploration (¢) [0.1,1.0] Uniform 0.3
Reward scaling (r) [0.1,0.99] Uniform 0.85
D, €[256,1024]
Hidden dims (h) D, €[128,512] Integer [768,384,192]
D; € [64,256]
Dropout (p) [0.1,0.5] Uniform 0.3

3.4. Model Training Using

REINFORCE
The proposed REINFORCE-based policy network 7,
maps input features x to action probabilities through a
softmax output, as shown in Equation 14:

7g(a | x) = softmax(VV4 o (Ws - o(Wy - o(Wyx + b))

+by) +b3)>
(14)

where W;, b; denote the network weights and biases
respectively, and o represents the ReLU activation func-
tion. Batch normalization and dropout with a proba-
bility of p = 0.5 are applied to have generalization
and training stability . At each time step ¢, actions are
sampled as a, ~ 7y(-|x,), yielding rewards defined as
r; = I(a; = y;) - n where I(-) is the indicator function
and n = 0.9 is the reward scaling factor. The training
objective is the negative log-likelihood weighted by the
received rewards, as given in Equation 15:

L(O) = _[Ea,~ﬂ9 [, log my(a,|x,)]. (15)

Model parameters are optimized using the AdamW with
a learning rate @ = 10™* and weight decay coefficient
A = 107*. The parameter update rule is expressed in
Equation 16:

6« 6 —aVyL®)+ A6]l,, (16)
An e-greedy strategy is employed to balance exploration
and exploitation, with € initialized to 1.0 and gradually
decayed during training.

3.5. Hyperparameter Tuning

Table 1 summarizes the results of the hyperparameter
optimization process. Hyperparameters were optimized
using Bayesian optimization implemented via Optuna
[22] over 10 trials,with the objective of maximizing

validation accuracy, as defined in Equation 17 and 18:

0" = argmax A,,(0), 17
e

where 6 denotes the set of tunable hyperparameters. The

resulting optimal configuration is given by:

0* = {n —5%107%,¢=023,r =085, h = [768, 384,

192], p = 0.3}
(18)

This approach efficiently identified an optimal set of hy-
perparameters within a limited number of trials, demon-
strating the effective of Bayesian optimization for rein-
forcement learning-based model tuning.

3.6. Data Postprocessing

The post-processing pipeline integrates classification
and mitigation by first applying a confidence threshold
to the predicted malware class probabilities p, accept-
ing classifications only if max(p;) > 7 = 0.7. Device-
specific criticality scores ¢; € [1,5] are then used to
determine the mitigation intensity. Devices are catego-
rized into three states : Susceptible (S), Infected (I),
or Recovered (R). Malware propagates from I to .S at
rate f§, while recovery occurs at rate y, enabling contain-
ment. Recovered devices may revert to the susceptible
state .S if patching fails. This model supports outbreak
severity estimation, urgency assessment, and optimal
resource allocation, as expressed by the SIR formulation
in Equation 19:

dI
— =BSI—yI
r p Y

True positives (D) trigger mitigation actions , while
false positives (Dg,s) are minimized using the false
positive rate in Equation 20):
|Dmit N Dsafe'
|D

19)

FPR = (20)

safe |
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Mitigation intensity is adjusted according to device crit-
icality, as defined in Equation 21:

Intensity; = {Aggressive, ife; >3

) (2D
otherwise

Standard,
ensuring stronger countermeasures for high-priority
devices. The SIR model further simulates how
mitigation actions,captured through the recovery
rate y, influence malware spread. Overall,mitigation
optimization combines reinforcement learning based
detection with SIR-guided response, adapting actions
based on device criticality and detection confidence.
High-criticality devices (e.g., security cameras) receive
aggressive countermeasures, with actions triggered
when the confidence threshold 7 is exceeded. Lower
thresholds (e.g., 0.7) initiate patching, while higher
thresholds (e.g., 0.9) enforce device resets. Cost-aware
decision-making balances security against downtime,
patching, and maintenance costs.

3.6.1. Mitigation Metrics

The Severity Score (.5) quantifies the threat level of
IoT malware outbreaks by integrating three key fac-
tors:

1. Infection Spread — Measures initial penetration
(analogous to the epidemiological basic reproduc-
tion number, R;), weighted at 50% since early
containment is critical.

2. Persistence Time — Reflects dwell-time risk,
where prolonged infections cause more damage.
This factor is weighted at 30%.

3. Critical Baseline — A fixed 20-point floor ensur-
ing that any detected outbreak triggers an imme-
diate response. The Severity Score is computed
as given in equation 22:

. I T
S =min| 100, 50- | — ) +30-{ — | +20
N T,

(22)

where I, is the number of initially infected
devices, N is the total number of devices, T is
the observed duration, and T,, = 10 is the critical
duration threshold.

4. Percentage of Final Susceptibles (PFS):The pro-
portion of devices remains uninfected at the termi-
nation of outbreak has been defined in Equation
23.

Si
PFS = <%) x 100% (23)

where Sy, is the number of susceptible devices
at the final time step.

5. Average Infected Speed (AIS):The mean rate
of new infections per time step is computed in
Equation 24.

T-1
1
AIS = — ; |14 = L (24)

where I, denotes the number of infected devices
at time ¢, and T is the the total number of
simulation time steps.

6. Average Recovery Speed (ARS):The mean rate
of device recovery per time step,has been defined
in Equation 25.

T-1
1
ARS = —— ;(Rm - Ry (25)

where R, denotes the number of recovered de-
vices at time 7.

PFS is expressed as a percentage (%), while
AILS and ARS are measured in devices per step.
A PF S value below 10% indicates effective con-
tainment, an ARS greater than AIS suggests
successful mitigation, and peak AI.S values re-
flect the virulence of the outbreak.

3.7. Malware Behavior Analysis

3.7.1. Average Confidence Score

The average confidence score quantifies the model’s
certainty in its correct classifications. It serves as
an indicator of reliability (higher confidence implies
more assured predictions), supports threshold-based
decision-making (e.g., triggering actions only when
confidence exceeds 70%), highlights class difficulty
(the relative ease of identifying different malware types),
and aids in error analysis (low confidence may indicate
insufficient features or limited training data). For each
class ¢, the average confidence score is computed in
Equation 26.

NE
AvgConf, = — 3 P(y; = ¢ | x) (26)
Ne i3
where N, denotes the number of correctly classified
samples belonging to class c, and P(y; = c | x;) repre-
sents the predicted probability assigned to class ¢ for
sample x;.
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3.7.2. Class-Wise Concept Drift Analysis for
Robust Malware Detection

Concept drift analysis monitors changes in model predic-

tion confidence for each class over time. By comparing

the average probabilities of correct predictions in recent

and historical data windows, a drift score is computed,

as shown in Equation 27:

DriftScore; = max (0, E[ Pyey, (3)] — E[Pya(y)]) (27)

where P(y;) denotes the predicted probability for class i
computed over sliding windows. The concept drift anal-
ysis highlights the dependence on training data quality.
It detects changes only within known malware classes,
as DriftScore; monitors existing labels (y;) and cannot
identify completely novel threats. Scores which a pre-
defined threshold (z = 0.15) trigger corrective actions,
such as model retraining. While this reactive approach
allows some failures before correction, it maintains pre-
diction stability for relatively static classes (e.g., Mirai:
DriftScore ~ 0) and enables adaptation to evolving
threats (e.g., Bashlite: DriftScore ~ 0.08). Hence, the
balance between adaptability and generalization illus-
trates the inherent limitations of models trained on static
datasets in dynamic, real-world environments.

3.8. Dataset Explanation

3.8.1. IoT Malware Types

The dataset consists of benign and malicious IoT soft-
ware samples. Benign samples represent normal be-
havior [23].The malicious categories include Amnesia,
which targets digital video recorders (DVRs) to launch
botnet-based HTTP/UDP DDoS attacks [24]. Persirai
infects IP cameras to conduct UDP flood DDoS attacks
[25]. Torii is a stealthy malware that emphasizes on data
exfiltration and persistence. Hajime is a botnet that at-
tempts to secures infected devices by closing vulnerable
ports [26]. Bashlite targets Linux-based IoT devices to
execute large-scale DDoS attacks [27]. Mirai exploits
weak or default credentials to launch massive DDoS
attacks [28].

3.8.2. Contents of Prepared Dataset

The dataset captures detailed network traffic from a
smart home IoT environment which features 100,000 en-
tries with 43 attributes generated within a balanced-load,
multi-controller SDN setup. It encompasses both nor-
mal and malicious behaviors,enabling robust analysis
for anomaly detection and machine learning-based se-
curity solutions. Key components include device meta-
data (e.g., device name, state), traffic characteristics
(e.g., message rate, bandwidth, protocol types), and net-
work addressing (e.g., IPs, ports, session parameters).
The dataset further incorporates threat intelligence (mal-
ware variants, DDoS), flow-level statistical metrics, and

traffic volume measurements with temporal features.
Each record is labeled with attack and malware cate-
gories . The dataset is enriched with derived features
from Bot-IoT [29] and IoT-23 [30] datasets,thereby en-
hancing its diversity and generalizability. The Table 2

Table 2: Malware Dataset Frequency

Malware Frequency
Benign 50000
Amnesia 8512
Torii 8472
Hajime 8299
Bashlite 8265
Mirai 8250
Persirai 8202

presents the frequency distribution of various malware
types from the dataset. The majority of the samples
are Benign (50,000), which represents non-malicious
instances. The remaining 50,000 samples correspond to
malicious instances, with Amnesia being the most fre-
quent (8,512), followed closely by Torii (8,472), Hajime
(8,299), Bashlite (8,265), Mirai (8,250), and Persirai
(8,202) samples respectively.

4. Results and Discussion

This section presents the results of load balancing in a
multi-controller SDN using Q-learning, along with the
outcomes of malware classification and mitigation using
REINFORCE. The section is accompanied by various
types of analysis conducted during the process.

4.1. Results for load balancing in SDN using
Q-learning

In the Q-learning based approach for SDN load balanc-
ing, an exploration rate ¢ = 1.0 encourages extensive
exploration during the learning phase, while a relatively
low learning rate « = 0.1 ensures stable updates to the
Q-values. A high discount factor y = 0.85 prioritizes
long-term rewards, thereby supporting sustained and
effective load balancing performance. The results pre-
sented in Table 3 show efficient traffic distribution across
controllers, with final loads of 992, 1024, and 1031
packets and minimal deviations (23.67, 8.33, 15.33).
A high load balance score (0.984466), low imbalance
score (0.16715), and controlled migration cost (1680.30)
confirm balanced allocation. System performance re-
mains stable with low packet loss (0.012143), latency
(0.012543,s), and jitter (0.007941,s), validating the ef-
fectiveness of the proposed approach.

The enhanced Q-learning balancer achieves adapt-
ability through adaptive state representation, real-
time optimization, and a moving-window throughput
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Table 3: Load Balancing Results

Parameter Value

Final Load on Controllers [992, 1024, 1031]
Packet Loss Ratio 0.012143

Load Deviation (C-0) 23.67

Load Deviation (C-1) 8.33

Load Deviation (C-2) 15.33
Packets Sent 3,047
Packets Received 3,047
Packet Loss 37
Migration Cost 1,680.30
Throughput 2.46 pkt/s
Average Latency 0.0125 s
Average Jitter 0.0079 s
Load Balance Ratio 0.984
Load Imbalance Ratio 0.167

tracker. Asynchronous Q-table updates and selective
flow changes reduce latency, while a composite reward
function balances latency and load. Dynamic tuning
(e.g., € decay) ensures stability, combining fast con-
vergence with responsiveness, at the cost of higher ini-
tial exploration and stateless flow handling during peak
loads. The values in Table 4 are generated from Q-

Table 4: Q-table for balanced action selection

State Action() Action1l Action 2
0 57.5005 66.4984  66.4998
1 66.3696  57.3805  66.4045
2 66.4041  66.3964  57.3991

learning which demonstrates load balancing, with Q-
values across various states and actions being nearly
uniform, ensuring no single action dominates decision-
making. For instance, in State 0 (57.5005, 66.4984,
66.4998), State 1 (66.3696, 57.3805, 66.4045), and
State 2 (66.4041, 66.3964, 57.3991), the values are well-
distributed, preventing any controller from becoming
overloaded. The learned policy has converged a key in-
dicator of Reinforcement Learning convergence where
Q-values stabilize over time. This ensures optimal load
allocation and minimal imbalance, confirming that the
RL-based approach effectively maintains load equilib-
rium within the SDN network.

4.2. 10T device simulation

Figure 3 compares communication delays (in ms) of
MQTT, RabbitMQ, and ZeroMQ across various IoT de-
vices. ZeroMQ shows the lowest latency, making it the
most efficient for time-sensitive tasks. MQTT follows
closely with slightly higher but consistent performance.

+;p44¢;+9541

Figure 3: IOT Devices Message Delay Comparison

RabbitMQ, however, exhibits significantly higher de-
lays—peaking at 2.45 ms on devices like the AlarmSys-
tem and MotionSensor—over three times that of MQTT
and ZeroMQ (both under 0.7 ms). These findings high-
light ZeroMQ and MQTT as preferable for latency-
critical IoT applications, while RabbitMQ’s higher
overhead limits its suitability for real-time use.

4.3. Controller to Controller
Communication

Table 5: Controller Communication Performance Com-
parison

Metric ZeroMQ MQTT
Throughput (KB/s) 89935.2  6567.15
Average Latency (ms) 1.84 2.51
Min Latency (ms) 0.17 0.43
Max Latency (ms) 11.05 941
Median Latency (ms) 0.66 0.998

In Table 5, ZeroMQ outperforms MQTT in controller-
to-controller communication due to its decentralized
peer-to-peer design, achieving 13.7x higher throughput
(89,935 KB/s vs. 6,567 KB/s) and 32% lower latency
(1.84ms vs. 2.51ms). Its direct messaging ensures
efficient load distribution with minimal overhead and
consistent performance under high traffic. In contrast,
MQTT’s broker-based model introduces congestion but
provides centralized management, QoS, and device inte-
gration, making it ideal for heterogeneous IoT systems
prioritizing reliability over speed. Thus, ZeroMQ suits
high-speed, scalable coordination, while MQTT is bet-
ter for structured, reliable communication.

4.4. Results for scalability analysis

The scalability metrics in table 6 show stable system per-
formance, with consistent memory utilization at 33.6%
across all test scenarios. Latency decreases from 4.53
millisecond to 1.47 millisecond as message rates in-
crease, indicating efficient load handling. Through-
put reaches 85.7 megabitpersecond with 20 devices,
maintaining 85.2 megabitpersecond at maximum mes-
sage rates, demonstrating strong scalability. Mitiga-
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Table 6: Scalability Metrics Summary

Devices Message Rate CPU Usage Memory Usage Latency Throughput Mitigation Time

10 200 2.3 20.7 0.9846 83.6031 3.15e-04
20 200 1.2 20.7 1.3005 64.9143 1.96e-05
50 200 2.8 20.7 0.2001 74.1422 1.12e-05
100 200 1.2 20.7 1.4352 35.1569 1.79e-05
200 200 7.1 20.6 4.2276 45.7628 2.57e-05
12 50 1.3 20.6 1.6823 14.2490 1.50e-05
12 100 1.5 20.6 2.8919 50.4402 2.48e-05
12 200 1.0 20.6 2.9376 93.2723 1.14e-05
12 500 1.3 20.6 1.5442 45.1051 2.74e-05
12 1000 1.3 20.6 2.9066 69.7955 1.00e-05
tion times are extremely fast, on the order of 10~ sec- Table 7: Class Distribution Before SMOTE
onds, showcasing the effectiveness of the security mea-
sures. Class Samples Percentage (%)
0 5958 8.5
4.5. Results for malware classification using 1 5786 8.3
REINFORCE 2 35000 50.0
Top 10 Features Based on Mutual Information 3 5809 8-3
4 5775 8.2
o 5 5741 8.2
. 6 5931 8.5
pack Table 8: Class Distribution After SMOTE
e Class Samples Percentage (%)
e e, 0 35000 143
st fompationscrs { 35000 143
Figure 4: Mutual Information (Feature Engineering) 2 35000 14.3
3 35000 143
Figure 4 illustrates the top 10 features selected based on 4 35000 14.3
their MI scores, which quantify the dependency between 3 35000 14.3
6 35000 14.3

each feature and the target malware class. Features such
as Message_Rate, Packet_Size, and Bandwidth exhibit
the highest MI scores, indicating their strong relevance
for classification. The x-axis represents MI values (rang-
ing from 0.0 to 1.2), while the y-axis ranks features
by importance. These selected features, determined
through Mutual Information-based feature selection, en-
hance the REINFORCE algorithm by improving learn-
ing efficiency, reducing redundancy, and contributing
to the malware classification of SDN-enabled IoT net-
works. The original training dataset exhibits significant
class imbalance in Table 7 with Class 2 dominating at
35,000 samples (50% of the data), while the remain-
ing classes (0, 1, 3, 4, 5, 6) have considerably fewer
samples, ranging from 5,741 to 5,958 (approximately
8.2% to 8.5% each). Such imbalance can bias the model
towards the majority class during training, potentially
degrading performance on minority classes. After ap-

plying SMOTE, all classes are balanced with 35,000
samples each in Table 8 representing 14.3% per class.
SMOTE synthetically generates minority class samples
to match the original majority class size, resulting in an
evenly distributed dataset that enables the model to learn
equally from all classes and improves its generalization
and accuracy on minority classes. The plot in Figure
5 shows training and validation losses decreasing from
0.30 to 0.05 over 200 epochs, indicating successful
convergence. The parallel decline without divergence
suggests effective learning, proper model design, and
strong generalization without overfitting. In figure 6
the reward curve shows a decline from 9300 to 8700
over 200 epochs, indicating initial performance gains
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Table 9: Comparison of Best and Worst Model Performances

Metric Best Model (Trial 1) Worst Model (Trial 7)
Validation Accuracy 0.9295 0.9224
Learning Rate (Ir) 0.0007 0.0013
Epsilon Reward Rate 0.8661 0.4743
Weight Decay 2.1302 4.4825
Dropout Rate 0.2009 0.1425

Training vs Validation Loss

o 25 50 75 100 125 150 175 200
Epochs

Figure 5: Training Validation loss Plot
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Figure 6: Reward Progression Plot

followed by stabilization. This reflects effective early
exploration by the REINFORCE algorithm, with con-
vergence to a stable policy over time. The downward
trend highlights the exploration-exploitation trade-off,
as reduced exploration limited high-reward discoveries.
Overall, the curve indicates successful learning. In Ta-
ble 9 the best model (Trial 1) achieved 0.71% higher
validation accuracy than the worst (Trial 7) (92.95% vs.
92.24%) due to balanced hyperparameters: a moderate
learning rate (0.0007), better exploration-exploitation

trade-off (¢ = 0.6963), and higher reward rate (0.8661).
Its architecture (270-499-131) with moderate regular-
ization (weight decay = 2.1302, dropout = 0.2009) sup-
ported stable learning, unlike Trial 7’s larger layers and
high weight decay (4.4825), which likely hindered per-
formance. These results highlight the impact of tuning
exploration, rewards, and model architecture for optimal
convergence. In Figure 7,the confusion matrix reveals

Confusion Matrix
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Figure 7: Confusion Matrix

perfect classification for Benign (4,821) and Bashlite
(824), with Mirai and Bashlite achieving perfect preci-
sion. However, Hajime is frequently misclassified as
Bashlite (666 errors), and Persirai performs poorly with
only 2 correct out of 47. Torii also shows confusion with
Hajime and Persirai. While performance is strong for
distinct classes, improvements are needed to better dis-
tinguish Persirai and Torii, possibly through enhanced
features or model architecture. The classification report
in Table 10 shows strong overall performance with 93%
accuracy. Classes 2 and 3 achieve perfect scores (F1 =
1.00), while class 4 performs well (F1 = 0.92). Classes
0, 1, 5, and 6 have slightly lower F1-scores (0.80-0.85),
indicating minor classification challenges. Macro and
weighted averages are high (0.89 and 0.93), with the lat-
ter boosted by the large support of well-classified classes
like class 2 (support = 4871). The model maintains a
good balance between precision and recall across all cat-
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Table 10: Malware Classification Report

Class Precision Recall F1-Score Support

0 0.85 0.79 0.82 838

1 0.78 0.83 0.80 850

2 1.00 1.00 1.00 4871

3 1.00 1.00 1.00 824

4 0.94 0.90 0.92 845

5 0.81 0.83 0.82 826

6 0.85 0.86 0.85 846

Accuracy 0.93

Macro Avg 0.89 0.89 0.89 9900
Weighted Avg 0.93 0.93 0.93 9900

egories. The ROC-AUC curve plot in Figure 8§ evaluates

ROC-AUC Curve for Multiclass Classification
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Figure 8: ROC-AUC plot

a multiclass classification model’s performance across
seven categories: Amnesia, Bashlite, Benign, Hajime,
Mirai, Persirai, and Torii. Each curve illustrates the bal-
ance between true positive and false positive rates, with
AUC scores indicating near-perfect or perfect classifica-
tion—Amnesia (0.99), Bashlite (0.99), Benign (1.00),
Hajime (1.00), Mirai (1.00), Persirai (0.99), and Torii
(0.99). The model excels with perfect discrimination
(AUC = 1.00) for Benign, Hajime, and Mirai, while
other classes also achieve exceptional scores (> 0.99),
demonstrating strong reliability in distinguishing all cat-
egories with minimal errors.

4.6. Results for malware mitigation using
REINFORCE

The plot in Figure 9 shows the initial state of IoT de-

vices, all in a susceptible (blue) condition, indicating

no infections. The y-axis (0—10) likely denotes device

IDs or susceptibility, and the flat distribution confirms

a uniform, pre-infection baseline. This serves as the

Device States Before Malware Classification (All Susceptible)

Figure 9: Susceptible Devices

starting point for SIR-based simulations before malware
classification and mitigation begin. The plot in Figure

Device States After Malware Classification (All Infected)

Figure 10: Infected Devices

10 illustrates a post-classification scenario where all [oT
devices are marked as infected (red), indicating full
network compromise. The y-axis (1-7) likely reflects
device IDs or infection severity. This uniform infection
state represents the worst-case phase in the SIR model,
highlighting the urgency for mitigation before recov-
ery is driven by REINFORCE-based policy decisions.
The plot in Figure 11 shows a deterministic Suspectible-
Infected-Recovered (SIR) model over five time steps,
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Table 11: Devices, Malware, and Mitigation Strategies

Malware Device(s) Mitigation Strategy
. HumiditySensor, AirPurifier, .

Mirai MotionSensor, DoorLock, Refrigerator Reset Devices

Bashlite Doorbell Block Malicious Traffic
Thermostat, HumiditySensor, AirPurifier,

Hajime MotionSensor, SmartLight, DoorLock, Update Firmware
SecurityCamera, Doorbell, VacuumCleaner, AlarmSystem

Persirai SecurityCamera Isolate Affected Devices

Torii Refrigerator, VacuumCleaner, AlarmSystem Block C&C Servers

Amnesia  Thermostat, AlarmSystem Patch Vulnerabilities

SIR Model Progression with Severity Phases

z
Time Steps

Figure 11: SIR Analysis Plot

where all 12 IoT devices begin infected (I = 12, R = 0)
and recover linearly to a fully recovered state (I = 0,
R = 12). With no susceptible devices (S = 0), the
closed-system model assumes no new infections. Using
f = 0.3 and y = 0.1, the linear recovery reflects ideal
mitigation and homogeneous device behavior. Though
simplified and lacking stochastic effects, it illustrates
optimal mitigation performance, offering a theoretical
benchmark for real-world strategies influenced by de-
vice diversity and detection imperfections. The mitiga-
tion metrics presented in Table ?? demonstrate complete
outbreak containment, with 0.00% of devices remaining
susceptible and all 12 infected devices transitioning to
the recovered state within five steps. The balanced rates
of infection and recovery (—2.40 vs. 2.40 devices per
step) highlight the effectiveness of the REINFORCE
algorithm’s countermeasures. A high severity score of
85.0 out of 100 further confirms the robustness of the
mitigation strategy, validating the use of dynamic thresh-
olding, risk-based prioritization, and rapid isolation and
patching to achieve efficient containment. The mitiga-
tion strategies displayed in Table 11 list devices such as
the HumiditySensor, AirPurifier, and Thermostat, along
with the types of malware affecting them—including Mi-
rai, Bashlite, Hajime, Persirai, Torii, and Amnesia—as
well as their respective mitigation strategies. Mirai in-

fections require device resets, Bashlite calls for traffic
blocking, and Hajime necessitates firmware updates.
Devices infected with Persirai should be isolated, while
Torii requires blocking command and control (C&C)
servers. Amnesia is mitigated by patching known vul-
nerabilities. This structured approach ensures that each
threat is addressed with a targeted and effective secu-
rity measure. The plot in Figure 12 shows the final

Device States After SIR Simulation (Mitigation)

Figure 12: Mitigation Graph

device states after the SIR simulation with mitigation,
where all nodes are marked as recovered (green), indi-
cating 100% successful remediation. The values (1-10)
likely represent normalized security scores or device
IDs. This outcome validates the REINFORCE algo-
rithm’s mitigation strategies: high-criticality devices
received aggressive responses (e.g., isolation, firmware
updates), while standard measures were applied else-
where. The uniform green color reflects the effective-
ness of the dynamic threshold-based classification and
criticality-aware response system.

4.7. Results for malware behavior

analysis
Figure 13 tracks concept drift scores for malware classes
over 200 training iterations, with Bashlite showing the
highest drift (~ 0.08) but none crossing the 0.15 thresh-

Utkarsha Shukla et al. /JIEE 2025, Vol. 8, Issue 1.

Page 106



Reinforcement Learning based Malware mitigation in balanced Multicontroller Software Defined Networking enabled Internet
of Things Networks

Concept Drift Detection by Class

o 50 100 150 200
Update Iterations

Figure 13: Concept Drift Analysis

old. Stable classes (e.g., Mirai, Torii) indicate consis-
tent model performance, while moderate drift in others
(e.g., Amnesia, Hajime) suggests evolving attack pat-
terns. The system detects shifts but requires no inter-
vention, demonstrating adaptability while highlighting
class-specific generalization limits. Table 12 displays

Table 12: Malware Confidence Scores

Malware Confidence Score
Amnesia 0.88
Torii 0.85
Hajime 1.00
Bashlite 0.82
Mirai 0.99
Persirai 0.95

the average confidence scores of a REINFORCE-based
malware detection model across different IoT threats.
Hajime (1.0) and Mirai (0.99) achieve near-perfect con-
fidence due to their distinct patterns and specialized neu-
ral network heads, while Bashlite (0.82) shows relatively
lower confidence, likely due to overlapping features or
fewer training samples. These scores, derived from
the model’s softmax probabilities during evaluation, di-
rectly influence mitigation strategies. High-confidence
predictions trigger immediate actions such as isolation
or firmware updates, whereas lower-confidence detec-
tions may require additional verification. Figure 14 re-
flects the relative prevalence of each malware class in the
dataset, with Mirai and Hajime showing the highest in-
fection rates, aligning with their near-perfect confidence
scores (0.99 and 1.0) in the model’s predictions. This
correlation suggests that the REINFORCE-based model
performs exceptionally well for frequently encountered
threats, triggering aggressive mitigation strategies such
as network isolation or firmware updates. In contrast,
Bashlite’s moderate infection rate but lower confidence
score (0.82) indicates potential challenges in distinguish-
ing its patterns, highlighting opportunities for targeted
improvements in feature engineering or adversarial train-
ing to enhance detection accuracy for less prevalent or

Infection Rates by Malware Class

Proportion of Infections.

Amnesia Bashlite Hajime Mirai Persirai Torii

Figure 14: Infection Rate

more subtle malware variants.

5. Conclusion and Future Work

This work proposes an intelligent SDN-IoT security
framework that combines Q-learning-based load balanc-
ing with RL-driven malware detection to counter DDoS
attacks. The Q-learning algorithm optimizes traffic dis-
tribution for high throughput, low latency, and QoS,
while integrated threat detection enables real-time miti-
gation. The REINFORCE-based policy network detects
malware strains and applies mitigation using same algo-
rithm using SIR approach. The scalable, distributed ar-
chitecture ensures robustness and prevents single points
of failure, optimized for resource-constrained IoT envi-
ronments. Average confidence scoring and drift analysis
together improves interpretability and resilience in mal-
ware detection models, supporting adaptive retraining
and balancing generalization with adaptability to emerg-
ing threats.

Future work involves integrating advanced Deep Rein-
forcement Learning (DRL) techniques to enhance con-
troller collaboration, with performance compared to
Genetic Algorithms (GA), Particle Swarm Optimiza-
tion (PSO), and Fuzzy Logic. The framework will be
extended to detect Man-in-the-Middle (MITM) attacks
and ransomware, employing mitigation strategies like
dynamic key rotation and meta-RL. Adversarial RL
using Generative Adversarial Network (GAN) attacks
will be explored to improve robustness. Evaluation us-
ing above methods will benchmark detection accuracy,
false positives, and response time against signature and
anomaly-based methods.
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