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1 Introduction

In differential topology, the theory of smooth differential forms serves a rigorous and systematic way
to operate on differentials and to do integrations on general domains. A major result is that the de
Rham cohomology constructed from differential forms is isomorphic to the singular cohomology, relating
differential forms to the topology of the domain, see e.g. [2, 7]. Robin Forman in the paper [5, p. 340–
346] introduced an analogous theory of combinatorial differential forms on cell complexes, giving a result
analogous to the smooth de Rham theorem. This theory is a part of a more extensive study on combinatorial
differential topology, which has achieved results mirroring deep results in smooth topology, and has found
applications, see e.g. [4, 6]. More recently there have been other efforts at developing combinatorial theories
of differential forms, such as by the groups of J. Marsden and A. Hirani [3], E. Mansfield [8], from various
perspectives, indicating growing interests.

In this article we study several properties of Forman’s combinatorial differential forms for 0-forms and
1-forms. In Section 2 we discuss two ways to present 0-forms and 1-forms, as maps on chain complexes
and as real functions. In Section 3 we discuss derivatives of 0-forms and 1-forms. Section 3.3 contains an
example of a closed but not exact 1-form on a non-simply connected domain. Theorem 2 gives a sufficient
condition on the domain for a closed 1-form to be exact, indicating that derivatives of combinatorial forms
behave similarly to exterior derivatives of smooth forms. In Section 4.1 we show that the product of forms
proposed by Forman does not satisfy anti-commutativity, in contrast to the smooth case. In Section 4.2
we propose a pullback operation on forms and prove linearity and naturality of this pullback.

2 Combinatorial Forms and Representations of Forms of Degrees
0 and 1

We will work with finite simplicial complexes, for simplicity as well as in order to stay in the combinatorial
category, although parts of Forman’s theory can be used for regular cellular complexes. For relevant
notions on simplicial complex the reader can consult for example [1]. For a finite simplicial complex X, a
face β of a simplex α ∈ X is the convex hull of a non-empty subset of the set of vertices of α, indicated
by β ≤ α. We write |X| for the underlying space of X – the union of all elements of X. We denote
T k(X) = {(α, β) ∈ X × X | β ≤ α,dimβ = dimα − k}. In particular T 0(X) can be identified with X.
We use the notation v0v1 · · · vn for an unoriented simplex with the set of vertices {v0, v1, . . . , vn}, and the
notation [v0, v1, . . . , vn] for an oriented simplex with the same set of vertices. An orientation for X is a
choice of orientations for all the simplexes of X. Let C∗(X) be the real simplicial chain complex of X, so
Cn(X) is the vector space over the real numbers generated by all the oriented simplexes of X of dimension
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n modulo the relation that two simplexes with opposite orientations have sum equal 0.

The following is the general definition of forms given by Forman in [5]:

Definition 1. A d-form is a linear map ω : C∗(X) → C∗(X) such that for each i-dimensional oriented
simplex α, the chain ω(α) is a linear combination of (i− d)-dimensional oriented simplexes which are faces
of α.

The set of k-forms on X is denoted by Ωk(X).

Let us give X an orientation and give C∗(X) an inner product such that X forms an orthonormal vector
basis. With this inner product we can specify a d-form ω by

ω(α) =
∑

β,(α,β)∈Td(X)

〈ω(α), β〉β.

There is a bijection between 0-forms on X and maps from T 0(X) to R. Given a map f : T 0(X) → R let
ω : C∗(X) → C∗(X) be the linear map given by for each α ∈ X, ω(α) = f(α)α. Notice that f does not
depend on orientations of cells of X, so ω(−α) = −ω(α), thus ω is well-defined as a map on C∗(X), and
is a 0-form. In the reverse direction, given a 0-form ω, define f(α) = 〈ω(α), α〉. Then f(−α) = f(α), so f
is a map from X to R not depending on orientation of X. So a 0-form on X can be represented by a real
function on X.

If α is oriented as [v0, v1, . . . , vn] then a compatible orientation of a face of α is given by the orientation
of (−1)i[v0, . . . , v̂i, . . . , vn]. For oriented simplexes β < α and dimβ = dimα − 1, the sign(α, β) is 1 if the
orientation of β is compatible with the orientation of α, and −1 if not.

The boundary of the n-dimensional oriented simplex σ = [v0, v1, . . . , vn] is the (n − 1)-dimensional chain
∂nσ =

∑n
i=0(−1)i[v0, v1, . . . , vi−1, v̂i, vi+1, . . . , vn], where the notation v̂i is traditionally used to indicate

that this element is dropped. This map is extended linearly to become a map from Cn(X) to Cn−1(X).
Using the boundary operator we can write sign(α, β) = 〈∂α, β〉.

For 1-forms, given a map f : T 1(X)→ R let

ω : C∗(X)→ C∗(X)

α 7→
∑

{β∈X | (α,β)∈T 1(X)}

f(α, β) sign(α, β)β.

In other words 〈ω(α), β〉 = f(α, β) 〈∂α, β〉. Then ω(−α) = −ω(α), and so ω is a 1-form. The inverse
correspondence is given by

f(α, β) = 〈ω(α), β〉 sign(α, β) = 〈ω(α), β〉 〈∂α, β〉 ,

which does not depend on orientations of either α or β. So we can represent a 1-form on X by a real
function on T 1(X).

From now on for simplicity in notation we often identify 0 and 1-forms (which often given by actions on
oriented simplexes) with their representations by real functions (which act on unoriented simplexes), and
use the same notations for them when there is no danger of confusion.

3 Closedness and Exactness of Forms of Degrees 0 and 1.

3.1 Derivatives of 0-forms

The derivative of a smooth 0-form is a measure of the rate of change of the function, therefore on simplicial
complex the derivative of a function should tell how much the function changes. The following definition
was given in [5]:
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Definition 2. Let X be a finite simplicial complex. If f ∈ Ω0(X), then its derivative as an element
df ∈ Ω1(X) is defined as:

df : T 1(X) → R
(α, β) 7→ f(α)− f(β).

In other words 〈df(α), β〉 = (f(α)− f(β)) 〈∂α, β〉 .

As in the case of smooth forms, we say that a form is closed if its derivative is the form 0, i.e. ω is closed
if dω = 0. A form is exact if it is the derivative of a form, i.e. ω is exact if there is α such that dα = ω.
The following analogy of a result for smooth forms was stated in [5, p. 344]:

Theorem 1. A zero form on a connected simplicial complex is closed if and only if it is constant.

To prove this result we use the following lemma:

Lemma 1. Let X be a connected finite simplicial complex. If α, β ∈ X then there is a finite sequence
X0, X2, . . . , Xm of elements of X such that X0 = α, Xm = β, and Xi ∩Xi+1 6= ∅ for all 0 ≤ i ≤ m− 1.

Proof. Let us call for the purpose of this proof a finite sequence X0, X2, . . . , Xm ∈ X such that Xi∩Xi+1 6= ∅
for all 0 ≤ i ≤ m− 1 a path. Let

S(α) = {γ ∈ X | there is a path starting at α ending at γ}.

Let T (α) =
⋃
γ∈S(α) γ. We prove that if δ /∈ S(α) then δ ∩ T (α) = ∅. Indeed, otherwise there is γ ∈ S(α)

such that δ ∩ γ 6= ∅. There is a chain X0, X2, . . . , Xm ∈ X such that X0 = α, Xm = γ, and Xi ∩Xi+1 6= ∅
for all 0 ≤ i ≤ m − 1. Let Xm+1 = δ, then X0, X2, . . . , Xm+1 is a chain starting at α ending at δ. So
δ ∈ S(α), a contradiction.

As a consequence

|X| \ T (α) =
⋃

δ∈X\S(α)

δ.

Since each simplex is a closed set, both T (α) and |X| \ T (α) are disjoint closed sets. Since X is connected
and T (α) 6= ∅, we must have |X| \ T (α) = ∅, so S(α) = X.

Proof of Theorem 1. Let X be a connected finite simplicial complex and let f ∈ Ω0 (X).

(⇐) Suppose that f is constant onX. Then for each (α, β) ∈ T 1(X) we have df(α, β) = f (α)−f (β) = 0.

(⇒) Suppose that df = 0.

Step 1: Let P (n) be the statement that if |X| is an n-dimensional simplex and df = 0 on X then f is
constant on X. When n = 1 we can write |X| = A0A1. Then df (A0A1, A0) = f (A0A1)− f (A0) = 0 and
df (A0A1, A1) = f (A0A1)− f (A1) = 0, thus f (A0A1) = f (A0) = f (A1). So P (1) is true.

Suppose that P (n) is true, we show that P (n + 1) is true. Write |X| = A0A1...An+1. The n-dimensional

faces of X are Xi = A0A1...Âi...An+1, 1 ≤ i ≤ n + 1. Since df(|X|, Xi) = f(|X|) − f(Xi) = 0 we have
f (|X|) = f (Xi), 1 ≤ i ≤ n + 1. By the induction hypothesis f is constant on the set of faces of Xi, thus
f is constant on X. Thus P (n) is true for all n ≥ 1.

Step 2: We show that if α and β are two elements of X and α ∩ β 6= ∅ then f (α) = f (β). Indeed, let
γ = α ∩ β then γ is a face of both α and β. By Step 1, we have f (γ) = f (α) and f (γ) = f (β), thus
f (α) = f (β).

Step 3: Let α, β ∈ X. By Lemma 1 there is a sequence X0, X2, . . . , Xm of elements of X such that X0 = α,
Xm = β, and Xi ∩ Xi+1 6= ∅ for all 0 ≤ i ≤ m − 1. Step 2 implies that f(α) = f(X0) = f(X2) = · · · =
f(Xm) = f(β).
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3.2 Derivatives of 1-forms

If γ < β < α with dim γ = dimβ − 1 = dimα− 2 we define

sign(α, γ, β) = sign(α, γ) sign(γ, β) = 〈∂α, γ〉 · 〈∂γ, β〉 .

Lemma 2. If (α, β) ∈ T 2(X) then there exist exactly two simplexes γ1, γ2 ∈ X such that β < γ1, γ2 < α,
dim γ1 = dim γ2 = dimβ + 1. Furthermore sign(α, γ1, β) = − sign(α, γ2, β).

Proof. Let us write α = [x0, x1, . . . , xn], then we have β = ε[x0, . . . , x̂i, . . . , x̂j , . . . , xn], γ1 = ε1[x0, . . . , x̂i, . . . , xn],
and γ2 = ε2[x0, . . . , x̂j , . . . , xn], where ε, ε1, ε2 are±1, and i < j. We find sign(α, γ1) = ε1(−1)i, sign(α, γ2) =
ε2(−1)j , sign(γ1, β) = εε1(−1)j−1, sign(γ2, β) = εε2(−1)i. Thus sign(α, γ1, β) = εε21(−1)i+j−1 while
sign(α, γ2, β) = εε22(−1)i+j = − sign(α, γ1, β).

Definition 3 ([5, p. 345]). For a 1-form ω ∈ Ω1(X) we define its derivative dω ∈ Ω2(X) as the 2-form
defined by for (α, β) ∈ T 2(X),

〈(dω)(α), β〉 = sign(α, γ1, β)(ω(α, γ1) + ω(γ1, β)) + sign(α, γ2, β)(ω(α, γ2) + ω(γ2, β)),

where α > γ1, γ2 > β.

We can rewrite the formula of dω without using representations of forms by real functions as

〈(dω)(α), β〉 = 〈∂α, γ1〉 〈∂γ1, β〉 (〈ω(α), γ1〉 〈∂α, γ1〉+ 〈ω(γ1), β〉 〈∂γ1, β〉) +

+ 〈∂α, γ2〉 〈∂γ2, β〉 (〈ω(α), γ2〉 〈∂α, γ2〉+ 〈ω(γ2), β〉 〈∂γ2, β〉)
= 〈ω(α), γ1〉 〈∂γ1, β〉+ 〈ω(γ1), β〉 〈∂α, γ1〉+

+ 〈ω(α), γ2〉 〈∂γ2, β〉+ 〈ω(γ2), β〉 〈∂α, γ2〉 .

We recognize that 〈(dω)(−α), β〉 = −〈(dω)(α), β〉, thus dω is indeed a map on C∗(X).

Immediately from definition 3 and Lemma 2 we have the following result, [5, p. 345]:

Proposition 1. A 1-form ω is closed if and only if

ω(α, γ1) + ω(γ1, β) = ω(α, γ2) + ω(γ2, β)

for all β < γ1, γ2 < α.

As a corollary:

Proposition 2. For 1-forms, being exact implies being closed.

Proof. Suppose that ω = df . Then for all (α, β) ∈ T 2(X), by Lemma 2:

〈(dω)(α), β〉 = sign(α, γ1, β)(ω(α, γ1) + ω(γ1, β)) + sign(α, γ2, β)(ω(α, γ2) + ω(γ2, β))

= sign(α, γ1, β)(f(α)− f(γ1) + f(γ1)− f(β)) +

+ sign(α, γ2, β)(f(α)− f(γ2) + f(γ2)− f(β))

= (sign(α, γ1, β) + sign(α, γ2, β))(f(α)− f(β)) = 0.

3.3 A closed but not exact 1-form.

For smooth forms, there is an angular form defined on the plane minus a point, which is a closed but not
exact 1-form. Its existence is due to the fact that its domain is not simply connected. For combinatorial
forms we would like to see a similar example.
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Figure 1:

Let X be the simplicial complex formed by the triangles A1A2A3, A2A4A5, A3A5A6 in Figure 1. The
underlying space is not simply-connected.

To give a closed 1-form ω on X, on the triangle A1A2A3 we assign arbitrary values for ω(A1A2A3, A1A2),
ω(A1A2A3, A2A3), ω(A1A2A3, A3A1), ω(A1A2, A1), ω(A2A3, A2), ω(A3A1, A3). By the condition for closed
forms:

ω(A1A2A3, A1A2) + ω(A1A2, A1) = ω(A1A2A3, A3A1) + ω(A3A1, A1),

thus ω(A3A1, A1) is accordingly determined from the initial assignment. Similarly ω(A1A2, A2) and
ω(A2A3, A3) are accordingly determined. Assignments on the triangles A2A4A5 and A3A5A6 can be done
similarly and are independent from the assignment on the triangle A1A2A3. This may lead to a conflict at
common vertices of the three triangles. Indeed, now we give a concrete example.

Define a 1-form ω as:
ω(A1A2A3, A1A2) = 1, ω(A1A2A3, A3A1) = 2, ω(A1A2A3, A2A3) = 3, ω(A1A2, A1) = 4, ω(A1A2, A2) =
5, ω(A1A3, A1) = 3, ω(A1A3, A3) = 6, ω(A2A3, A2) = 3, ω(A2A3, A3) = 5, ω(A2A4A5, A2A4) = 7,
ω(A2A4A5, A2A5) = 8, ω(A2A4A5, A4A5) = 9, ω(A2A4, A2) = 10, ω(A2A4, A4) = 11, ω(A2A5, A2) = 9,
ω(A2A5, A5) = 12, ω(A4A5, A4) = 9, ω(A4A5, A5) = 11, ω(A3A5A6, A3A5) = 13, ω(A3A5A6, A3A6) = 14,
ω(A3A5A6, A5A6) = 15, ω(A3A5, A3) = 0, ω(A3A5, A5) = 5, ω(A3A6, A3) = −1, ω(A3A6, A6) = 10,
ω(A5A6, A5) = 3, ω(A5A6, A6) = 9.

Proposition 3. The form ω is closed.

Proof. We check all possible relations from Proposition 1, by direct computation:

ω(A1A2A3, A1A2) + ω(A1A2, A1) = ω(A1A2A3, A1A3) + ω(A1A3, A1) = 5

ω(A1A2A3, A1A2) + ω(A1A2, A2) = ω(A1A2A3, A2A3) + ω(A2A3, A2) = 6

ω(A1A2A3, A1A3) + ω(A1A3, A3) = ω(A1A2A3, A2A3) + ω(A2A3, A3) = 8

ω(A2A4A5, A2A4) + ω(A2A4, A2) = ω(A2A4A5, A2A5) + ω(A2A5, A2) = 17

ω(A2A4A5, A2A4) + ω(A2A4, A4) = ω(A2A4A5, A4A5) + ω(A4A5, A4) = 18

ω(A2A4A5, A2A5) + ω(A2A5, A5) = ω(A2A4A5, A4A5) + ω(A4A5, A5) = 20

ω(A3A5A6, A3A5) + ω(A3A5, A3) = ω(A3A5A6, A3A6) + ω(A3A6, A3) = 13

ω(A3A5A6, A3A5) + ω(A3A5, A5) = ω(A3A5A6, A5A6) + ω(A5A6, A5) = 18

ω(A3A5A6, A3A6) + ω(A3A6, A6) = ω(A3A5A6, A5A6) + ω(A5A6, A6) = 24.
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Proposition 4. The form ω is not exact.

Proof. Suppose that ω is exact then there is a function f defined on X satisfying ω = df . Let a =
f(A1A2A3), we get:

f(A1A2) = f(A1A2A3)− ω(A1A2A3, A1A2) = a− 1,

f(A2) = f(A1A2)− ω(A1A2, A2) = a− 6,

f(A1A3) = f(A1A2A3)− ω(A1A2A3, A1A3) = a− 2,

f(A3) = f(A1A3)− ω(A1A3, A3) = a− 8,

f(A2A5) = f(A2) + ω(A2A5, A2) = a+ 3,

f(A5) = f(A2A5)− ω(A2A5, A5) = a− 9,

f(A3A5) = f(A5) + ω(A3A5, A5) = a− 4,

f(A3) = f(A3A5)− ω(A3A5, A3) = a− 4.

At this point we observe that f receives two different values at A3, a contradiction. Thus ω is not exact.

3.4 Closed 1-forms which are exact

In this subsection we prove a positive result on cases where a closed 1-form is exact, without using Forman’s
de Rham-type theorem [5, p. 341].

Theorem 2. Any closed one-form on a simplex is exact.

Proof. Let P (n) be the following statement: Given an n-dimensional simplicial complex X such that |X| is
a simplex, a closed 1-form ω on X, and a real number c, there is a unique 0-form f on X such that df = ω
and f(|X|) = c. We will use induction to prove that P (n) is true for all n ≥ 1.

The case n = 1 is trivial, and the case n = 2 has been proved in Proposition 1 above.

Supposing P (n) is true, we prove that P (n+ 1) is true. Let f(|X|) = c.

For any n-dimensional face σ of |X|, define f(σ) = fσ(σ) = f(|X|)−ω(|X|, σ). By the induction hypothesis,
fσ is then defined uniquely on the simplicial complex Xσ = {η | η ≤ σ} such that dfσ = ω on Xσ. It
remains to be proved that f is well-defined, that is, if η is a common face of σ and σ′ where σ 6= σ′ and
dimσ = dimσ′ = n then fσ(η) = fσ′(η).

Since |X| is a simplex, α = σ ∩ σ′ is a simplex of dimension (n− 1). By closedness of ω:

ω(|X|, σ) + ω(σ, α) = ω(|X|, σ′) + ω(σ′, α).

This implies
f(|X|)− fσ(σ) + fσ(σ)− fσ(α) = f(|X|)− fσ′(σ′) + fσ′(σ′)− fσ′(α),

that is fσ(α) = fσ′(α). Define f(α) = fσ(α) = fσ′(α). Any common face η of σ and σ′ of dimension less
than (n− 1) is a face of α, and since fσ(α) = fσ′(α), by uniqueness from the induction hypothesis applied
to α, we must have fσ(η) = fσ′(η), and we define f(η) by this number. The proof is completed.

In a simpler case as on a triangle, we can give a straight forward proof and construct the anti-derivative
function, by “integrating”, as Forman put it, in a similar fashion to the smooth case:

Example 1. Any closed 1-form on a 2-dimensional simplex is exact.

Let X be the simplicial complex formed by the triangle ABC in Figure 2, and let ω be a closed 1-form on
X.
Let f(ABC) be any real number. Define

f(AB) = −ω(ABC,AB) + f(ABC), f(AC) = −ω(ABC,AC) + f(ABC),

f(BC) = −ω(ABC,BC) + f(ABC), f(A) = −ω(ABC,AB)− ω(AB,A) + f(ABC),

f(B) = −ω(ABC,AB)− ω(AB,B) + f(ABC), f(C) = −ω(ABC,AC)− ω(AC,C) + f(ABC).
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C

A B

Figure 2:

Then

ω(ABC,AB) = f(ABC)− f(AB), ω(ABC,BC) = f(ABC)− f(BC),

ω(ABC,CA) = f(ABC)− f(CA), ω(AB,A) = f(AB)− f(A),

ω(AB,B) = f(AB)− f(B), ω(AC,C) = f(AC)− f(C).

Using the closedness of ω we have

ω(CA,A) = (ω(ABC,AB) + ω(AB,A))− ω(ABC,AC) = f(CA)− f(A),

ω(BC,B) = (ω(ABC,AB) + ω(AB,B))− ω(ABC,BC) = f(BC)− f(B),

ω(BC,C) = (ω(ABC,AC) + ω(AC,C))− ω(ABC,BC) = f(BC)− f(C).

Thus df = ω.

4 Products and Pullbacks of Forms

4.1 Products of forms

Forman [5, p. 341] suggested that product of forms is by composition of maps: If ω1 ∈ Ωd1(X) and
ω2 ∈ Ωd2(X) then

ω1 ∧ ω2 = ω1 ◦ ω2 ∈ Ωd1+d2(X).

In other words, for α ∈ C∗(X) we have

(ω1 ∧ ω2)(α) = ω1(ω2(α)).

In this definition the product has certain properties analogous to the smooth counterpart, such as associa-
tivity, from the associativity of compositions of maps: for any forms ω1, ω2, ω3 we have

ω1 ∧ (ω2 ∧ ω3) = (ω1 ∧ ω2) ∧ ω3.

Recall that the product of smooth differential forms is anti-commutative, that is, if ω1 is a d1-form and
ω2 is a d2-form then

ω1 ∧ ω2 = (−1)d1+d2ω2 ∧ ω1.

Since product for combinatorial form is composition of linear maps, in other words, product of matrices,
it is not likely that commutativity or anti-commutativity hold. Indeed we can give an example of 1-forms
whose products are neither commutative nor anti-commutative.

Let X be the simplicial complex formed by the triangle ABC in Figure 2. Consider the 1-forms ω1

and ω2 defined on X as:

ω1([A,B]) = 2A−B,ω1([B,C]) = −3B + 5C,ω1([C,A]) = A+ 4C,

ω1([A,B,C]) = −[B,C] + 2[C,A] + [A,B],
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and

ω2([A,B]) = −A+ 3B,ω2([B,C]) = 4B − 2C,ω2([A,C]) = 3A+ C,

ω2([A,B,C]) = [B,C]− 3[C,A] + 2[A,B].

Then

(ω1 ∧ ω2) ([A,B,C]) = ω1 (ω2([A,B,C])) = ω1 ([B,C]− 3[C,A] + 2[A,B]) = A− 5B − 7C,

while

(ω2 ∧ ω1)([A,B,C]) = ω2 (ω1([A,B,C])) = ω2(−[B,C] + 2[C,A] + [A,B]) = 5A−B + 4C.

So we obtain:

Proposition 5. There exist 1-forms ω1 and ω2 on [A,B,C] such that (ω1 ∧ ω2)([A,B,C]) 6= (ω2 ∧
ω1)([A,B,C]) and (ω1 ∧ ω2)([A,B,C]) 6= −(ω2 ∧ ω1)([A,B,C]).

Thus the proposed product of 1-forms is neither commutative nor anti-commutative, differing significantly
to the smooth counterpart.

4.2 Pullbacks of forms

Pulling back of forms is an important operation for smooth forms, bringing forms on one space to forms
on another space, as a generalization of change of variables in differentiation. Forman has not discussed
pullbacks of combinatorial forms. Here we propose a definition for pullbacks of combinatorial forms, then
we investigate several initial properties.

Definition 4. Given two oriented simplicial complexes X,Y and let ω be a form of degree d on X. Let
f : Y → X be such that

∀α, β ∈ Y, (β < α,dimβ = dimα− d)⇒ (f(β) < f(α),dim f(β) = dim f(α)− d) , (1)

equivalently, using different notations:

∀(α, β) ∈ T d(Y ), (f(α), f(β)) ∈ T d(X).

The pullback of ω by f is a form of degree d on Y , denoted by f∗ω, and is defined by

(f∗ω)(α) =
∑

β,(α,β)∈Td(Y )

〈ω(f(α)), f(β)〉β.

Thus essentially, and precisely in the cases of 0-forms and 1-forms, the value of the pullback f∗ω at the
pair (α, β) is the value of ω at the pair (f(α), f(β)).

We shall show that this pullback is linear and is natural:

Theorem 3. Let f : Y → X and g : Z → Y be maps satisfying the assumption (1) and let ω be a form of
degree d on X. Then:

1. f∗(ω + ϕ) = f∗ω + f∗ϕ, ∀ω, ϕ ∈ Ωd(X).

2. g∗(f∗ω) = (f ◦ g)∗ω, ∀ω ∈ Ωd(X).
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Proof. (a) For α ∈ Y , we have

f∗(ω + ϕ)(α) =
∑

β,(α,β)∈Td(Y )

〈(ω + ϕ)(f(α)), f(β)〉β

=
∑

β,(α,β)∈Td(Y )

〈ω(f(α)) + ϕ(f(α)), f(β)〉β

=
∑

β,(α,β)∈Td(Y )

〈ω(f(α)), f(β)〉β +
∑

β,(α,β)∈Td(Y )

〈ϕ(f(α)), f(β)〉β

= f∗ω(α) + f∗ϕ(α).

(b) For α ∈ Z, we have

g∗(f∗ω)(α) =
∑

β,(α,β)∈Td(Z)

〈f∗ω(g(α)), g(β)〉β

=
∑

β,(α,β)∈Td(Z)

〈 ∑
γ,(g(α),γ)∈Td(Y )

〈ω(f(g(α))), f(γ)〉 γ, g(β)

〉
β

=
∑

β,(α,β)∈Td(Z)

 ∑
γ,(g(α),γ)∈Td(Y )

〈ω(f(g(α))), f(γ)〉 〈γ, g(β)〉

β.

Noticing that the inner product on C∗(Y ) receives Y as an orthonormal basis, we have

〈γ, g(β)〉 =

{
1, γ = g(β)

0, γ 6= g(β).

Also we notice that (g(α), g(β)) ∈ T d(Y ) by assumption on g. Thus

g∗(f∗ω)(α) =
∑

β,(α,β)∈Td(Z)

〈ω(f(g(α))), f(g(β))〉β = (f ◦ g)∗ω(α).

5 Conclusions

We have studied several properties regarding closed and exact 0-forms and 1-forms, and we have proposed a
linear and natural pullback operation. In view of the above results, further investigations to combinatorial
forms and operations on them and comparisons of various possible approaches could be fruitful topics for
future studies.
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