Body Mass Index (BMI) and Dental Caries Experience among Children of Eastern Region of Nepal

Tarakant Bhagat,1 Ashish Shrestha,2 Santosh Kumari Agrawal3

1Associate Professor, 2Professor, 3Assistant Professor,
Department of Public Health Dentistry, B.P. Koirala Institute of Health Sciences, Dharan, Nepal.

INTRODUCTION

Oral health is strongly influenced by the daily intake of energy-dense foods and drinks, which play a vital role in the development of obesity. The prevalence of childhood obesity has also increased dramatically in many countries around the world and Nepal is not an exception.1

High Body Mass Index (BMI) has several consequences on oral health, such as, dental caries, periodontitis, and xerostomia.3 Number of studies have shown the positive associations between BMI and dental caries,4,5 while others demonstrated no relation6,7 or negative association.8,9 However, till date no conclusive results have been drawn. Thus, the present study was conducted to analyze the relationship between dental caries and BMI in children of eastern region of Nepal.

METHODS

A cross-sectional study design was used comprising school children in eastern region of Nepal. Ethical approval was obtained from institutional review committee, B. P. Koirala Institute of Health Sciences (BPKIHS) and consent was obtained from the parents. Permission to examine children was also obtained from the heads of the selected schools. It was a community-based study where the investigator...
visited the randomly selected schools for data collection. Six hundred school children from nursery to class five were taken into the study. It was a purposive sampling where all the primary school children available on the day of examination were enrolled in the study. Sample size was calculated using the formulae mentioned below.

\[
\text{Sample size (n) } = 4pq/e^2
\]

where,

\[
p = \text{prevalence of dental caries among primary school children in Nepal (67\%)}^{10}
\]

\[
q = 1-p,
\]

\[
e = \text{permissible error (4\%)}
\]

\[
n = 4 \times 67(100-67)/4^2 = 8844/16
\]

Therefore \(n = 552.75 \approx 600 \)

All the children who gave assent and their parents/school principal’s signed informed consent were included in the study. Differently abled children, children suffering from any systemic disease, history of prolong illnesses and those who had undergone orthodontic treatment were excluded from the study. The demographic information such as age, sex and address were recorded in a face-to-face interview conducted by the investigators. The occurrence of caries and fillings in the primary dentition, defined as dft (decayed, filled primary teeth) and permanent dentition, defined as DMFT (decayed, missing and filled permanent teeth), were collected by trained dentists. Anthropometric measures for the calculation of BMI were recorded for each child. The subjects’ height in meter and weight in kilogram were recorded to calculate BMI. The children were categorized according to their BMI into underweight, healthy weight, at risk of overweight, and overweight using the Center for Disease Control and Prevention (CDC) recommendations for BMI categorizations of children and teen between 2 to 20 years.11 Confidentiality and privacy of the students were maintained.

Data was entered in Microsoft Excel sheet and transferred to Statistical Package for Social Sciences (SPSS) version 11.5. Percentage, mean and standard deviation were calculated for all the variables. The results were also analyzed using Chi-square test to compare the difference between all categorical variables. Independent sample t test and Spearman’s ranked correlation test was done for BMI and dental caries. Statistical significance was established at \(p<0.05 \).

RESULTS

Six hundred students participated in the study, among which half (51.7\%) of the participants were female as shown in Figure 1. The mean age of the children was 9.36 ± 2.45 years. Overall dental caries prevalence was 57.3\% (Figure 2). The prevalence of dental caries was more in females (60\%) than in males (54.48\%). The difference in caries experience among gender was not significant \((X^2 = 1.864, p = 0.172) \). Mean BMI was 15.18 ± 2.79. Mean DT, MT, FT, DMFT and DMFS were 0.34 ± 0.83, 0.00 ± 0.04, 0.01 ± 0.10, 0.35 ± 0.86 and 0.40 ± 1.03, respectively (Figure 3). Similarly, mean dt, ft, dft and dfs were 1.72 ± 2.54, 0.03 ± 0.21, 1.77 ± 2.59 and 2.96 ± 5.20, respectively (Figure 4). Caries experience decreased significantly with increase in years of schooling \((X^2 = 24.092, p = 0.002) \) and with increase in age \((t = -4.027, p < 0.001) \). Caries experience increased with an increase in BMI but was not significant \((t = -1.285, p = 0.199) \). The positive correlation was found between BMI and DS \((r = 0.063) \), which was not...
significant ($p = 0.125$). The correlation between BMI and DMFS was also positive ($p = 0.063$) but was not significant ($p = 0.112$). There was a positive correlation between BMI and DMFT ($p = 0.065$) but the difference was not statistically significant ($p = 0.114$). However, negative correlation was observed between BMI and dft ($p = -1.116$) and the difference was statistically significant ($p = 0.005$). Likewise, a negative correlation and statistically significant difference was observed between BMI and dfs ($p = -1.132$, $p = 0.002$). There was a positive correlation between dft and dfs ($p = 0.981$) which was statistically significant ($p = <0.001$). The distribution of caries experience was found more in children who were healthy at weight, while this result showed no significant difference ($X^2 = 7.215$, $p = 0.065$) (Figure 5).

DISCUSSION

Obesity is a major public health concern due to its global distribution and severe consequences. Based on the concept that a common dietary pattern contributes to the development of dental caries and overweight, dental personnel have been suggested to be one of the cornerstones in weight counseling. However, the present study confirmed that caries experience is positively associated with obesity in the study population but the association was weak and statistically not significant. Present study also showed that healthy children had more caries experience in comparison to overweight or underweight, although the difference was not significant. The observation of the present study was in consistent with several studies related to childhood obesity and dental caries. Few studies also showed negative correlation of dental caries for both DMFT and DMFS with BMI. As dental caries and obesity are the multifactorial diseases, certainly, high weight is not per se an etiological factor for the caries process.

The results of the present study showed that the caries experience significantly increases with age and year of schooling. This observation is consistent with the study.
CONCLUSIONS

The study indicates that although some correlation does exist between BMI and dental caries the association is weak. Healthy with age children experience more caries than overweight and underweight children. Thus, regular dental checkups and practice of routine oral hygiene procedures reinforcement will enable them to lead a healthier life.

ACKNOWLEDGEMENTS

I would like to acknowledge BPKIHS for funding this research.

Conflict of Interest: None