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Abstract
Compressor blades in gas turbines are highly susceptible to resonant vibrations caused by
aerodynamic and mechanical loads, which can lead to fatigue failure. Accurate prediction
of their natural frequencies is crucial to ensure safe and efficient operation. This study
investigates the free vibration characteristics of a compressor blade with a NACA 6412
airfoil cross-section using both analytical and numerical methods. The blade was modeled
as a cantilever beam, and natural frequencies were calculated using Euler-Bernoulli and
Timoshenko beam theories. While the Euler-Bernoulli theory neglects shear deformation and
rotary inertia, the Timoshenko theory includes both, making it more suitable for thicker or
moderately short blades. Material and geometric properties of the blade were incorporated
to compute the first three modal frequencies. To validate the analytical results, a 3D finite
element model of the blade was developed in ANSYS, and modal analysis was performed
under fixed-root conditions. The comparison revealed that both beam theories closely matched
the FEM result for the first natural frequency. However, at higher modes, Timoshenko theory
demonstrated greater accuracy than Euler-Bernoulli by accounting for shear and rotary effects.
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1. Introduction
The compressor blades in gas turbines are subjected
to complex dynamic loads arising from aerodynamic
forces, mechanical imbalances, and operational wear,
which can cause resonant vibrations, fatigue, and catas-
trophic failure [1, 2]. Aerodynamic excitation, caused
by unsteady flow interactions between the rotor and sta-
tor blades, induces oscillatory pressures that excite the
natural frequencies of the blade [1, 3]. These vibrations
are further exacerbated by mechanical imbalances due
to manufacturing tolerances or degradation in service,
such as erosion or foreign object damage (FOD), which
alter the mass distribution and stiffness of the blade
[4, 5]. For instance, [5] demonstrated that a 5% thick-
ness reduction from erosion can increase the natural
frequency of first mode by 8%, while FOD significantly
modifies mode shapes and stress distributions [6, 7].
While classical beam theories like Euler-Bernoulli and
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Timoshenko Beam Theory are widely used to model
blade dynamics, their applicability to airfoil-shaped ge-
ometries characterized by camber, thickness variations,
and asymmetric stiffness remains underexplored [8, 9].

Figure 1: Fatigue Fracture of compressor blade due to
aerodynamic load a) Overall view b) first state compres-
sor

Existing studies on turbomachinery blade vibrations
have predominantly focused on simplified rectangu-
lar or tapered beams, neglecting the aerodynamic-
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structural coupling inherent to airfoils [10, 11]. For
example, Srinivasan [12] experimentally validated Eu-
ler Bernoulli theory for straight blades but highlighted
discrepancies in twisted or cambered profiles due to
shear deformation. Similarly, Lane [3] demonstrated
that the mode shapes of the system in compressor blades
deviate significantly from the predictions of the classi-
cal beam in higher modes, underscoring the need for
advanced models. Recent computational studies using
ANSYS [13] have improved accuracy but lack theo-
retical validation against Timoshenko’s framework for
airfoils.
The NACA 6412 airfoil, with its 6% camber and 12%
thickness, introduces unique challenges. Its asymmetric
geometry complicates the calculation of bending inertia
(I) and neutral axis position (z), which are critical for ac-
curate modal analysis [8]. While Euler Bernoulli theory
assumes negligible shear deformation which is valid for
slender beams, it overestimates natural frequencies for
thicker sections or higher modes, where rotary inertia
and shear effects dominate [14]. Timoshenko Beam
Theory addresses these limitations, but requires precise
shear correction factors [15], which are rarely calibrated
for airfoils.

2. Theoretical Formulations
2.1. Euler Bernoulli Beam Theory
The Euler-Bernoulli beam theory, derived from the clas-
sical work of Jacob Bernoulli and Leonhard Euler, is a
foundational model for analyzing slender beams under-
going bending vibrations [14, 16]. It operates under the
Kirchhoff hypothesis, which assumes:
a. The plane sections remain plane and perpendicular
to the neutral axis during deformation (neglecting shear
distortion).
b. The rotary inertia is negligible, which is valid for low
frequency vibrations.
c. Small deformations, ensuring linear elastic material
behavior.
The Euler Bernoulli theory models bending vibrations
by assuming that plane sections remain plane and per-
pendicular to the neutral axis, neglecting shear defor-
mation and rotary inertia. The governing equation for
free vibration is:

𝐸𝐼
𝜕4𝑦
𝜕𝑥4

+ 𝜌𝐴
𝜕2𝑦
𝜕𝑡2

= 0 (1)

where E, I, 𝜌 and A are Young’s modulus, moment of in-
ertia area, density, and cross-sectional area, respectively.
For a cantilever beam, boundary conditions are:

Figure 2: Uniform Cantilever Model

For fixed end,
𝑦(0) = 0, 𝑦′(0) = 0 (2)

For free end,
𝑦′′(𝐿) = 0, 𝑦′′′(𝐿) = 0 (3)

The frequency equation is the following.
cos 𝛽𝐿 cosh 𝛽𝐿 + 1 = 0 (4)

To solve this equation for 𝛽𝑛𝐿, which represents the
eigenvalues times the length, numerical computation is
performed to get,
𝛽1𝐿 = 1.8751, 𝛽2𝐿 = 4.6941, 𝛽3𝐿 = 7.8548, 𝛽4𝐿 =
10.9955

𝜔𝑛 =
(𝛽𝑛𝐿)2

𝐿2

√

𝐸𝐼
𝜌𝐴

(5)

Although Euler Bernoulli theory is computationally ef-
ficient, its assumption of negligible shear deformation
limits accuracy for short or thick beams and higher fre-
quency modes where shear effects dominate [17, 18].
For instance, Levinson [17] demonstrated that Euler
Bernoulli underestimates displacements by up to 30% in
thick beams due to ignored shear strain energy.
2.2. Timoshenko Beam Theory
Timoshenko beam theory, developed by Stephen Tim-
oshenko [14] extends Euler Bernoulli theory by in-
corporating shear deformation and rotary inertia, crit-
ical for high-frequency vibrations and stocky beams
[19, 15]. The Timoshenko beam theory overrides the
Kirchhoff hypothesis by accounting for shear-induced
cross-sectional rotations distinct from neutral axis de-
formation.
The coupled PDEs are derived from force and moment
equilibrium:
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Figure 3: Bending deformation of Euler Bernoulli and
Timoshenko Beam

beginequation −
𝜕𝑄(𝑥, 𝑡)

𝜕𝑥
+ 𝜌𝐴

𝜕2𝑦(𝑥, 𝑡)
𝜕𝑡2

= 0

−
𝜕𝑀(𝑥, 𝑡)

𝜕𝑥
+𝑄(𝑥, 𝑡) − 𝐼𝜌𝜕

2𝜃
𝜕𝑡2

= 0 (6)

where, 𝑄(𝑥, 𝑡) = 𝑘𝐺𝐴𝛾(𝑥, 𝑡)

𝑀(𝑥, 𝑡) = 𝐸𝐼
𝜕𝜃(𝑥, 𝑡)
𝜕𝑥

k is the shear correction factor (0.85–0.9 for solid sec-
tions; [15].
Using the separation of variable

𝑦(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡); 𝜃(𝑥, 𝑡) = 𝑌 (𝑥)𝑇 (𝑡) (7)

Equations 6 and 7 become

𝑋′′(𝑥) + 𝑎𝑋(𝑥) − 𝑌 ′(𝑥) = 0 (8)

𝑌 ′′(𝑥) + 𝑏𝑌 (𝑥) + 𝑐(𝑥) = 0 (9)

𝑇̈ + 𝜔2𝑇 (𝑡) = 0 (10)

Where,
𝑎 =

𝜔2𝜌
𝑘𝐺

, 𝑏 =
𝜔2𝜌
𝐸

− 𝑐, 𝑐 = 𝐺𝑘𝐴
𝐸𝐼

Putting value of 𝑌 ′′(𝑥) from equation 9 in equation
8,

𝑋′′′′(𝑥) + 𝑑𝑋′′(𝑥) + 𝑒𝑋(𝑥) = 0 (11)

Where,
𝑑 = 𝑎 + 𝑏 + 𝑐 and 𝑒 = 𝑎𝑏

Also, Δ = 𝑑2−4𝑒 and 𝜆1 = 1
2
(−𝑑+

√

Δ), 𝜆1 =
1
2
(−𝑑−

√

Δ)

Boundary conditions for the cantilever beam are:
at 𝑥 = 0, 𝑋(0) = 0 and 𝑋′′′(0) + (𝑎 + 𝑐)𝑋′(0) =
0

at 𝑥 = 𝐿, 𝑑𝑋′(𝐿)+𝑋′′′(𝐿) = 0 and 𝑋′′(𝐿)+𝑎𝑋(𝐿) =
0

For 𝜔 =
√

𝐺𝑘𝐴
𝜌𝐼

Natural frequencies of the beam are determined from
the equation: |𝐴| = 0. where,

𝐴 =

⎡

⎢

⎢

⎢

⎣

1 0 1 0
0 𝑎22 0 𝑎24
𝑎31 𝑎32 𝑎33 𝑎34
𝑎41 𝑎42 𝑎43 𝑎44

⎤

⎥

⎥

⎥

⎦

𝑎22 = 𝜆1(𝜆21 + 𝑎 + 𝑐)

𝑎24 = 𝜆2(−𝜆22 + 𝑎 + 𝑐)

𝑎31 = (𝜆21 − 𝑑)𝜆1 sinh 𝜆1𝐿

𝑎32 = (𝜆21 − 𝑑)𝜆1 cosh 𝜆1𝐿

𝑎33 = (𝜆22 + 𝑑)𝜆2 sin 𝜆2𝐿

𝑎34 = (−𝜆22 − 𝑑)𝜆2 cos 𝜆2𝐿

𝑎41 = (𝜆21 + 𝑎) cosh 𝜆1𝐿

𝑎42 = (𝜆21 + 𝑎) sinh 𝜆1𝐿

𝑎43 = (−𝜆22 + 𝑎) cos 𝜆2𝐿

𝑎44 = (−𝜆22 + 𝑎) sin 𝜆1𝐿

Timoshenko Beam Theory’s accuracy hinges on k,
which accounts for non-uniform shear stress distribution.
For airfoils, k is derived from cross-sectional geometry
[15, 20].
2.2.1. Finite Element Validation
Finite element methods (FEM) resolves limitations of
analytical beam theories [21, 22] by discretizing com-
plex geometries. ANSYS Workbench employs hexa-
hedral elements with shape functions approximating
displacements and rotations, minimizing shear locking
[13].

3. Area and Bending Inertia of Airfoil
section

3.1. Airfoil Data
For the cross section of blade geometry, NACA6412
airfoil is chosen. This NACA airfoil series is controlled
by 4 digits e.g. NACA 2412, which designate the cam-
ber, position of the maximum camber and thickness. If
an airfoil number is NACA MPXX. e.g.
NACA 6412 then:
M is the maximum camber divided by 100. In the exam-
ple M=6 so the camber is 0.06 or 6% of the chord
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P is the position of the maximum camber divided by 10.
In the example P=4 so the maximum camber is at 0.4
or 40% of the chord.
XX is the thickness divided by 100. In the exam-
ple XX=12 so the thickness is 0.12 or 12% of the
chord.
3.2. Area and Bending Inertia
As described in section 2.1 and 2.2, calculation of the
natural frequency of a blade requires knowing the span-
wise bending stiffness distribution 𝐸𝐼(𝑦) along the pri-
mary axis of loading. For a wing made of a uniform
solid material, the modulus E is the modulus of elas-
ticity of material. The moment of inertia 𝐼(𝑦) of the
airfoil cross-sections about the bending axis x (called
the bending inertia), is then related only to the airfoil
shape given by the upper and lower surfaces 𝑍𝑢(𝑥) and
𝑍𝑙(𝑥). As shown in Figure 5, both the area A and the
total bending inertia I are the integrated contributions of
all the infinitesimal rectangular sections, each 𝑑𝑥 wide
and 𝑍𝑢(𝑥) −𝑍𝑙(𝑥) tall. The inertia of each such section
is appropriately taken about the neutral surface position
𝑧 defined for the entire cross section.
These relations assume that the bending deflection will
occur in the z direction, which is a good assumption if
the x axis is parallel to the airfoil’s chord line.

Figure 4: Upper curve, Lower curve and neutral surface
of Airfoil

Area, 𝐴 = ∫

𝑐

0
(𝑍𝑢 −𝑍𝑙)𝑑𝑥

Neutral axis, 𝑧̄ = 1
2𝐴 ∫

𝑐

0
(𝑍2

𝑢 −𝑍2
𝑙 )𝑑𝑥

Moment of inertia, 𝐼 = 1
3 ∫

𝑐

0
((𝑍𝑢− 𝑧̄)3−(𝑍𝑙− 𝑧̄))3𝑑𝑥

4. Modal Analysis using ANSYS
In order to predict the dynamic behavior of the structure
properly via forming FEM, the model should be vali-
dated by tests. In the validation process, obtained test
data were used for comparison with the predicted data
obtained by FEM. If the model is incapable of predicting
the dynamic properties of the structure accurately, it has
to include some useful information about the dynamic
properties of the structure. In the study of Bagul et al.,
the confirmation has been performed by using ANSYS
Workbench.

4.1. Geometry
The compressor blade considered for the analysis has
been taken from literature [23, 24]. Depending upon the
operation condition and compressor stage, the compres-
sor section considered being high-pressure compressor
section design parameters were laid out in design con-
ditions [23]. A compressor rotor assembly has been
designed based on those parameters for a compressor
design overview [24]. Since a compressor rotor assem-
bly is a complex assembly with multiple degrees of
freedom and large variables [25], a single blade design
is made to carry out vibrational study. The disk is taken
to be a pre-twisted compressor blade with a fir-tree root
type, designed to simplify analysis [26]. A CAD model
of the compressor disk and single blade is represented
in the figure below.
The modeled structure was an aircraft wing of airfoil
cross-section NACA 6412 series with steel [8, 27]. The
chord length of the airfoil is 0.1 m, and the wing length
is 0.15 m.
The compressor blade considered for the analysis has
been taken from literature. Depending upon the opera-
tion condition and compressor stage the compressor sec-
tion considered being high pressure compressor section
design parameters were laid out in design conditions.
A compressor rotor assembly has been designed based
on those parameters for a compressor design overview.
Since a compressor rotor assembly is a complex assem-
bly with multiple degrees of freedom and large variables,
a single blade design is made to carry out vibrational
study. The disk is taken to be a pre-twisted compressor
blade with fir tree root type has been designed to make
analysis simpler. CAD model of compressor disk and
single blade is represented in the figure below.

Figure 5: CAD Model of twisted blade with fir tree root
The modeled structure was an aircraft wing of airfoil
cross section NACA 6412 series with Steel. The chord
length of the airfoil is 0.1 m and wing length is 0.15
m.
4.2. Meshing
The structured meshing was done in blade using sweep
method. One airfoil section is selected as source and
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other as target. The number of divisions was put to be
50. For simplicity, the root of the blade was removed.
The meshing was started with body sizing of 8 mm. The
sizing was reduced to 4 mm, 2 mm finally to 1 mm for
grid convergence study.

Figure 6: Hexahedral Meshing of 8 mm mesh size

Figure 7: Hexahedral Meshing of 4 mm mesh size

Figure 8: Hexahedral Meshing of 2 mm mesh size

Figure 9: Hexahedral Meshing of 1 mm mesh size

4.2.1. Grid Convergence Study
The details of the mesh for different sizes are in the
Table 1.

Table 1: First Natural Frequency at Various Modes
S.N. Nodes Elements Natural Freq. (Hz)

1 1581 950 303.2
2 3672 2450 301
3 12291 9600 299.87
4 40800 35050 299.69

Figure 10: Grid Convergence Study, First natural fre-
quency vs No. of elements

4.3. Simulation Setup and Boundary
Conditions

The blade is considered a cantilever beam. One end of
the blade is given fixed support and the other is kept
free.

Figure 11: Boundary Conditions showing one end of
cross section fixed and other end free

4.4. Natural frequencies and Mode
shapes

The natural frequencies obtained from fem analysis us-
ing ANSYS is as follows in Table 2.
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Table 2: Natural Frequency at various modes

Mode Natural Frequency (Hz)
1 299.87
2 1688.3
3 4607.8
4 7807

Figure 12: First mode bending vibration

Figure 13: Second mode bending vibration

Figure 14: Third mode bending vibration

Figure 15: Fourth mode bending vibration

5. Results and Discussion
5.1. Euler Bernoulli
By using formula of section 3.2.
Area of blade, A = 687.2 × 10−6𝑚2

Moment of inertia of blade, 𝐼 = 3760×10−12𝑚4

The Natural frequency using Euler Bernoulli beam
model is shown in Table 3.

Table 3: Natural frequency using Euler Bernoulli
Mode No. Natural Frequency (Hz)
1 293.6
2 1840.58
3 5153.73
4 10099.08

5.2. Timoshenko
The Natural frequency using Natural frequency using
Timoshenko beam model is shown in Table 4.

Table 4: Natural frequency using Timoshenko
Mode No. Natural Frequency (Hz)
1 294.82
2 1847.73
3 5093.03
4 9732.08

5.3. FEM Using ANSYS
The Natural frequency using ANSYS is shown in Table
5.

Table 5: Natural frequency using ANSYS
Mode No. Natural Frequency (Hz)
1 299.87
2 1688.3
3 4670.8
4 9801.8

The results of the free vibration analysis using Euler-
Bernoulli beam theory, Timoshenko beam theory, and
ANSYS simulations reveal critical insights into the dy-
namic behavior of the NACA 6412 airfoil compressor
blade.
Comparison of Natural Frequencies First Mode: The
theoretical Euler Bernoulli (293.6 Hz) and Timoshenko
Beam Theory (294.82 Hz) predictions align closely
with ANSYS (299.87 Hz), with a slight discrepancy
( 2% error). This validates the applicability of both
beam theories for fundamental mode analysis of slen-
der blades. The minor difference between two theories
here indicates negligible shear deformation effects in
low-frequency regimes.
Higher Modes: Significant deviations emerge in the
second and third modes. For instance, ANSYS pre-
dicts a second-mode frequency of 1688.3 Hz, markedly
lower than Euler Bernoulli (1840.58 Hz) and Timo-
shenko Beam Theory (1847.73 Hz). This divergence
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likely stems from geometric complexities (e.g., cam-
ber, thickness variations) and 3D effects in the airfoil,
which are simplified in 1D beam theories. Timoshenko
Beam Theory’s closer agreement with ANSYS in the
fourth mode (9732.08 Hz vs. 9801.8 Hz) highlights
its superiority in modeling high-frequency vibrations
where shear deformation and rotary inertia become crit-
ical. The NACA 6412 airfoil’s 6% camber and 12%
thickness introduce asymmetric bending and localized
stiffness variations, which beam theories approximate
as uniform cross-sections. This simplification explains
the overestimation of frequencies by Euler Bernoulli
and Timoshenko Beam Theory in higher modes. AN-
SYS, which accounts for the actual airfoil profile, cap-
tures these nuances, resulting in lower frequencies (e.g.,
4670.8 Hz vs. 5153.73 Hz in Mode 3).
The mesh convergence study confirmed mesh indepen-
dence, with the first natural frequency stabilizing at
2̃99.69 Hz for a 1mm mesh. This ensures the relia-
bility of ANSYS results. The close match between
Timoshenko Beam and ANSYS in higher modes (e.g.,
Mode 4) underscores the importance of refining theo-
retical models to include shear effects for thick or short
blades.

6. Conclusions
In this study, the Euler-Bernoulli and Timoshenko beam
theory was compared with ANSYS simulations to ana-
lyze the free vibration characteristics of a NACA 6412
airfoil compressor blade. The results highlight key
trade-offs between simplicity and accuracy in model-
ing blade dynamics. For low-frequency vibrations (e.g.,
first mode), both Euler Bernoulli and Timoshenko Beam
align closely with ANSYS results (2% error), validat-
ing their utility for slender blade analysis. However,
higher modes reveal significant deviations, with Eu-
ler Bernoulli and Timoshenko Beam Theory overesti-
mating frequencies by up to 10% compared to ANSYS.
These discrepancies stem from the geometric complexi-
ties of the airfoil, such as camber and thickness varia-
tions, which beam theories simplify as uniform cross
sections. Timoshenko Beam Theory’s closer agreement
with ANSYS in the fourth mode (0.7% error) under-
scores its advantage in capturing shear and rotary inertia
effects critical for high-frequency regimes.
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