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1 Introduction

We denote the complex plane by C, extended complex plane by C∞ and set of integers greater than zero by
N. We assume the function f : C → C is transcendental entire function unless stated otherwise. For any
n ∈ N, fn always denotes the nth iterate of f . If fn(z) = z for some smallest n ∈ N, then we say that
z is periodic point of period n. In particular, if f(z) = z, then z is a fixed point of f . If |(fn)′(z))| < 1,
where ′ represents complex differentiation of fn with respect to z, then z is called attracting periodic point
of the function f . A family F = {f : f is meromorphic on some domain X of C∞} forms normal family
if every sequence (fi)i∈N of functions contains a subsequence which converges uniformly to a finite limit or
converges to ∞ on every compact subset D of X.

The Fatou set of f denoted by F (f) is the set of points z ∈ C such that sequence (fn)n∈N forms a normal
family in some neighborhood of z. That is, z ∈ F (f) if z has a neighborhood U on which the family F is
normal. By definition, Fatou set is open and may or may not be empty. Fatou set is non-empty for every
entire function with attracting periodic points. The complement of F (f) denoted by J(f) is called Julia
set.

If U ⊂ F (f) (Fatou component), then f(U) lies in some component V of F (f) and V − f(U) is a set
which contains at most one point (see for instance [3]). Let U ⊂ F (f) (a Fatou component) such that
fn(U) for some n ∈ N, is contained in some component of F (f), which is usually denoted by Un. A Fatou
component U is called pre-periodic if there exist positive integers n,m such that Un = Um. In particular,
if Un = U0 = U ( that is, fn(U) ⊂ U) for some smallest positive integer n ≥ 1, then U is called periodic
Fatou component of period n, and {U0, U1 . . . , Un−1} is called the periodic cycle of U . A component of
Fatou set F (f) which is not pre-periodic is called wandering domain.

Our particular interest of this paper is that whether there are more than two transcendental entire functions
that can have similarity between the dynamics of their compositions and the dynamics of each of these
functions. Dynamics of two transcendental entire functions and their compositions were studied by Singh
[6]. He constructed several examples of transcendental entire functions where the dynamics of individual
functions is similar to the dynamics of their compositions. In the same paper, he also constructed several
examples where the dynamics of individual functions vary largly from the dynamics of their compositions.
In particular, Singh proved that there exists a domain which lies in the periodic component of individual
functions and also lies in the periodic component of the one of the composition but lies in the wandering
component of the other compositions (Theorem 4). Later, Kumar et al. [4] extended this result to the
possibility of having infinitely many domains satisfying the condition of Singh’s result. In [7, Theorem 1.1]
and [8, Theorem 1.1] we investigated three different transcendental entire functions such that wandering
and pre-periodic components of the Fatou set of each of these functions and their compositions contain
infinitely many domains. In this paper, we investigate three different transcendental entire functions such
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that each of these individual functions as well as their every possible composition with each other, consists
of infinite number of domains which lie in the periodic component of each of functions and also in their
compositions. In particular, we prove the following assertion.

Theorem 1.1. There exist three different transcendental entire functions f , g and h and infinite number of
domains which lie in the different periodic component of F (f), F (g), F (h), F (f ◦g), F (g ◦f), F (f ◦h), F (g ◦
h), F (h ◦ f), F (h ◦ g), F (f ◦ g ◦ h), F (f ◦ h ◦ g), F (g ◦ f ◦ h), F (g ◦ h ◦ f), F (h ◦ f ◦ g) and F (h ◦ g ◦ f).

2 Approximation of Holomorphic Functions

We prove Theorem 1.1 by using the notion of Carleman set from which we obtain approximation of any
holomorphic function by entire functions

Definition 2.1 (Carleman Set). Let F be a closed subset of C and

C(F ) = {f : F → C : f is continuous on F and analytic in the interior of F ◦ of F}.

Then F is called a Carleman set for C if for any g ∈ C(F ) and any positive continuous function ε on F ,
there exists entire function h such that |g(z)− h(z)| < ε for all z ∈ F .

The following important characterization of Carleman set proved by Nersesjan in 1971 but we have cited
this from [2, Theorem 4, page 157]]

Theorem 2.1. Let F be a proper subset of C. Then F is a Carleman set for C if and only if F satisfies
the following conditions:

1. C∞ − F is connected;

2. C∞ − F is locally connected at ∞;

3. for every compact subset K of C, there is a neighborhood V of ∞ in C∞ such that no component of
F ◦ intersects both K and V .

It is well known in classical complex analysis that the space C∞ − F is connected if and only if each
component Z of open set C− F is unbounded. This fact together with Theorem 2.1 can be a nice tool for
checking whether a set is a Carleman set for C. The sets given in the following examples are Carlemen sets
for C.

Example 2.1 ([2, Example page 133]). The set E = {z ∈ C : |z| = 1,Rez > 0} ∪ {z = x : x >
1} ∪

(⋃∞
n=3{z = reiθ : r > 1, θ = π/n}

)
is a Carleman set for C.

Example 2.2 ([6, Set S, page 131]). The set E = G0 ∪
(⋃∞

k=1(Gk ∪BK ∪ Lk ∪Mk)
)
, where

G0 = {z ∈ C : |z − 2| ≤ 1};

Gk = {z ∈ C : |z − (4k + 2)| ≤ 1} ∪ {z ∈ C : Rez = 4k + 2, Imz ≥ 1}
∪{z ∈ C : Rez = 4k + 2, Imz ≤ −1}, (k = 1, 2, 3, . . .);

Bk = {z ∈ C : |z + (4k + 2)| ≤ 1} ∪ {z ∈ C : Rez = −(4k + 2), Imz ≥ 1} ∪
{z ∈ C : Rez = −(4k + 2), Imz ≤ −1}, (k = 1, 2, 3, . . .);

Lk = {z ∈ C : Rez = 4k}, (k = 1, 2, 3, . . .);

and
Mk = {z ∈ C : Rez = −4k}, (k = 1, 2, 3, . . .)

is a Carleman set for C by Theorem 2.1.
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3 Proof of Theorem 1.1

If f and g are two transcendental entire functions, so are their compositions f ◦ g and g ◦ f , and the
dynamics of one composition may help in the study of the dynamics of the other composition as shown in
the following result Bergweiler and Wang [1].

Proposition 3.1. Let f and g be two transcendental entire functions. Then f ◦ g has wandering domains
if and only if g ◦ f has wandering domains.

It should also be noted that certain classes of entire functions do not have wandering domains (see for
instance [1, Theorem 3]). Singh [6] interested to know whether there is similarity between dynamics of
individual entire functions and their compositions. However, in reality, it does not hold in general. From
the help of the Carleman set of Example 2.2, Singh [6, Theorem 4] proved the following result.

Proposition 3.2. There exist transcendental entire functions f and g and a domain which lies in the
periodic component of F (f) and periodic component of F (g) and also in the periodic component of F (g ◦f)
but lies in the wandering component of F (f ◦ g).

In fact, Singh [6] also proved other results regarding the dynamics of two individual functions and their
compositions (see for instance [6, Theorems 1, 2 and 3]) which are stricly based on the Carleman set of
Example 2.2. Kumar et al. [4, Theorem 2.3] extended this result to the following assertion.

Proposition 3.3. There exists transcendental entire functions f and g having infinite number of domains
which lie in periodic component of F (f) and periodic component of F (g) and also lie in the periodic com-
ponent of F (g ◦ f) but lies in the wandering component of F (f ◦ g).

Tomar [9] extended these results within an angular region to the following results.

Proposition 3.4. There exist two transcendental entire functions f and g and infinitely many domains in
the angular region which lies in the periodic component of F (f) and periodic component of F (g) but in the
wandering component of F (f ◦ g) and wandering component of F (g ◦ f).

Proposition 3.5. There exist two transcendental entire functions f and g and infinitely many domains in
the angular region which lies in the wandering component of F (f) and wandering component of F (g) and
also in the wandering component of F (f ◦g) and wandering component of F (g◦f). Also, simultaneously for
the same functions f and g, there exists infinite number of domains which lies in the periodic component of
F (f), periodic component of F (g) and also in the periodic component of F (f ◦ g) and periodic component
of F (g ◦ f).

Note that Singh [5, Theorems 3.2.1 - 3.2.6] studied different components of the Fatou set of a transcendental
entire function in an angular region by using approximation theory of entire functions, in particular, by
the help of Carleman set.

We extended similar type of results (in the case of wandering and pre-periodic components) of Proposition
3.5 in [7, 8, Theorem 1.1]. Theorem 1.1 is an extension of Proposition 3.5 in the case of periodic components.
In particular, Proposition 3.5 can be extended to the existence of more than two different transcenden-
tal entire functions such that each individual functions and their compositions may have infinitely many
domains which lie in different periodic component of each of the functions and their compositions. We
proceed for the following long proof of Theorem 1.1.

Proof of Theorem 1.1. Let

E = G0 ∪
( ∞⋃
k=1

(Gk ∪BK ∪ Lk ∪Mk)
)

where G0, Gk, Bk, Lk and Mk are sets as defined in Example 2.2. Then E is a Carleman set for C. By the
continuity of exponential map, for a given ε > 0, there exists δ > 0 may, depend on a given point w0, such
that

|w − w0| < δ =⇒ |ew − ew0 | < ε.
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If w0 = log t, then ew0 = elog t = t. Let us choose ε = 1/2, there exist sufficiently small δk1 > 0, δk2 >
0, δ

′

k1
> 0, δ

′

k2
> 0, δk3 > 0 and δ

′

k3
> 0 such that

|w − log(4k + 6)| < δk1 =⇒ |ew − (4k + 6)| < 1/2, (k = 1, 3, 5, . . .)

|w − log(4k − 2)| < δk2 =⇒ |ew − (4k − 2)| < 1/2, (k = 2, 4, 6, . . .)

|w − (πi+ log(4k + 6))| < δ
′

k1 =⇒ |ew + (4k + 6)| < 1/2, (k = 1, 3, 5, . . .)

|w − (πi+ log(4k − 2))| < δ
′

k2 =⇒ |ew + (4k − 2)| < 1/2, (k = 2, 4, 6 . . .)

|w − log(4k + 2)| < δk3 =⇒ |ew − (4k + 2)| < 1/2, (k = 1, 2, 3, . . .)

and
|w − (πi+ log(4k + 2))| < δ

′

k3 =⇒ |ew + (4k + 2)| < 1/2, (k = 1, 2, 3, . . .)

In particular, let us choose sufficiently small δ0 > 0, δ1 > 0 and δ
′

1 > 0 such that

|w − log 2| < δ0 =⇒ |ew − 2| < 1/2.

|w − log 6| < δ1 =⇒ |ew − 6| < 1/2.

and
|w − (πi+ log 6)| < δ

′

1 =⇒ |ew + 6| < 1/2.

Next, let us define the following functions:

α(z) =

 log 2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)

log(4k + 2), ∀z ∈ Bk, k = 1, 2, 3, . . .
πi+ log(4k + 2), ∀z ∈ Gk, k = 1, 2, 3, . . .

β(z) =


log 2, ∀z ∈ G0 ∪

(⋃∞
k=1(Lk ∪Mk)

)
log(4k + 6), ∀z ∈ Bk, k = 1, 3, 5, . . .
log(4k − 2), ∀z ∈ Bk, k = 2, 4, 6, . . .
πi+ log(4k + 6), ∀z ∈ Gk, k = 1, 3, 5, . . .
πi+ log(4k − 2), ∀z ∈ Gk, k = 2, 4, 6, . . .

γ(z) =


log 2, ∀z ∈ G0 ∪

(⋃∞
k=1(Lk ∪Mk)

)
log(4k + 6), ∀z ∈ Gk, k = 1, 2, 3, . . . , n− 1;
log 6, ∀z ∈ Gn,
πi+ log(4k + 6), ∀z ∈ Bk, k = 1, 2, 3, . . . , n− 1;
πi+ log 6, ∀z ∈ Bn,

ε1(z) =


δ, ∀z ∈ G0 ∪

(⋃∞
k=1(Lk ∪Mk)

)
δk3 , ∀z ∈ Bk, k = 1, 2, 3, . . .

δ
′

k3
, ∀z ∈ Gk, k = 1, 2, 3, . . .

ε2(z) =


δ, ∀z ∈ G0 ∪

(⋃∞
k=1(Lk ∪Mk)

)
δk1 , ∀z ∈ Bk, k = 1, 3, 5 . . .
δk2 , ∀z ∈ Bk, k = 2, 4, 6 . . .

δ
′

k1
, ∀z ∈ Gk, k = 1, 2, 3, . . .

δ
′

k2
, ∀z ∈ Gk, k = 2, 4, 6 . . .

and

ε3(z) =


δ, ∀z ∈ G0 ∪

⋃∞
k=1(BK ∪ Lk ∪Mk)

δk1 , ∀z ∈ Gk, k = 1, 2, 3, . . . , n− 1;
δ1, ∀z ∈ Gn,
δ
′

k1
, ∀z ∈ Bk, k = 1, 2, 3, . . . , n− 1;

δ
′

1, ∀z ∈ Bn,
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Clearly, the functions α(z), β(z) and γ(z) are piece wise constant functions, so they are continuous on the
set E and holomorphic in E◦. Also, since E is a Carleman set, so there exist an entire functions f1(z), g1(z)
and h1(z) (say) such that

∀z ∈ E, |f1(z)− α(z)| ≤ ε1(z), |g1(z)− β(z)| ≤ ε2(z) and |h1(z)− γ(z)| ≤ ε3(z).

Consequently, we get transcendental entire functions f(z) = ef1(z), g(z) = eg1(z) and h(z) = eh1(z) which
respectively satisfy the following:

|f(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|f(z)− (4k + 2)| < 1/2, ∀z ∈ Bk, k = 1, 2, 3 . . . ;
|f(z) + (4k + 2)| < 1/2, ∀z ∈ Gk, k = 1, 2, 3, . . . ;

(3.1)

|g(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|g(z)− (4k + 6)| < 1/2, ∀z ∈ Bk, k = 1, 3, 5, . . . ;
|g(z)− (4k − 2)| < 1/2, ∀z ∈ Bk, k = 2, 4, 6, . . . ;
|g(z) + (4k + 6)| < 1/2, ∀z ∈ Gk, k = 1, 3, 5, . . . ;
|g(z) + (4k − 2)| < 1/2, ∀z ∈ Gk, k = 2, 4, 6, . . . ;

(3.2)

and
|h(z)− 2| < 1/2, ∀z ∈ G0 ∪

(⋃∞
k=1(Lk ∪Mk)

)
;

|h(z)− (4k + 6)| < 1/2, ∀z ∈ Gk, k = 1, 2, 3, . . . , n− 1;
|h(z)− 6| < 1/2, ∀z ∈ Gn;
|h(z) + (4k + 6)| < 1/2, ∀z ∈ Bk, k = 1, 2, 3, . . . , n− 1;
|h(z) + 6| < 1/2, ∀z ∈ Bn;
|h(z)− (4k + 2)| < 1/2, ∀z ∈ Bk, k > n;
|h(z) + (4k + 2)| < 1/2, ∀z ∈ Gk, k > n;

(3.3)

From (3.1), (3.2), and (3.3), we can conclude that each of the functions f , g and h maps the domain
G0 ∪

(⋃∞
k=1(Lk ∪Mk)

)
into smaller disk |z − 2| < 1/2 contained in G0 and each of these function is a

contracting mapping. So, G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)

contain fixed points z1, z2 and z3 (say) such that

fn(G0 ∪
∞⋃
k=1

(Lk ∪Mk)) −→ z1 as n −→∞.

gn(G0 ∪
∞⋃
k=1

(Lk ∪Mk)) −→ z2 as n −→∞.

hn(G0 ∪
∞⋃
k=1

(Lk ∪Mk)) −→ z3 as n −→∞.

The fixed points z1, z2 and z3 are respectively the attracting fixed points for the functions f , g and h, so
G0 ∪

(⋃∞
k=1(Lk ∪Mk)) lies in attracting cycle and hence G0 ∪

(⋃∞
k=1(Lk ∪Mk)) is a subset of each of the

Fatou set F (f), F (g) and F (h). J(f) 6= C, J(g) 6= C and J(h) 6= C and so Julia set of each of the function
f , g and h does not contain interior point and hence Fatou set of each of these function contains all interior
points. Fatou set of each of the function f , g and h contains Carleman set E.

Again, from (3.1), we can say that function f maps each Gk into smaller disk contained in Bk and Bk into
smaller disk contained in Gk for each k ∈ N. In fact, Gk and Bk are periodic components of period 2 of
the function f . Since f is a contraction mapping, so each domain Gk and Bk, (k = 1, 2, 3, . . .) are periodic
component of period 2 that lies in periodic components of F (f). And that of from (3.2), we can say that
function g maps each of the domains Gk and Bk (k = 1, 2, 3, . . .) respectively into the smaller disks of Bk
and Gk and each of these domain are also periodic component of period 2 and so they lie in the periodic
component of the Fatou set F (g). Likewise, from (3.3), we can say that domains Gk and Bk, (k ≤ n) are
periodic components of period n under the function h and Gk and Bk are periodic component of period 2
for k > n and so all these domains lie in periodic component of Fatou set F (h).

Next, we examine the dynamical behavior of compositions of the functions f , g and h. The composition of
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any two and all three of these functions satisfy the following:

Dynamical behavior of f ◦ g:

|(f ◦ g)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(f ◦ g)(z) + (4k + 6)| < 1/2, ∀z ∈ Bk, k = 1, 3, 5, . . . ;
|(f ◦ g)(z) + (4k − 2)| < 1/2, ∀z ∈ Bk, k = 2, 4, 6, . . . ;
|(f ◦ g)(z)− (4k + 6)| < 1/2, ∀z ∈ Gk, k = 1, 3, 5, . . . ;
|(f ◦ g)(z)− (4k − 2)| < 1/2, ∀z ∈ Gk, k = 2, 4, 6, . . . ;

(3.4)

This composition rule (3.4) shows that the domains G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
, Gk and Bk, (k = 1, 2, 3, . . .)

belong to F (f ◦ g) and in fact, each Gk and Bk for each k ∈ N is a periodic domain of period 2 which
belongs to the periodic components of F (f ◦ g).

Dynamical behavior of g ◦ f :

|(g ◦ f)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(g ◦ f)(z) + (4k + 6)| < 1/2, ∀z ∈ Bk, k = 1, 3, 5, . . . ;
|(g ◦ f)(z) + (4k − 2)| < 1/2, ∀z ∈ Bk, k = 2, 4, 6, . . . ;
|(g ◦ f)(z)− (4k + 6)| < 1/2, ∀z ∈ Gk, k = 1, 3, 5, . . . ;
|(g ◦ f)(z)− (4k − 2)| < 1/2, ∀z ∈ Gk, k = 2, 4, 6, . . . ;

(3.5)

From this composition rule (3.5), we can say that the domains G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
, Gk and Bk, (k =

1, 2, 3, . . .) belong to F (g ◦ f) and in fact, each Gk and Bk for each k ∈ N is a periodic domain of period 2
which belongs to the periodic components of F (g ◦ f).

Dynamical behavior of f ◦ h:

|(f ◦ h)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(f ◦ h)(z)− (4k + 6)| < 1/2, ∀z ∈ Bk, k = 1, 2, 3, . . . , n− 1;
|(f ◦ h)(z)− 6| < 1/2, ∀z ∈ Bn;
|(f ◦ h)(z) + (4k + 6)| < 1/2, ∀z ∈ Gk, k = 1, 2, 3, . . . , n− 1;
|(f ◦ h)(z) + 6| < 1/2, ∀z ∈ Gn;
|(f ◦ h)(z) + (4k + 2)| < 1/2, ∀z ∈ Bk, k > n;
|(f ◦ h)(z)− (4k + 2)| < 1/2, ∀z ∈ Gk, k > n;

(3.6)

The composition rule (3.6) shows the domains G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
, Gk and Bk, (k = 1, 2, 3, . . .) belong

to F (f ◦ h). In fact, each Gk and Bk, (k > n) is a periodic domain of period 1 and each Gk and Bk for
k = 1, 2, 3, . . . , n is a periodic component of period n for even n.

Dynamical behavior of h ◦ f :

|(h ◦ f)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(h ◦ f)(z) + (4k + 6)| < 1/2, ∀z ∈ Bk, k = 1, 2, 3, . . . , n− 1;
|(h ◦ f)(z) + 6| < 1/2, ∀z ∈ Bn;
|(h ◦ f)(z)− (4k + 6)| < 1/2, ∀z ∈ Gk, k = 1, 2, 3 . . . , n− 1;
|(h ◦ f)(z)− 6| < 1/2, ∀z ∈ Gn;
|(h ◦ f)(z) + (4k + 2)| < 1/2, ∀z ∈ Bk, k > n;
|(h ◦ f)(z)− (4k + 2)| < 1/2, ∀z ∈ Gk, k > n;

(3.7)

From this composition rule (3.7), we can say that the domains G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
, Gk and Bk, (k =

1, 2, 3, . . .) belong to F (h ◦ f). In fact, each Gk and Bk, (k > n) is a periodic component of period 1 and
each Gk and Bk for k = 1, 2, 3, . . . , n is a periodic component of period n for odd n.
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Dynamical behavior of g ◦ h:

|(g ◦ h)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(g ◦ h)(z)− (4k + 2)| < 1/2, ∀z ∈ Bk, k = 1, 3, 5 . . . , n− 1;
|(g ◦ h)(z)− (4k + 10)| < 1/2, ∀z ∈ Bk, k = 2, 4, 6, . . . , n− 1;
|(g ◦ h)(z)− 10| < 1/2, ∀z ∈ Bn;
|(g ◦ h)(z) + (4k + 2)| < 1/2, ∀z ∈ Gk, k = 1, 3, 5 . . . , n− 1;
|(g ◦ h)(z) + (4k + 10)| < 1/2, ∀z ∈ Gk, k = 2, 4, 6, . . . , n− 1;
|(g ◦ h)(z) + 10| < 1/2, ∀z ∈ Gn;
|(g ◦ h)(z) + (4k − 2)| < 1/2, ∀z ∈ Bk, k > n and k is even;
|(g ◦ h)(z) + (4k + 6)| < 1/2, ∀z ∈ Bk, k > n and k is odd;
|(g ◦ h)(z)− (4k − 2)| < 1/2, ∀z ∈ Gk, k > n and k is even;
|(g ◦ h)(z)− (4k + 6)| < 1/2, ∀z ∈ Gk, k > n and k is odd;

(3.8)

This composition rule (3.8) shows that the domains G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
, Gk and Bk, (k = 1, 2, 3, . . .)

belong to F (g ◦ h). In fact, each Gk and Bk, (k > n) is a periodic components of of period 1 and each Gk
and Bk for odd k ≤ n are periodic components of period 2.

Dynamical behavior of h ◦ g:

|(h ◦ g)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(h ◦ g)(z)− (4k + 10)| < 1/2, ∀z ∈ Bk, k = 1, 3, 5 . . . , n− 1;
|(h ◦ g)(z)− (4k + 2)| < 1/2, ∀z ∈ Bk, k = 2, 4, 6, . . . , n− 1;
|(h ◦ g)(z) + (4n+ 6)| < 1/2, ∀z ∈ Bn, for odd n;
|(h ◦ g)(z)− (4n+ 2)| < 1/2, ∀z ∈ Bn, for even n;
|(h ◦ g)(z) + (4k + 10)| < 1/2, ∀z ∈ Gk, k = 1, 3, 5 . . . , n− 1;
|(h ◦ g)(z) + (4k + 2)| < 1/2, ∀z ∈ Gk, k = 2, 4, 6, . . . , n− 1;
|(h ◦ g)(z)− (4n+ 6)| < 1/2, ∀z ∈ Gn, for odd n;
|(h ◦ g)(z) + (4n+ 2)| < 1/2, ∀z ∈ Gn, for even n;
|(g ◦ h)(z) + (4k − 2)| < 1/2, ∀z ∈ Bk, k > n and k is even;
|(h ◦ g)(z)− 6| < 1/2, ∀z ∈ Bk, k > n and k − 1 = n;
|(h ◦ g)(z) + (4k + 6)| < 1/2, ∀z ∈ Bk, k > n and k is odd;
|(h ◦ g)(z)− (4k − 2)| < 1/2, ∀z ∈ Gk, k > n and k is even;
|(h ◦ g)(z) + 6| < 1/2, ∀z ∈ Gk, k > n and k − 1 = n;
|(h ◦ g)(z)− (4k + 6)| < 1/2, ∀z ∈ Gk, k > n and k is odd;

(3.9)

From this composition rule (3.9), we can say that the domains G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
, Gk and Bk, (k =

1, 2, 3, . . .) belong to F (h ◦ g). In fact, each Gk and Bk, (k > n) is a periodic components of period 1 and
each Gk and Bk for even k ≤ n is a periodic component of period 2.

Dynamical behavior of f ◦ g ◦ h:

|(f ◦ g ◦ h)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(f ◦ g ◦ h)(z) + (4k + 2)| < 1/2, ∀z ∈ Bk, k = 1, 3, 5, . . . , n− 1;
|(f ◦ g ◦ h)(z) + (4k + 10)| < 1/2, ∀z ∈ Bk, k = 2, 4, 6, . . . , n− 1;
|(f ◦ g ◦ h)(z) + 10| < 1/2, ∀z ∈ Bn;
|(f ◦ g ◦ h)(z)− (4k + 2)| < 1/2, ∀z ∈ Gk, k = 1, 3, 5 . . . , n− 1;
|(f ◦ g ◦ g)(z)− (4k + 10)| < 1/2, ∀z ∈ Gk, k = 2, 4, 6, . . . , n− 1;
|(f ◦ g ◦ g)(z)− 10| < 1/2, ∀z ∈ Gn;
|(f ◦ g ◦ h)(z)− (4k + 6)| < 1/2, ∀z ∈ Bk, k > n and k is odd;
|(f ◦ g ◦ h)(z)− (4k − 2)| < 1/2, ∀z ∈ Bk, k > n and k is even;
|(f ◦ g ◦ h)(z) + (4k + 6)| < 1/2, ∀z ∈ Gk, k > n and k is odd;
|(f ◦ g ◦ h)(z) + (4k − 2)| < 1/2, ∀z ∈ Gk, k > n and k is even;

(3.10)

The composition rule (3.10) assigned above tells us that domains G0∪
(⋃∞

k=1(Lk ∪Mk)
)
, Gk and Bk, (k =

1, 2, 3, . . .) lie in F (f ◦ g ◦ h). In fact, each Gk and Bk, (k > n) is a periodic components of period 1 and
each Gk and Bk for odd k ≤ n is a periodic component of period 1.
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Dynamical behavior of f ◦ h ◦ g:

|(f ◦ h ◦ g)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(f ◦ h ◦ g)(z) + (4k + 10)| < 1/2, ∀z ∈ Bk, k = 1, 3, 5, . . . , n− 1;
|(f ◦ h ◦ g)(z) + (4k + 2)| < 1/2, ∀z ∈ Bk, k = 2, 4, 6, . . . , n− 1;
|(f ◦ h ◦ g)(z) + (4n+ 6)| < 1/2, ∀z ∈ Bn and n is odd;
|(f ◦ h ◦ g)(z) + (4n+ 2)| < 1/2, ∀z ∈ Bn and n is even;
|(f ◦ h ◦ g)(z)− (4k + 10)| < 1/2, ∀z ∈ Gk, k = 1, 3, 5 . . . , n− 1;
|(f ◦ h ◦ g)(z)− (4k + 2)| < 1/2, ∀z ∈ Gk, k = 2, 4, 6, . . . , n− 1;
|(f ◦ h ◦ g)(z) + (4n+ 6)| < 1/2, ∀z ∈ Gn and n is odd;
|(f ◦ h ◦ g)(z)− (4n+ 2)| < 1/2, ∀z ∈ Gn and n is even;
|(f ◦ h ◦ g)(z)− (4k + 6)| < 1/2, ∀z ∈ Bk, k > n and k is odd;
|(f ◦ h ◦ g)(z)− (4k − 2)| < 1/2, ∀z ∈ Bk, k > n and k is even;
|(f ◦ h ◦ g)(z) + 6| < 1/2, ∀z ∈ Bk, k > n k is even and k − 1 = n;
|(f ◦ h ◦ g)(z) + (4k + 6)| < 1/2, ∀z ∈ Gk, k > n and k is odd;
|(f ◦ h ◦ g)(z) + (4k − 2)| < 1/2, ∀z ∈ Gk, k > n and k is even;
|(f ◦ h ◦ g)(z)− 6| < 1/2, ∀z ∈ Gk, k > n k is even and k − 1 = n;

(3.11)

The composition rule (3.11) assigned above tells us that domains G0∪
(⋃∞

k=1(Lk ∪Mk)
)
, Gk and Bk, (k =

1, 2, 3, . . .) lie in F (f ◦ h ◦ g) and in fact, each Gk and Bk, (k > n) belong to the periodic components of
F (f ◦ h ◦ g) of period 1. Each Gk and Bk for even k are periodic components of period 1.

Dynamical behavior of g ◦ f ◦ h:

|(g ◦ f ◦ h)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(g ◦ f ◦ h)(z) + (4k + 2)| < 1/2, ∀z ∈ Bk, k = 1, 3, 5, . . . , n− 1;
|(g ◦ f ◦ h)(z) + (4k + 10)| < 1/2, ∀z ∈ Bk, k = 2, 4, 6, . . . , n− 1;
|(g ◦ f ◦ h)(z) + 10| < 1/2, ∀z ∈ Bn;
|(g ◦ f ◦ h)(z)− (4k + 2)| < 1/2, ∀z ∈ Gk, k = 1, 3, 5 . . . , n− 1;
|(g ◦ f ◦ h)(z)− (4k + 10)| < 1/2, ∀z ∈ Gk, k = 2, 4, 6, . . . , n− 1;
|(g ◦ f ◦ h)(z)− 10| < 1/2, ∀z ∈ Gn;
|(g ◦ f ◦ h)(z)− (4k + 6)| < 1/2, ∀z ∈ Bk, k > n and k is odd;
|(g ◦ f ◦ h)(z)− (4k − 2)| < 1/2, ∀z ∈ Bk, k > n and k is even;
|(g ◦ f ◦ h)(z) + (4k + 6)| < 1/2, ∀z ∈ Gk, k > n and k is odd;
|(g ◦ f ◦ h)(z) + (4k − 2)| < 1/2, ∀z ∈ Gk, k > n and k is even;

(3.12)

The composition rule (3.12) tells us that domains G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
, Gk and Bk, (k = 1, 2, 3, . . .) lie

in F (g ◦ f ◦ h). In fact, each Gk and Bk, (k > n) is a periodic components of period 1 and each Gk and
Bk for odd k ≤ n is a periodic component of period 1.

Dynamical behavior of g ◦ h ◦ f :

|(g ◦ h ◦ f)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(g ◦ h ◦ f)(z) + (4k + 2)| < 1/2, ∀z ∈ Bk, k = 1, 3, 5, . . . , n− 1;
|(g ◦ h ◦ f)(z) + (4k + 10)| < 1/2, ∀z ∈ Bk, k = 2, 4, 6, . . . , n− 1;
|(g ◦ f ◦ h)(z) + 10| < 1/2, ∀z ∈ Bn;
|(g ◦ h ◦ f)(z)− (4k + 2)| < 1/2, ∀z ∈ Gk, k = 1, 3, 5 . . . , n− 1;
|(g ◦ g ◦ f)(z)− (4k + 10)| < 1/2, ∀z ∈ Gk, k = 2, 4, 6, . . . , n− 1;
|(g ◦ f ◦ h)(z)− 10| < 1/2, ∀z ∈ Gn;
|(g ◦ h ◦ f)(z)− (4k + 6)| < 1/2, ∀z ∈ Bk, k > n and k is odd;
|(g ◦ h ◦ f)(z)− (4k − 2)| < 1/2, ∀z ∈ Bk, k > n and k is even;
|(g ◦ h ◦ f)(z) + (4k + 6)| < 1/2, ∀z ∈ Gk, k > n and k is odd;
|(g ◦ h ◦ f)(z) + (4k − 2)| < 1/2, ∀z ∈ Gk, k > n and k is even;

(3.13)

The composition rule (3.13) tells us that domains G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
, Gk and Bk, (k = 1, 2, 3, . . .) lie

in F (g ◦h ◦ f). In fact, each Gk and Bk, (k > n) is a periodic components of period 1 and each Gk and Bk
for odd k ≤ n is a periodic component of period 1. Note that composition rules 3.12 and 3.13 show that
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dynamics of g ◦ f ◦ h and g ◦ h ◦ f coincide.

Dynamical behavior of h ◦ f ◦ g:

|(h ◦ f ◦ g)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(h ◦ f ◦ g)(z) + (4k + 10)| < 1/2, ∀z ∈ Bk, k = 1, 3, 5, . . . , n− 1;
|(h ◦ f ◦ g)(z) + (4k + 2)| < 1/2, ∀z ∈ Bk, k = 2, 4, 6, . . . , n− 1;
|(h ◦ f ◦ g)(z)− (4n+ 6)| < 1/2, ∀z ∈ Bn and n is odd;
|(h ◦ f ◦ g)(z) + (4n+ 2)| < 1/2, ∀z ∈ Bn and n is even;
|(h ◦ f ◦ g)(z)− (4k + 10)| < 1/2, ∀z ∈ Gk, k = 1, 3, 5 . . . , n− 1;
|(h ◦ g ◦ g)(z)− (4k + 2)| < 1/2, ∀z ∈ Gk, k = 2, 4, 6, . . . , n− 1;
|(h ◦ f ◦ g)(z) + (4n+ 6)| < 1/2, ∀z ∈ Gn and n is odd;
|(h ◦ f ◦ g)(z)− (4n+ 2)| < 1/2, ∀z ∈ Gn and n is even;
|(h ◦ f ◦ g)(z)− (4k + 6)| < 1/2, ∀z ∈ Bk, k > n and k is odd;
|(h ◦ f ◦ g)(z)− (4k − 2)| < 1/2, ∀z ∈ Bk, k > n and k is even;
|(h ◦ f ◦ g)(z) + 6| < 1/2, ∀z ∈ Bk, k > n k is even and k − 1 = n;
|(h ◦ f ◦ g)(z) + (4k + 6)| < 1/2, ∀z ∈ Gk, k > n and k is odd;
|(h ◦ f ◦ g)(z) + (4k − 2)| < 1/2, ∀z ∈ Gk, k > n and k is even;
|(h ◦ f ◦ g)(z)− 6| < 1/2, ∀z ∈ Gk, k > n k is even and k − 1 = n;

(3.14)

The composition rule (3.14) tells us that domains G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
, Gk and Bk, (k = 1, 2, 3, . . .) lie

in F (h ◦ f ◦ g). In fact, each Gk and Bk, (k > n) is a periodic component of period 1 and each Gk and Bk
for even k ≤ n is a periodic component of period 1.

Dynamical behavior of h ◦ g ◦ f :

|(h ◦ g ◦ f)(z)− 2| < 1/2, ∀z ∈ G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
;

|(h ◦ g ◦ f)(z) + (4k + 10)| < 1/2, ∀z ∈ Bk, k = 1, 3, 5, . . . , n− 1;
|(h ◦ g ◦ f)(z) + (4k + 2)| < 1/2, ∀z ∈ Bk, k = 2, 4, 6, . . . , n− 1;
|(h ◦ g ◦ f)(z)− (4n+ 6)| < 1/2, ∀z ∈ Bn and n is odd;
|(h ◦ g ◦ f)(z) + (4n+ 2)| < 1/2, ∀z ∈ Bn and n is even;
|(h ◦ g ◦ f)(z)− (4k + 10)| < 1/2, ∀z ∈ Gk, k = 1, 3, 5 . . . , n− 1;
|(h ◦ g ◦ f)(z)− (4k + 2)| < 1/2, ∀z ∈ Gk, k = 2, 4, 6, . . . , n− 1;
|(h ◦ g ◦ f)(z) + (4n+ 6)| < 1/2, ∀z ∈ Gn and n is odd;
|(h ◦ g ◦ f)(z)− (4n+ 2)| < 1/2, ∀z ∈ Gn and n is even;
|(h ◦ g ◦ f)(z)− (4k + 6)| < 1/2, ∀z ∈ Bk, k > n and k is odd;
|(h ◦ g ◦ f)(z)− (4k − 2)| < 1/2, ∀z ∈ Bk, k > n and k is even;
|(h ◦ g ◦ f)(z) + 6| < 1/2, ∀z ∈ Bk, k > n k is even and k − 1 = n;
|(h ◦ g ◦ f)(z) + (4k + 6)| < 1/2, ∀z ∈ Gk, k > n and k is odd;
|(h ◦ g ◦ f)(z) + (4k − 2)| < 1/2, ∀z ∈ Gk, k > n and k is even;
|(h ◦ g ◦ f)(z)− 6| < 1/2, ∀z ∈ Gk, k > n k is even and k − 1 = n;

(3.15)

The composition rule (3.15) tells us that domains G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)
, Gk and Bk, (k = 1, 2, 3, . . .) lie

in F (h ◦ g ◦ f). In fact, each Gk and Bk, (k > n) is a periodic components of period 1 and each Gk and
Bk for even k ≤ n is a periodic component of period 1.

From all of the above discussion, we found that the domain G0 ∪
(⋃∞

k=1(Lk ∪Mk)
)

and all domains Gk
and Bk, (k > n) are periodic components period 2 for the composites of any two functions and period 1
for the composites of three functions. So all, these domains lie in the Fatou sets of the functions f, g and
h and their compositions. Also, there are other periodic domains Gk and Bk for k ≤ n of different periods
of the composites that lie in the periodic components of the Fatou sets the functions f, g and h and their
compositions.

References

[1] Bergweiler, W., 2011, An entire functions with simply and multiply connected wandering domains,
Pure Appl. Math. Quarterly 7, 107-120.

45



Periodic Components of the Fatou Set of Three Transcendental Entire Functions and Their Compositions

[2] Gaier, A., 1987, Lectures on complex approximation, Birkhauser.

[3] Herring, M. E., 1998, Mapping properties of Fatou components, Ann. Acad. Sci. Fenn. Math., 23,
263-274.

[4] Kumar, D. and Kumar, S., 2015, Dynamics of composite entire functions, The Journal Indian Math.
Soc., 82 (3-4), 107-114. arXiv: 1207.5930v5 [math.DS].

[5] Singh, A., 2004, Properties and structure of Fatou sets and Julia sets, PhD Thesis, University of
Jammu, Jammu and Kashmir, India.

[6] Singh, A. P., 2003, On the dynamics of composite entire functions, Math. Proc. Camb. Phil. Soc. 134,
129-138.

[7] Subedi, B. H. and Singh, A., 2019, Dynamics on the wandering components of the Fatou set of three
transcendental entire functions and their compositions, The Indian Journal of Mathematics, 61 (3),
329-342. arXiv: 1803.09259v1.

[8] Subedi, B.H. and Singh, A., 2020, Dynamics on the pre-periodic components of the Fatou set of three
transcendental entire functions and their compositions, Journal of Nepal Academy of Science and
Technology, (NJST) 19(1), 1-6.

[9] Tomar, G., 2017, On the dynamics of composition of transcendental entire functions in angular region-
II, The Journal of Indian Mathematical Society, 84 (3-4), 287-296.

46


	Introduction
	Approximation of Holomorphic Functions
	Proof of Theorem 1.1

