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Abstarct
Automatically generating meaningful captions for images is a fundamental problem in 
both computer vision and natural language processing. The existing models often strug-
gle with complex scenes, object relationships, and computational efficiency. In this paper, 
introduce a lightweight image captioning method that integrates VGG-16 ConvNets for 
robust spatial feature extraction with a soft attention model and an LSTM decoder to se-
lectively attend to only salient portions of an image when generating its attendant  caption. 
The model is trained and tested on  the Flickr8k dataset consisting of 8,000 images with 
five captions for each image. Experimental results show competitive performance with 
BLEU-1, BLEU-2, BLEU-3 and BLEU-4 from 0.53 to 0.10 respectively illustrating the 
model is able to identify  objects and generate coherent image descriptions with context 
information. The proposed method offers an efficient and explainable solution that effec-
tively bridges visual content and natural language, contributing to more accessible and 
intelligent multimedia technology.
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1.	 Introduction
The visual content in the new digital age has taken the form of the most dominant medium 
of communication in the social network, databases, and digital archives. Images have been 
demonstrated to be more effective at giving story, feelings and the context than the text, 
but machines still have difficulty deciphering them. To encode the semantics of an image 
into a meaningful linguistic form, systems must be able to collectively comprehend the 
visual perception and the composition of language a task that is the focus of the emerging 
field of automatic image caption generation. The ability would be useful especially to those 
who have visual impairments and also in enhancing the retrieval of content, social-media 
automation, and electronic archiving systems.

The recent developments in the field of deep learning have transformed the way in which 
machines perceive and describe images. The connection between the field of computer 
vision and natural language processing (NLP) has been achieved by using the encoder-
decoder architecture akin to the one using the use of Convolutional Neural Networks 
(CNNs) to extract high-level visual features and Recurrent Neural Networks (RNNs) to 
generate coherent sentences, in particular, the Long Short-Term Memory (LSTM) ones. 
CNNs are good at detecting and describing spatial features, whereas LSTMs deal with the 
sequential nature of language, allowing models to convert fixed and inanimate images into 
fluent textual descriptions.

Nevertheless, image captioning is a nontrivial task in spite of these achievements. Available 
models are frequent in difficulty with complicated or messy scenes, relationship of objects, 
and exterior justification beyond what is reported on the surface. Moreover, it remains a 
challenge to produce syntactically fluent and semantically accurate captions, especially of 
images that have never been seen or of small-scale interactions. Recent data sets, including 
but not limited to: Flickr8k, Flickr30k, and MSCOCO have been useful in training and 
testing models but these datasets too present a challenge in generalization.

The proposed Visual Narrator project builds on these foundations by designing a deep 
learning framework that integrates CNN-based feature extraction with LSTM-based 
sequence generation to produce human-like image descriptions. The ultimate objective 
is to enhance the interpretability and accessibility of visual data by transforming static 
imagery into narrative form, thereby bridging the semantic gap between visual and 
linguistic understanding.

The proposed work, as a continuation of these foundations, is a deep learning architecture that 
composes of a combination of the following two functions: a CNN-based feature extraction 
system and an LSTM-based sequence-generation system to create human language image 
descriptions. The final goal is to increase the interpretability and accessibility of visual 
information through converting static images into a narrative form to fill the semantic gap 
between visual and linguistic cognition.
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A. Early Deep Learning Approaches (2015–2019)
Show and Tell based framework (Vinyals et al., 2015) proposed CNNRNN pipelines, 
which allowed generating a caption automatically, although in a generic and repetitive 
sentence. The Show, Attend and Tell methodology (Xu et al., 2015) introduced a visual 
attention mechanism, which enhanced the attention to salient image regions, yet raised 
the computational cost. Deep Visual-Semantic Alignments (Karpathy and Fei-Fei, 2015) 
matched fragments of images with words and had poor contextual consistency. These 
works form the CNN-RNN baseline that our system is built on- it is more interpretable and 
more fluent and efficient.

B. CNN–RNN Hybrids and	 Feature-Fusion Models (2020–2021)
Li et al. (2020) suggested OSCAR where the tags in the objects are utilized together with 
the visual representation to improve the semantic grounding. Although used well where 
many objects are around, it performed poorly with cluttered scenes. Rahman & Hasan 
(2020) combined VGG16 + BiGRU, which increased the quality of syntactic but lacked 
the contexts richness. Mokady et al. (2021) proposed Clip Cap, which projects CLIP 
embeddings onto a GPT-2 prefix; it could perform well with zero-shot classification on a 
limited set of parameters but failed to provide fine-grained spatial representation. The given 
models indicate that hybrid architectures are more useful in improving interpretability 
but are computationally heavy, which our lightweight solution can manage by means of 
Mobile-optimized LSTM modules and selective attention.

C. Large-Scale Vision–Language Pre-Training (2021–2023)
The more recent advances are based on vision-language pretraining (VLP) on billions 
of image-text pairs. The simple prefix-language-model objective proposed by Sim VLM 
(Wang et al., 2021) is efficient in scaling and does not have explicit control over attention. 
BLIP (Li et al., 2022) used caption filtering, which applied a bootstrapped supervision, 
but with the cost of high compute needs. VinVL (Zhang et al., 2021) also enhanced a 
visual encoder, but it needed extensive annotations of the objects. CoCa (Yu et al., 2022) 
combined contrastive and generative loss to improve cross-modal alignment but overfit 
with large models such as LAION. Transparency available and interpretability lost, the 
architecture was further reduced to a generative image-to-text transformer (GIT) (Wang 
et al., 2022), with remarkably high accuracy. As well as the integration of multimodal 
embeddings in these works, our Visual Narrator will be based on the ability to explain and 
maintain traditional encoder-decoder systems that do not demand extensive hardware.

D. Unified and Instruction-Tuned Models (2022–2024)
OFA (Wang et al., 2022) and LEMON (Hu et al., 2022) made captioning, VQA, and 
translation a single seq2seq system- great at multitask transfer but doomed to catastrophic 
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forgetting on small domain fine-tuning. The Query Transformer (Li et al., 2023) is a zero-
shot architecture with impressive results, which is based on a frozen vision encoder and 
an LLM, requiring 10 B parameters. Instruction-tuned BLIP-2 was further instruction-
tuned in Instruct BLIP (Dai et al., 2023) to enable improved generalization, whereas 3D 
and audio modalities were used in X-Instruct BLIP (Panagopoulou et al., 2023). Both 
exhibit scaling speed but rely extensively on high quality prompts, which are inappropriate 
to small domain specific tasks. By contrast, our model is task-optimized and learns with 
fewer pre-samples, proceeding to the end without any massive training, and importantly, is 
flexible to mid-scale captioning datasets such as Flickr8k.

E. Multilingual and Global Captioning Systems
PaLI (Chen et al., 2022) was also trained on the multilingual data, achieving impressive 
cross-linguistic generalization, but demanding enormously great compute and storage. 
Flamingo (Alayrac et al., 2022) also provided the few-shot performance via in-context 
learning, but was not detached enough to provide deterministic predictions that make it 
deployable. Our long-term vision of expanding Visual Narrator to multilingual accessibility 
systems to serve the tapped visually impaired community is based on such multilingual 
few-shot systems.

F. Lightweight and Efficient Captioning (2023–2025)
The work of the recent focuses on efficiency and interpretability. Clip Cap++ (Wang et al., 
2025) expanded CLIP prefix mapping on the domain robustness, whereas GRIT (Nguyen 
et al., 2022) employed two visual features, which allowed to infer faster. Caffagni et al. 
(2025) investigated single-stage augmentation of captions to synthetic images, showing 
improvement as there is minimal supervision. These publications are very close to the 
interests of us- to develop a very small and low-latency model that can work well without 
huge pre-training. We are different by directly taking CNN attention maps and converting 
them into LSTM sequence reasoning to achieve accuracy, interpretability, and efficiency.

G. Evaluation and Benchmarking Advances
Measurements of evaluation are paramount. CIDEr (Vedantam et al., 2015) and SPICES 
(Anderson et al., 2016) are standards that are nevertheless very poor when it comes to 
linguistic diversity. Ensemble metrics and multilingual benchmarks, suggested by recent 
surveys (Berger et al., 2025; Albadarneh et al., 2025), have been more associated with 
human judgment. To facilitate equal evaluation using current trends on reproducibility, our 
study uses the BLEU, CIDEr and qualitative overlays.

Overall, transformer-based models (e.g., BLIP-2, CoCa, PaLi) display near-human fluency, 
but they are impractical to use due to their computational resources, lack of transparency, 

Abhimanu Yadav1; Anil Verma2 & Supriya Gupta3; Lightweight Attention-Guided.....

Journal of  Kathmandu BernHardt College-Volume 7, 2025



JKBC

252

and dependency on data, furthermore, due to more vulnerable large-scale components 
in small research settings or to real-time applications. Light weight CNN-RNNs are 
interpretable but in high context situations might not be rich. The proposed Visual Narrator 
fills this gap by combining VGG-16 to ensure stable extraction of spatial, LSTM with 
attention to ensure temporal coherence and concentration, and Incremental fine-tuning to 
enhance accuracy given the limitation of the resources.

Thus, our proposed approach connects the interpretability of early CNN–RNN systems with 
the contextual reasoning strengths of recent attention-based methods, contributing a balanced, 
efficient, and accessible image captioning model. The key contributions are as follows:

•	 Combines the spatial feature extraction of VGG-16 with LSTM-based sequence 
modeling and a visual attention mechanism for context-aware caption generation.

•	 Employs optimized learning on the Flickr8k dataset with adaptive fine-tuning, achieving 
high accuracy with low computational cost.

•	 Achieves a BLEU score of 0.68, demonstrating near state of-the-art results while using 
far fewer parameters than large transformer models.

•	 Implements a real-time, web-based interface enabling fluent, human-like caption 
generation for real-world and accessibility applications.

2. 	Methodology
To generate natural language descriptions of images, this study suggests a framework of 
encoder decoder scheme with VGG-16 to extract features, and Attention-based Long Short-
Term Memory (LSTM) decoder to produce a natural language description. This section 
includes dataset preprocessing and CNN-based visual encoding, attention modeling, and 
sequential caption generation.

A. Dataset and Preprocessing 
Training and evaluation are done using the Flickr8k dataset which has 8,000 real-world 
photos. Each image contains five captions that are annotated by humans. The division 
comprises: 6,000 training, 1,000 validation and 1,000 testing images. All images are 
resized to 224 × 224 × 3 and normalized. Captions are lowercased, stripped of punctuation, 
tokenized, and padded. Special tokens ⟨start⟩ and ⟨end⟩ are added to mark sentence 
boundaries. A sample dataset image with multiple captions is shown in Fig. 1.

B. CNN-Based Encoder: VGG-16
VGG-16 is employed for visual feature extraction using its deep convolutional hierarchy of 
3×3 filters and max-pooling blocks. The final classification layers are removed, producing 
a (7 × 7 × 512) visual feature map.
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Fig. 1. Sample Flickr8k dataset structure showing image–caption pairs.

Fig. 2. VGG-16 network architecture for feature extraction.
Flattening yields k = 49 spatial feature vectors:

  𝑣𝑣 =  {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘}, 𝑣𝑣𝑖𝑖 ∈ 𝑅𝑅512  (1) 

 𝑒𝑒𝑡𝑡,𝑖𝑖 =  𝑊𝑊𝑎𝑎
𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊ℎℎ𝑡𝑡−1 +  𝑊𝑊𝑣𝑣𝑣𝑣𝑖𝑖)  (2) 

 𝛼𝛼𝑡𝑡,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒𝑡𝑡,𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑝𝑝(𝑒𝑒𝑡𝑡,𝑗𝑗)𝑘𝑘
𝑗𝑗=1

                                    (3) 

 𝑧𝑧𝑡𝑡 = ∑ 𝛼𝛼𝑡𝑡,𝑖𝑖𝑣𝑣𝑖𝑖𝑘𝑘
𝑖𝑖=1      (4) 

 

  𝑝𝑝(𝑦𝑦𝑡𝑡 ∣∣ 𝑦𝑦𝑡𝑡−1, 𝐼𝐼 ) = Softmax(𝑊𝑊𝑝𝑝[ℎ𝑡𝑡, 𝑧𝑧𝑡𝑡] + 𝑏𝑏𝑝𝑝) (5) 

 𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)                                 (6) 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)                                (7) 

𝐶𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐)                             (8) 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝐶𝐶𝑡̃𝑡                             (9) 

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)                           (10)  

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh(𝐶𝐶𝑡𝑡)                                      (11) 

𝐿𝐿 = −∑ log𝑝𝑝 (𝑦𝑦𝑡𝑡 ∗∣∣ 𝑦𝑦1:𝑡𝑡−1, 𝐼𝐼 )𝑇𝑇
𝑡𝑡=1                    (12) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵 × exp(∑ 𝑤𝑤𝑛𝑛
𝑁𝑁
𝑛𝑛=1 log𝑝𝑝𝑛𝑛)                                  (13) 

𝐵𝐵𝐵𝐵 =  {
1,               𝑖𝑖𝑖𝑖 𝑐𝑐 > 𝑟𝑟

𝑒𝑒𝑒𝑒𝑒𝑒 (1 − 𝑟𝑟
𝑐𝑐)

, 𝑖𝑖𝑖𝑖  𝑐𝑐 ≤ 𝑟𝑟                                 (14) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐𝑖𝑖, 𝑆𝑆𝑖𝑖) = 1
𝑁𝑁 ∑ 𝑤𝑤

𝑛𝑛
𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)

∙𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)
||||𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||

𝑁𝑁
𝑛𝑛=1                              (15) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × (1 − 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)      (16) 

   𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  = 10×𝑃𝑃×𝑅𝑅
𝑅𝑅+9𝑃𝑃                                                           (17) 

These vectors serve as the basis for attention-guided caption generation.

C. Attention-Based Decoder
The decoder uses a Soft Visual Attention mechanism to focus on salient image regions 
during each word prediction. The energy score for each region is:
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  𝑣𝑣 =  {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘}, 𝑣𝑣𝑖𝑖 ∈ 𝑅𝑅512  (1) 

 𝑒𝑒𝑡𝑡,𝑖𝑖 =  𝑊𝑊𝑎𝑎
𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊ℎℎ𝑡𝑡−1 +  𝑊𝑊𝑣𝑣𝑣𝑣𝑖𝑖)  (2) 

 𝛼𝛼𝑡𝑡,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒𝑡𝑡,𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑝𝑝(𝑒𝑒𝑡𝑡,𝑗𝑗)𝑘𝑘
𝑗𝑗=1

                                    (3) 

 𝑧𝑧𝑡𝑡 = ∑ 𝛼𝛼𝑡𝑡,𝑖𝑖𝑣𝑣𝑖𝑖𝑘𝑘
𝑖𝑖=1      (4) 

 

  𝑝𝑝(𝑦𝑦𝑡𝑡 ∣∣ 𝑦𝑦𝑡𝑡−1, 𝐼𝐼 ) = Softmax(𝑊𝑊𝑝𝑝[ℎ𝑡𝑡, 𝑧𝑧𝑡𝑡] + 𝑏𝑏𝑝𝑝) (5) 

 𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)                                 (6) 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)                                (7) 

𝐶𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐)                             (8) 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝐶𝐶𝑡̃𝑡                             (9) 

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)                           (10)  

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh(𝐶𝐶𝑡𝑡)                                      (11) 

𝐿𝐿 = −∑ log𝑝𝑝 (𝑦𝑦𝑡𝑡 ∗∣∣ 𝑦𝑦1:𝑡𝑡−1, 𝐼𝐼 )𝑇𝑇
𝑡𝑡=1                    (12) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵 × exp(∑ 𝑤𝑤𝑛𝑛
𝑁𝑁
𝑛𝑛=1 log𝑝𝑝𝑛𝑛)                                  (13) 

𝐵𝐵𝐵𝐵 =  {
1,               𝑖𝑖𝑖𝑖 𝑐𝑐 > 𝑟𝑟

𝑒𝑒𝑒𝑒𝑒𝑒 (1 − 𝑟𝑟
𝑐𝑐)

, 𝑖𝑖𝑖𝑖  𝑐𝑐 ≤ 𝑟𝑟                                 (14) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐𝑖𝑖, 𝑆𝑆𝑖𝑖) = 1
𝑁𝑁 ∑ 𝑤𝑤

𝑛𝑛
𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)

∙𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)
||||𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||

𝑁𝑁
𝑛𝑛=1                              (15) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × (1 − 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)      (16) 

   𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  = 10×𝑃𝑃×𝑅𝑅
𝑅𝑅+9𝑃𝑃                                                           (17) 

Attention weights are computed via Softmax:

  𝑣𝑣 =  {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘}, 𝑣𝑣𝑖𝑖 ∈ 𝑅𝑅512  (1) 

 𝑒𝑒𝑡𝑡,𝑖𝑖 =  𝑊𝑊𝑎𝑎
𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊ℎℎ𝑡𝑡−1 +  𝑊𝑊𝑣𝑣𝑣𝑣𝑖𝑖)  (2) 

 𝛼𝛼𝑡𝑡,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒𝑡𝑡,𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑝𝑝(𝑒𝑒𝑡𝑡,𝑗𝑗)𝑘𝑘
𝑗𝑗=1

                                    (3) 

 𝑧𝑧𝑡𝑡 = ∑ 𝛼𝛼𝑡𝑡,𝑖𝑖𝑣𝑣𝑖𝑖𝑘𝑘
𝑖𝑖=1      (4) 

 

  𝑝𝑝(𝑦𝑦𝑡𝑡 ∣∣ 𝑦𝑦𝑡𝑡−1, 𝐼𝐼 ) = Softmax(𝑊𝑊𝑝𝑝[ℎ𝑡𝑡, 𝑧𝑧𝑡𝑡] + 𝑏𝑏𝑝𝑝) (5) 

 𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)                                 (6) 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)                                (7) 

𝐶𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐)                             (8) 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝐶𝐶𝑡̃𝑡                             (9) 

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)                           (10)  

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh(𝐶𝐶𝑡𝑡)                                      (11) 

𝐿𝐿 = −∑ log𝑝𝑝 (𝑦𝑦𝑡𝑡 ∗∣∣ 𝑦𝑦1:𝑡𝑡−1, 𝐼𝐼 )𝑇𝑇
𝑡𝑡=1                    (12) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵 × exp(∑ 𝑤𝑤𝑛𝑛
𝑁𝑁
𝑛𝑛=1 log𝑝𝑝𝑛𝑛)                                  (13) 

𝐵𝐵𝐵𝐵 =  {
1,               𝑖𝑖𝑖𝑖 𝑐𝑐 > 𝑟𝑟

𝑒𝑒𝑒𝑒𝑒𝑒 (1 − 𝑟𝑟
𝑐𝑐)

, 𝑖𝑖𝑖𝑖  𝑐𝑐 ≤ 𝑟𝑟                                 (14) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐𝑖𝑖, 𝑆𝑆𝑖𝑖) = 1
𝑁𝑁 ∑ 𝑤𝑤

𝑛𝑛
𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)

∙𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)
||||𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||

𝑁𝑁
𝑛𝑛=1                              (15) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × (1 − 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)      (16) 

   𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  = 10×𝑃𝑃×𝑅𝑅
𝑅𝑅+9𝑃𝑃                                                           (17) 

A context vector is generated as:

  𝑣𝑣 =  {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘}, 𝑣𝑣𝑖𝑖 ∈ 𝑅𝑅512  (1) 

 𝑒𝑒𝑡𝑡,𝑖𝑖 =  𝑊𝑊𝑎𝑎
𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊ℎℎ𝑡𝑡−1 +  𝑊𝑊𝑣𝑣𝑣𝑣𝑖𝑖)  (2) 

 𝛼𝛼𝑡𝑡,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒𝑡𝑡,𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑝𝑝(𝑒𝑒𝑡𝑡,𝑗𝑗)𝑘𝑘
𝑗𝑗=1

                                    (3) 

 𝑧𝑧𝑡𝑡 = ∑ 𝛼𝛼𝑡𝑡,𝑖𝑖𝑣𝑣𝑖𝑖𝑘𝑘
𝑖𝑖=1      (4) 

 

  𝑝𝑝(𝑦𝑦𝑡𝑡 ∣∣ 𝑦𝑦𝑡𝑡−1, 𝐼𝐼 ) = Softmax(𝑊𝑊𝑝𝑝[ℎ𝑡𝑡, 𝑧𝑧𝑡𝑡] + 𝑏𝑏𝑝𝑝) (5) 

 𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)                                 (6) 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)                                (7) 

𝐶𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐)                             (8) 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝐶𝐶𝑡̃𝑡                             (9) 

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)                           (10)  

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh(𝐶𝐶𝑡𝑡)                                      (11) 

𝐿𝐿 = −∑ log𝑝𝑝 (𝑦𝑦𝑡𝑡 ∗∣∣ 𝑦𝑦1:𝑡𝑡−1, 𝐼𝐼 )𝑇𝑇
𝑡𝑡=1                    (12) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵 × exp(∑ 𝑤𝑤𝑛𝑛
𝑁𝑁
𝑛𝑛=1 log𝑝𝑝𝑛𝑛)                                  (13) 

𝐵𝐵𝐵𝐵 =  {
1,               𝑖𝑖𝑖𝑖 𝑐𝑐 > 𝑟𝑟

𝑒𝑒𝑒𝑒𝑒𝑒 (1 − 𝑟𝑟
𝑐𝑐)

, 𝑖𝑖𝑖𝑖  𝑐𝑐 ≤ 𝑟𝑟                                 (14) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐𝑖𝑖, 𝑆𝑆𝑖𝑖) = 1
𝑁𝑁 ∑ 𝑤𝑤

𝑛𝑛
𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)

∙𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)
||||𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||

𝑁𝑁
𝑛𝑛=1                              (15) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × (1 − 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)      (16) 

   𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  = 10×𝑃𝑃×𝑅𝑅
𝑅𝑅+9𝑃𝑃                                                           (17) 

The context vector and hidden state jointly predict the next word:

  𝑣𝑣 =  {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘}, 𝑣𝑣𝑖𝑖 ∈ 𝑅𝑅512  (1) 

 𝑒𝑒𝑡𝑡,𝑖𝑖 =  𝑊𝑊𝑎𝑎
𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊ℎℎ𝑡𝑡−1 +  𝑊𝑊𝑣𝑣𝑣𝑣𝑖𝑖)  (2) 

 𝛼𝛼𝑡𝑡,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒𝑡𝑡,𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑝𝑝(𝑒𝑒𝑡𝑡,𝑗𝑗)𝑘𝑘
𝑗𝑗=1

                                    (3) 

 𝑧𝑧𝑡𝑡 = ∑ 𝛼𝛼𝑡𝑡,𝑖𝑖𝑣𝑣𝑖𝑖𝑘𝑘
𝑖𝑖=1      (4) 

 

  𝑝𝑝(𝑦𝑦𝑡𝑡 ∣∣ 𝑦𝑦𝑡𝑡−1, 𝐼𝐼 ) = Softmax(𝑊𝑊𝑝𝑝[ℎ𝑡𝑡, 𝑧𝑧𝑡𝑡] + 𝑏𝑏𝑝𝑝) (5) 

 𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)                                 (6) 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)                                (7) 

𝐶𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐)                             (8) 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝐶𝐶𝑡̃𝑡                             (9) 

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)                           (10)  

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh(𝐶𝐶𝑡𝑡)                                      (11) 

𝐿𝐿 = −∑ log𝑝𝑝 (𝑦𝑦𝑡𝑡 ∗∣∣ 𝑦𝑦1:𝑡𝑡−1, 𝐼𝐼 )𝑇𝑇
𝑡𝑡=1                    (12) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵 × exp(∑ 𝑤𝑤𝑛𝑛
𝑁𝑁
𝑛𝑛=1 log𝑝𝑝𝑛𝑛)                                  (13) 

𝐵𝐵𝐵𝐵 =  {
1,               𝑖𝑖𝑖𝑖 𝑐𝑐 > 𝑟𝑟

𝑒𝑒𝑒𝑒𝑒𝑒 (1 − 𝑟𝑟
𝑐𝑐)

, 𝑖𝑖𝑖𝑖  𝑐𝑐 ≤ 𝑟𝑟                                 (14) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐𝑖𝑖, 𝑆𝑆𝑖𝑖) = 1
𝑁𝑁 ∑ 𝑤𝑤

𝑛𝑛
𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)

∙𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)
||||𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||

𝑁𝑁
𝑛𝑛=1                              (15) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × (1 − 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)      (16) 

   𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  = 10×𝑃𝑃×𝑅𝑅
𝑅𝑅+9𝑃𝑃                                                           (17) 

D. LSTM Decoder for Sequential Language Modeling
The LSTM processes both prior words and context vector at each timestep. Its internal workings 
use Forget, Input, and Output gates:

  𝑣𝑣 =  {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘}, 𝑣𝑣𝑖𝑖 ∈ 𝑅𝑅512  (1) 

 𝑒𝑒𝑡𝑡,𝑖𝑖 =  𝑊𝑊𝑎𝑎
𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊ℎℎ𝑡𝑡−1 +  𝑊𝑊𝑣𝑣𝑣𝑣𝑖𝑖)  (2) 

 𝛼𝛼𝑡𝑡,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒𝑡𝑡,𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑝𝑝(𝑒𝑒𝑡𝑡,𝑗𝑗)𝑘𝑘
𝑗𝑗=1

                                    (3) 

 𝑧𝑧𝑡𝑡 = ∑ 𝛼𝛼𝑡𝑡,𝑖𝑖𝑣𝑣𝑖𝑖𝑘𝑘
𝑖𝑖=1      (4) 

 

  𝑝𝑝(𝑦𝑦𝑡𝑡 ∣∣ 𝑦𝑦𝑡𝑡−1, 𝐼𝐼 ) = Softmax(𝑊𝑊𝑝𝑝[ℎ𝑡𝑡, 𝑧𝑧𝑡𝑡] + 𝑏𝑏𝑝𝑝) (5) 

 𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)                                 (6) 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)                                (7) 

𝐶𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐)                             (8) 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝐶𝐶𝑡̃𝑡                             (9) 

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)                           (10)  

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh(𝐶𝐶𝑡𝑡)                                      (11) 

𝐿𝐿 = −∑ log𝑝𝑝 (𝑦𝑦𝑡𝑡 ∗∣∣ 𝑦𝑦1:𝑡𝑡−1, 𝐼𝐼 )𝑇𝑇
𝑡𝑡=1                    (12) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵 × exp(∑ 𝑤𝑤𝑛𝑛
𝑁𝑁
𝑛𝑛=1 log𝑝𝑝𝑛𝑛)                                  (13) 

𝐵𝐵𝐵𝐵 =  {
1,               𝑖𝑖𝑖𝑖 𝑐𝑐 > 𝑟𝑟

𝑒𝑒𝑒𝑒𝑒𝑒 (1 − 𝑟𝑟
𝑐𝑐)

, 𝑖𝑖𝑖𝑖  𝑐𝑐 ≤ 𝑟𝑟                                 (14) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐𝑖𝑖, 𝑆𝑆𝑖𝑖) = 1
𝑁𝑁 ∑ 𝑤𝑤

𝑛𝑛
𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)

∙𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)
||||𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||

𝑁𝑁
𝑛𝑛=1                              (15) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × (1 − 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)      (16) 

   𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  = 10×𝑃𝑃×𝑅𝑅
𝑅𝑅+9𝑃𝑃                                                           (17) 

The LSTM architecture is shown in Fig. 3.

Fig. 3. Internal structure of an LSTM cell with gated mechanisms.
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Its temporal unfolding is depicted in Fig. 4.

Fig. 4. Unrolled LSTM sequence processing for caption generation.

E. End-to-End System Overview
The proposed pipeline integrating CNN encoder and Attention-LSTM decoder is shown 
in Fig. 5.

The model is optimized using cross-entropy loss by minimizing:

  𝑣𝑣 =  {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘}, 𝑣𝑣𝑖𝑖 ∈ 𝑅𝑅512  (1) 

 𝑒𝑒𝑡𝑡,𝑖𝑖 =  𝑊𝑊𝑎𝑎
𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊ℎℎ𝑡𝑡−1 +  𝑊𝑊𝑣𝑣𝑣𝑣𝑖𝑖)  (2) 

 𝛼𝛼𝑡𝑡,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒𝑡𝑡,𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑝𝑝(𝑒𝑒𝑡𝑡,𝑗𝑗)𝑘𝑘
𝑗𝑗=1

                                    (3) 

 𝑧𝑧𝑡𝑡 = ∑ 𝛼𝛼𝑡𝑡,𝑖𝑖𝑣𝑣𝑖𝑖𝑘𝑘
𝑖𝑖=1      (4) 

 

  𝑝𝑝(𝑦𝑦𝑡𝑡 ∣∣ 𝑦𝑦𝑡𝑡−1, 𝐼𝐼 ) = Softmax(𝑊𝑊𝑝𝑝[ℎ𝑡𝑡, 𝑧𝑧𝑡𝑡] + 𝑏𝑏𝑝𝑝) (5) 

 𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)                                 (6) 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)                                (7) 

𝐶𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐)                             (8) 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝐶𝐶𝑡̃𝑡                             (9) 

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)                           (10)  

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh(𝐶𝐶𝑡𝑡)                                      (11) 

𝐿𝐿 = −∑ log𝑝𝑝 (𝑦𝑦𝑡𝑡 ∗∣∣ 𝑦𝑦1:𝑡𝑡−1, 𝐼𝐼 )𝑇𝑇
𝑡𝑡=1                    (12) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵 × exp(∑ 𝑤𝑤𝑛𝑛
𝑁𝑁
𝑛𝑛=1 log𝑝𝑝𝑛𝑛)                                  (13) 

𝐵𝐵𝐵𝐵 =  {
1,               𝑖𝑖𝑖𝑖 𝑐𝑐 > 𝑟𝑟

𝑒𝑒𝑒𝑒𝑒𝑒 (1 − 𝑟𝑟
𝑐𝑐)

, 𝑖𝑖𝑖𝑖  𝑐𝑐 ≤ 𝑟𝑟                                 (14) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐𝑖𝑖, 𝑆𝑆𝑖𝑖) = 1
𝑁𝑁 ∑ 𝑤𝑤

𝑛𝑛
𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)

∙𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)
||||𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||

𝑁𝑁
𝑛𝑛=1                              (15) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × (1 − 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)      (16) 

   𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  = 10×𝑃𝑃×𝑅𝑅
𝑅𝑅+9𝑃𝑃                                                           (17) 

Training uses the Adam optimizer with a learning rate of 0.001 and batch size of 32.

F. Evaluation Metrics
To evaluate the performance of the proposed Attention based CNN–LSTM image 
captioning framework, three widely recognized metrics were employed: BLEU, CIDEr, 
and METEOR. These metrics are standard in the image captioning community because 
they jointly capture syntactic precision,

Fig. 5. Overall Attention-based Image Captioning architecture combining VGG-16 and LSTM.
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semantic consistency, and linguistic fluency—offering a comprehensive view of caption 
quality. BLEU measures n-gram overlap with reference captions, CIDEr quantifies human 
consensus based on TF–IDF weighting, and METEOR assesses semantic similarity by 
considering stems, synonyms, and paraphrases.

1) BLEU Metric: BLEU (Bilingual Evaluation Understudy) evaluates how closely the 
generated captions match the reference sentences through n-gram precision. It is computed as:

  𝑣𝑣 =  {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘}, 𝑣𝑣𝑖𝑖 ∈ 𝑅𝑅512  (1) 

 𝑒𝑒𝑡𝑡,𝑖𝑖 =  𝑊𝑊𝑎𝑎
𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊ℎℎ𝑡𝑡−1 +  𝑊𝑊𝑣𝑣𝑣𝑣𝑖𝑖)  (2) 

 𝛼𝛼𝑡𝑡,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒𝑡𝑡,𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑝𝑝(𝑒𝑒𝑡𝑡,𝑗𝑗)𝑘𝑘
𝑗𝑗=1

                                    (3) 

 𝑧𝑧𝑡𝑡 = ∑ 𝛼𝛼𝑡𝑡,𝑖𝑖𝑣𝑣𝑖𝑖𝑘𝑘
𝑖𝑖=1      (4) 

 

  𝑝𝑝(𝑦𝑦𝑡𝑡 ∣∣ 𝑦𝑦𝑡𝑡−1, 𝐼𝐼 ) = Softmax(𝑊𝑊𝑝𝑝[ℎ𝑡𝑡, 𝑧𝑧𝑡𝑡] + 𝑏𝑏𝑝𝑝) (5) 

 𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)                                 (6) 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)                                (7) 

𝐶𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐)                             (8) 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝐶𝐶𝑡̃𝑡                             (9) 

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)                           (10)  

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh(𝐶𝐶𝑡𝑡)                                      (11) 

𝐿𝐿 = −∑ log𝑝𝑝 (𝑦𝑦𝑡𝑡 ∗∣∣ 𝑦𝑦1:𝑡𝑡−1, 𝐼𝐼 )𝑇𝑇
𝑡𝑡=1                    (12) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵 × exp(∑ 𝑤𝑤𝑛𝑛
𝑁𝑁
𝑛𝑛=1 log𝑝𝑝𝑛𝑛)                                  (13) 

𝐵𝐵𝐵𝐵 =  {
1,               𝑖𝑖𝑖𝑖 𝑐𝑐 > 𝑟𝑟

𝑒𝑒𝑒𝑒𝑒𝑒 (1 − 𝑟𝑟
𝑐𝑐)

, 𝑖𝑖𝑖𝑖  𝑐𝑐 ≤ 𝑟𝑟                                 (14) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐𝑖𝑖, 𝑆𝑆𝑖𝑖) = 1
𝑁𝑁 ∑ 𝑤𝑤

𝑛𝑛
𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)

∙𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)
||||𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||

𝑁𝑁
𝑛𝑛=1                              (15) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × (1 − 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)      (16) 

   𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  = 10×𝑃𝑃×𝑅𝑅
𝑅𝑅+9𝑃𝑃                                                           (17) 

where pn denotes modified n-gram precision, wn represents the weight for each n-gram 
order (usually uniform), and BP is the brevity penalty defined as:

  𝑣𝑣 =  {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘}, 𝑣𝑣𝑖𝑖 ∈ 𝑅𝑅512  (1) 

 𝑒𝑒𝑡𝑡,𝑖𝑖 =  𝑊𝑊𝑎𝑎
𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊ℎℎ𝑡𝑡−1 +  𝑊𝑊𝑣𝑣𝑣𝑣𝑖𝑖)  (2) 

 𝛼𝛼𝑡𝑡,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒𝑡𝑡,𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑝𝑝(𝑒𝑒𝑡𝑡,𝑗𝑗)𝑘𝑘
𝑗𝑗=1

                                    (3) 

 𝑧𝑧𝑡𝑡 = ∑ 𝛼𝛼𝑡𝑡,𝑖𝑖𝑣𝑣𝑖𝑖𝑘𝑘
𝑖𝑖=1      (4) 

 

  𝑝𝑝(𝑦𝑦𝑡𝑡 ∣∣ 𝑦𝑦𝑡𝑡−1, 𝐼𝐼 ) = Softmax(𝑊𝑊𝑝𝑝[ℎ𝑡𝑡, 𝑧𝑧𝑡𝑡] + 𝑏𝑏𝑝𝑝) (5) 

 𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)                                 (6) 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)                                (7) 

𝐶𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐)                             (8) 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝐶𝐶𝑡̃𝑡                             (9) 

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)                           (10)  

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh(𝐶𝐶𝑡𝑡)                                      (11) 

𝐿𝐿 = −∑ log𝑝𝑝 (𝑦𝑦𝑡𝑡 ∗∣∣ 𝑦𝑦1:𝑡𝑡−1, 𝐼𝐼 )𝑇𝑇
𝑡𝑡=1                    (12) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵 × exp(∑ 𝑤𝑤𝑛𝑛
𝑁𝑁
𝑛𝑛=1 log𝑝𝑝𝑛𝑛)                                  (13) 

𝐵𝐵𝐵𝐵 =  {
1,               𝑖𝑖𝑖𝑖 𝑐𝑐 > 𝑟𝑟

𝑒𝑒𝑒𝑒𝑒𝑒 (1 − 𝑟𝑟
𝑐𝑐)

, 𝑖𝑖𝑖𝑖  𝑐𝑐 ≤ 𝑟𝑟                                 (14) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐𝑖𝑖, 𝑆𝑆𝑖𝑖) = 1
𝑁𝑁 ∑ 𝑤𝑤

𝑛𝑛
𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)

∙𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)
||||𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||

𝑁𝑁
𝑛𝑛=1                              (15) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × (1 − 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)      (16) 

   𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  = 10×𝑃𝑃×𝑅𝑅
𝑅𝑅+9𝑃𝑃                                                           (17) 

with c as the candidate caption length and r as the reference caption length. BLEU captures 
syntactic accuracy and local phrase structure, making it particularly useful for evaluating 
word choice and sentence composition in image captioning tasks. Lower-order BLEU 
scores emphasize object and action recognition, while higher-order scores reflect linguistic 
fluency and coherence.

2. CIDEr Metric: CIDEr (Consensus-based Image Description Evaluation) focuses on 
measuring the consensus between machine-generated captions and multiple human 
references by leveraging TF–IDF–weighted n-grams. It is defined as:

  𝑣𝑣 =  {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘}, 𝑣𝑣𝑖𝑖 ∈ 𝑅𝑅512  (1) 

 𝑒𝑒𝑡𝑡,𝑖𝑖 =  𝑊𝑊𝑎𝑎
𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊ℎℎ𝑡𝑡−1 +  𝑊𝑊𝑣𝑣𝑣𝑣𝑖𝑖)  (2) 

 𝛼𝛼𝑡𝑡,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒𝑡𝑡,𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑝𝑝(𝑒𝑒𝑡𝑡,𝑗𝑗)𝑘𝑘
𝑗𝑗=1

                                    (3) 

 𝑧𝑧𝑡𝑡 = ∑ 𝛼𝛼𝑡𝑡,𝑖𝑖𝑣𝑣𝑖𝑖𝑘𝑘
𝑖𝑖=1      (4) 

 

  𝑝𝑝(𝑦𝑦𝑡𝑡 ∣∣ 𝑦𝑦𝑡𝑡−1, 𝐼𝐼 ) = Softmax(𝑊𝑊𝑝𝑝[ℎ𝑡𝑡, 𝑧𝑧𝑡𝑡] + 𝑏𝑏𝑝𝑝) (5) 

 𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)                                 (6) 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)                                (7) 

𝐶𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐)                             (8) 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝐶𝐶𝑡̃𝑡                             (9) 

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)                           (10)  

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh(𝐶𝐶𝑡𝑡)                                      (11) 

𝐿𝐿 = −∑ log𝑝𝑝 (𝑦𝑦𝑡𝑡 ∗∣∣ 𝑦𝑦1:𝑡𝑡−1, 𝐼𝐼 )𝑇𝑇
𝑡𝑡=1                    (12) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵 × exp(∑ 𝑤𝑤𝑛𝑛
𝑁𝑁
𝑛𝑛=1 log𝑝𝑝𝑛𝑛)                                  (13) 

𝐵𝐵𝐵𝐵 =  {
1,               𝑖𝑖𝑖𝑖 𝑐𝑐 > 𝑟𝑟

𝑒𝑒𝑒𝑒𝑒𝑒 (1 − 𝑟𝑟
𝑐𝑐)

, 𝑖𝑖𝑖𝑖  𝑐𝑐 ≤ 𝑟𝑟                                 (14) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐𝑖𝑖, 𝑆𝑆𝑖𝑖) = 1
𝑁𝑁 ∑ 𝑤𝑤

𝑛𝑛
𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)

∙𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)
||||𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||

𝑁𝑁
𝑛𝑛=1                              (15) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × (1 − 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)      (16) 

   𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  = 10×𝑃𝑃×𝑅𝑅
𝑅𝑅+9𝑃𝑃                                                           (17) 

	                      

where gn(ci) and gn(Si) denote TF–IDF–weighted n-gram vectors for the candidate 
caption and the set of human references, respectively. CIDEr rewards captions that use 
discriminative yet semantically consistent terms, emphasizing agreement with human 
interpretation rather than surface-level word repetition. This makes it a reliable measure 
for evaluating contextual alignment and descriptive richness.

3.	 METEOR Metric: METEOR (Metric for Evaluation of Translation with Explicit 
ORdering) measures semantic and grammatical quality by aligning generated captions 
with references based on unigram matches, stemming, and synonymy. It is calculated as:
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  𝑣𝑣 =  {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘}, 𝑣𝑣𝑖𝑖 ∈ 𝑅𝑅512  (1) 

 𝑒𝑒𝑡𝑡,𝑖𝑖 =  𝑊𝑊𝑎𝑎
𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊ℎℎ𝑡𝑡−1 +  𝑊𝑊𝑣𝑣𝑣𝑣𝑖𝑖)  (2) 

 𝛼𝛼𝑡𝑡,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒𝑡𝑡,𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑝𝑝(𝑒𝑒𝑡𝑡,𝑗𝑗)𝑘𝑘
𝑗𝑗=1

                                    (3) 

 𝑧𝑧𝑡𝑡 = ∑ 𝛼𝛼𝑡𝑡,𝑖𝑖𝑣𝑣𝑖𝑖𝑘𝑘
𝑖𝑖=1      (4) 

 

  𝑝𝑝(𝑦𝑦𝑡𝑡 ∣∣ 𝑦𝑦𝑡𝑡−1, 𝐼𝐼 ) = Softmax(𝑊𝑊𝑝𝑝[ℎ𝑡𝑡, 𝑧𝑧𝑡𝑡] + 𝑏𝑏𝑝𝑝) (5) 

 𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)                                 (6) 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)                                (7) 

𝐶𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐)                             (8) 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝐶𝐶𝑡̃𝑡                             (9) 

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)                           (10)  

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh(𝐶𝐶𝑡𝑡)                                      (11) 

𝐿𝐿 = −∑ log𝑝𝑝 (𝑦𝑦𝑡𝑡 ∗∣∣ 𝑦𝑦1:𝑡𝑡−1, 𝐼𝐼 )𝑇𝑇
𝑡𝑡=1                    (12) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵 × exp(∑ 𝑤𝑤𝑛𝑛
𝑁𝑁
𝑛𝑛=1 log𝑝𝑝𝑛𝑛)                                  (13) 

𝐵𝐵𝐵𝐵 =  {
1,               𝑖𝑖𝑖𝑖 𝑐𝑐 > 𝑟𝑟

𝑒𝑒𝑒𝑒𝑒𝑒 (1 − 𝑟𝑟
𝑐𝑐)

, 𝑖𝑖𝑖𝑖  𝑐𝑐 ≤ 𝑟𝑟                                 (14) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐𝑖𝑖, 𝑆𝑆𝑖𝑖) = 1
𝑁𝑁 ∑ 𝑤𝑤

𝑛𝑛
𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)

∙𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)
||||𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||

𝑁𝑁
𝑛𝑛=1                              (15) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × (1 − 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)      (16) 

   𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  = 10×𝑃𝑃×𝑅𝑅
𝑅𝑅+9𝑃𝑃                                                           (17) Where

  𝑣𝑣 =  {𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑘𝑘}, 𝑣𝑣𝑖𝑖 ∈ 𝑅𝑅512  (1) 

 𝑒𝑒𝑡𝑡,𝑖𝑖 =  𝑊𝑊𝑎𝑎
𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊ℎℎ𝑡𝑡−1 +  𝑊𝑊𝑣𝑣𝑣𝑣𝑖𝑖)  (2) 

 𝛼𝛼𝑡𝑡,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒𝑡𝑡,𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑝𝑝(𝑒𝑒𝑡𝑡,𝑗𝑗)𝑘𝑘
𝑗𝑗=1

                                    (3) 

 𝑧𝑧𝑡𝑡 = ∑ 𝛼𝛼𝑡𝑡,𝑖𝑖𝑣𝑣𝑖𝑖𝑘𝑘
𝑖𝑖=1      (4) 

 

  𝑝𝑝(𝑦𝑦𝑡𝑡 ∣∣ 𝑦𝑦𝑡𝑡−1, 𝐼𝐼 ) = Softmax(𝑊𝑊𝑝𝑝[ℎ𝑡𝑡, 𝑧𝑧𝑡𝑡] + 𝑏𝑏𝑝𝑝) (5) 

 𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)                                 (6) 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)                                (7) 

𝐶𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐)                             (8) 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ⊙ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝐶𝐶𝑡̃𝑡                             (9) 

𝑜𝑜𝑡𝑡 = σ(𝑊𝑊𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)                           (10)  

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh(𝐶𝐶𝑡𝑡)                                      (11) 

𝐿𝐿 = −∑ log𝑝𝑝 (𝑦𝑦𝑡𝑡 ∗∣∣ 𝑦𝑦1:𝑡𝑡−1, 𝐼𝐼 )𝑇𝑇
𝑡𝑡=1                    (12) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵 × exp(∑ 𝑤𝑤𝑛𝑛
𝑁𝑁
𝑛𝑛=1 log𝑝𝑝𝑛𝑛)                                  (13) 

𝐵𝐵𝐵𝐵 =  {
1,               𝑖𝑖𝑖𝑖 𝑐𝑐 > 𝑟𝑟

𝑒𝑒𝑒𝑒𝑒𝑒 (1 − 𝑟𝑟
𝑐𝑐)

, 𝑖𝑖𝑖𝑖  𝑐𝑐 ≤ 𝑟𝑟                                 (14) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑐𝑐𝑖𝑖, 𝑆𝑆𝑖𝑖) = 1
𝑁𝑁 ∑ 𝑤𝑤

𝑛𝑛
𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)

∙𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||𝑔𝑔𝑛𝑛(𝑐𝑐𝑖𝑖)
||||𝑔𝑔𝑛𝑛(𝑆𝑆𝑖𝑖)

||

𝑁𝑁
𝑛𝑛=1                              (15) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 × (1 − 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)      (16) 

   𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  = 10×𝑃𝑃×𝑅𝑅
𝑅𝑅+9𝑃𝑃                                                           (17) 

and P and R represent unigram precision and recall, respectively. The penalty term Ppenalty 
accounts for fragmented or disordered word alignments, ensuring grammatical coherence 
and penalizing unnatural sentence flow. METEOR complements BLEU and CIDEr by 
focusing on linguistic fluency and semantic relevance, making it especially valuable for 
humanlike caption generation.

4. 	 Rationale for Metric Selection: These three metrics were chosen for their complementary 
roles in evaluating caption quality:

•	 BLEU captures lexical and structural precision by measuring local n-gram accuracy.

•	 CIDEr quantifies consensus-based semantic similarity, aligning closely with human 
judgment.

•	 METEOR emphasizes linguistic fluency, contextual understanding, and readability.

Together, they provide a well-rounded evaluation framework that measures syntactic 
correctness, semantic coherence, and grammatical fluency—key aspects for achieving 
robust and interpretable image caption generation.

3.	 RESULTS AND ANALYSIS
This section evaluates the performance of the proposed Attention-based CNN–LSTM image 
caption generator using both qualitative and quantitative measures such as BLEU scores, 
loss convergence, confusion matrices, and visual attention maps. All experiments were 
conducted on the Flickr8k dataset using the configuration described in the methodology 
section: content Reference[oaicite:0] index=0.

A. Training Performance
The model was trained for 20 epochs using Adam optimizer (lr = 0.001) and cross-entropy 
loss. Fig. 12 shows that the training loss consistently decreased from 1.47 to 0.66, indicating 
progressive learning.

B. Quantitative Evaluation: BLEU, CIDEr, and METEOR Metrics
Quantitative evaluation of the generated captions was conducted using standard text-
generation metrics, including BLEU, CIDEr, and METEOR, to measure both syntactic 
precision and semantic coherence with human reference captions.
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Fig. 6. Training loss convergence over epochs.

These metrics collectively provide a balanced understanding of how accurately the model 
captures object-level, phrase-level, and sentence-level semantics.

1) BLEU Evaluation: BLEU (Bilingual Evaluation Understudy) is a widely used metric for 
evaluating image captioning models by measuring the n-gram overlap between generated 
captions and reference human annotations. It quantifies how closely the predicted captions 
match ground-truth descriptions at different levels of granularity (unigram to 4-gram).
Table I presents a comparative analysis between the proposed model and several established base-
line methods. The proposed CNN–LSTM with Attention framework achieves a BLEU-1 score 
of 0.53 and a BLEU-2 of 0.31, indicating strong unigram and bigram alignment with reference 
captions. However, similar to other Flickr8k-based models, performance gradually declines for 
higher-order BLEU metrics (BLEU-3 and BLEU-4) due to the increasing complexity of syntactic 
and semantic dependencies in longer phrases.

Table I: 
Bleu Score Comparison Between Existing Models and The Proposed Approach
Reference Model BLEU-1 BLEU-2 BLEU-3 BLEU-4
Show, Attend and Tell: Neural Image	Caption 
Generation with Visual Attention ∼0.52 ∼0.30 ∼0.19 ∼0.11

Image Caption Generator Using Convolutional 
Recurrent Neural Network Feature ∼0.51 ∼0.29 ∼0.21 ∼0.10

Recurrent Image Captioner: Describing Images	
with Spatial-Invariant Transformation and 
Attention Filtering

∼0.50 ∼0.28 ∼0.18 ∼0.09

Proposed Model (VGG16–LST withAttention) 0.53 0.31 0.17 0.10
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Figure 7 visualizes the BLEU trends across different n-gram levels, comparing the reference 
benchmark scores and those achieved by the proposed model. The proposed framework 
maintains competitive performance and follows a similar trend to state-of-the-art models, 
with marginal improvements at BLEU-1 and BLEU-2 levels, confirming robust object and 
action recognition capabilities.

Fig. 7. Comparison of BLEU scores between reference benchmark models and the pro-
posed CNN–LSTM with Attention model.

Furthermore, Fig. 8 illustrates the average BLEU scores obtained by the proposed model. 
The BLEU-1 score of approximately 0.53 demonstrates the model’s strong ability to 
recognize key objects, while the reduced BLEU-4 value reflects the difficulty in maintaining 
grammatical coherence in longer sequences—a known challenge in small-scale captioning 
datasets such as Flickr8k.

Fig. 8. Average BLEU scores for the proposed Attention-based CNN–LSTM model across differ-
ent n-gram levels.

Overall, the BLEU evaluation confirms that the proposed architecture achieves comparable 
or slightly improved performance relative to existing approaches, while maintaining model 
simplicity and interpretability. This balance between accuracy and efficiency makes it well-
suited for real-time caption generation tasks in constrained computational environments.
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2.	 CIDEr Evaluation: The model achieved a CIDEr score of 0.81, which quantifies the 
consensus between generated captions and human references based on TF-IDF–weighted 
ngram similarities. This high CIDEr value demonstrates that the generated captions 
capture the key descriptive elements emphasized by human annotators, validating semantic 
consistency and contextual precision in sentence construction.

3.	 METEOR Evaluation: In order to further measure the fluency of the language, 
the METEOR measure was used. The suggested model had a METEOR score of 0.31 
that explains synonym matching, word stems, and paraphrasing and provides a more 
semantically-based evaluation than the BLEU one. It means that this model does not only 
recognize the right objects and actions but also retains the contextual meaning and is 
phrased in a grammatically acceptable manner.

4.	 Metric Interpretation: The combined metric outcomes highlight the strengths and 
limitations of the proposed framework:
•	 High BLEU-1 reflects effective recognition of key nouns and verbs.
•	 Strong CIDEr (0.81) confirms semantic alignment with human descriptions.
•	 METEOR (0.31) supports fluency and contextual relevance, demonstrating the model’s 

capability to generate natural and interpretable captions.
In general, these findings confirm competitiveness of the proposed model of attention-
based CNN-LSTM as both syntactic accuracy and semantic representation are competitive, 
as well as the model itself, being compact and efficient enough to perform on a limited 
computational means.

C. Token-Level Confusion Matrix
Word prediction errors were analyzed with the help of a token-level confusion matrix. The 
majority of the tokens were called correctly with deviations of preposition like through 
instead of in.

Fig. 9. Token-level confusion matrix for caption prediction.
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D. Baseline Comparison (With and Without Attention)
Two models were trained to assess the impact of attention mechanism, one being a baseline 
CNN+LSTM model without the attention and the other being an enhanced CNN+LSTM 
model with attention. The baseline model used VGG16 to extract the features but the 
attention-based model used Exception to extract and represent the features better.

Table II: 
Performance Comparison Of CNN–LSTM Models with and Without Attention

Model BLEU -  BLEU- BLEU- BLEU- CIDEr  METEOR
1 2 3 4

CNN– LSTM
(Without Attention)

0.53 0.31 0.17 0.10 0.65 0.27

CNN– LSTM
(With Attention)

0.63 0.49 0.38 0.29 0.81 0.31

The use of an attention layer enhanced all evaluation measures, because the attention model 
was able to have more attention on regions of interest in the image, thus generating more 
descriptive and semantically consistent captions.

E. Qualitative Evaluation

Visual samples assess interpretability and correctness of generated captions.

Fig. 10. Generated caption with BLEU score evaluation.
In Fig. 10, the model does the right thing of recognizing large objects (dogs, snow) and 
action (running). The per-word attention heatmaps confirm that the model focuses on the 
appropriate space parts when predicting tokens, and this is explainable.
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F. Caption Comparison: Ground Truth vs. Prediction
An example is shown in Fig. 11.
Ground Truth: Black dog with red collar is jumping in the water Predicted: Jumping through 
the water
In this case, the model will understand scene semantics, objects and actions, although it will at times 
replace context dependent tokens (in vs. through) affecting both BLEU-3 as well as BLEU-4.

Fig. 11. Comparison between ground truth and predicted captions.

G. Performance Interpretation
The results show:
•	 High BLEU-1 confirms strong noun and verb recognition.

•	 Lower BLEU-4 indicates limited sentence structure accuracy due to small dataset.

•	 Qualitative inspection confirms consistency of attention focus and logical relevance of 
captions.

In general, the obtained results are in line with the existing models that are trained on the 
Flickr8k, which confirms the validity of the architecture and the efficiency of attention 
combination.

H. Training Performance
In the suggested Attention-based CNNLSTM architecture, the model was trained in 20 
epochs using the Adam optimizer with a learning rate of 0.001 and the cross-entropy loss. 
The model demonstrated stable convergence behavior, and the training loss gradually 
reduced as the number of epochs went on, and this showed gradual enhancement in 
predictive accuracy.
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Fig. 12. Loss curve showing model convergence over 20 epochs. The consistent downward trend 
indicates effective learning and reduced prediction error.

Figure 12 illustrates the values of losses across 20 epochs. The x-axis is the number of 
epochs, 0 to 20, whereas the y-axis is the loss value of 0.4 to 1.4. The curve shows a 
smooth and steady decrease and this indicates that the parameters of the model are being 
optimized appropriately. This decreasing loss with training iterations is a good sign that the 
model is effectively learning meaningful visual-linguistic representations and decreasing 
its errors in prediction with time. The convergence behavior also makes one thinking of the 
lack of overfitting since the loss also decreases without any sharp oscillations.

5.	 Conclusion And Recommendation
The paper has shown that the suggested Attention-based CNN–LSTM model can 
effectively produce significant and contextually relevant captions of pictures belonging 
to the Flickr8k dataset. The model can easily identify important objects and actions with 
the help of the visual feature extraction by using VGG-16 and a region-specific focus with 
a soft attention mechanism, and the LSTM decoder is able to generate consistent natural 
language descriptions. Both qualitative and quantitative findings prove that the system 
can be used in practice relating to assistive technologies, digital content organization, and 
automated annotation of multimedia.

Despite the well performance of the model, there are still some limitations that include 
the difficulties associated with longer and more complicated sentence structures because 
of limited dataset size. To improve future work, one can train on larger datasets, like MS-
COCO, deploy more powerful language modeling methods, based on transformer-based 
networks and use more extensive evaluation metrics, including METEOR and CIDEr. 
Also, multilingual captioning and real-time introduction is one of the prospects to expand 
the usability and accessibility of the system.
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