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1 Introduction

A well celebrated, fundamental inequality for a convex function f is the classical Hermite-Hadamard’s
inequality:

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
, (1.1)

where a, b ∈ R with a < b.

It was first suggested by Hermite in 1881. But this result was nowhere mentioned in literature and was
not widely known as Hermite’s result. A leading expert on the history and theory of complex functions,
Beckenbach [2], wrote that the inequality (1.1) was proven by Hadamard in 1893. In general, (1.1) is now
known as the Hermite-Hadamard inequality. It has several extensions and generalizations for univariate
and multivariate convex functions and its classes on classical intervals.

The concept of the theory of time scales was initiated by Stefen Hilger (see [10]) in order to unify and extend
the theory of difference and differential calculus in a consistent way. In this theory, the delta and nabla
calculus are introduced. A linear combination of these delta and nabla dynamics, the diamond-α calculus
on time scales was developed by Sheng et al.[12]. Since the advent of this notion, several authors have
extended the classical Hermite-Hadamard inequality (1.1) to time scales via the diamond-alpha dynamic
calculus for univariate convex functions (see Dinu[5]) and the references therein.

Recently, Fagbemigun and Mogbademu [6] introduced the time-scaled version of some classes of convex
functions, including a more generalized class of φh-convex function on time scales as given below:

Definition 1.1. [6] Let h : JT ⊂ T→ R be a nonzero non negative function with the property that h(t) > 0
for all t ≥ 0 and φ be a given real valued function with φ(t) = t. A mapping f : IT → R is said to be
φh-convex on time scales if

f(λφ(x) + (1− λ)φ(y)) ≤
(

λ

h(λ)

)s
f(φ(x)) +

(
1− λ

h(1− λ)

)s
f(φ(y)), (1.2)

for s ∈ [0, 1], 0 ≤ λ ≤ 1 and x, y ∈ IT.

Remark 1.1.

(i) If s = 1, h(λ) = 1 and φ(x) = x, then f ∈ SX(IT), i.e, f is convex on time scales (see [5]).

(ii) If s = 1, h(λ) = 1, where λ = 1
2 and φ(x) = x, then f ∈ J(IT) is mid-point convex on time scales (see

[6]).

(iii) If s = 0 and φ(x) = x, then f ∈ P (IT) is P -convex on time scales (see [6]).
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(iv) If h(λ) = λ
s
s+1 and φ(x) = x, then f ∈ SX(h, IT) is h-convex on time scales (see [6]).

(v) If s = 1, h(λ) = 2
√
λ(1− λ) and φ(x) = x, then f ∈MT (IT) is MT -convex on time scales (see [6]).

In a more recent paper, the authors [7] introduced a more general calculus of diamond-φh dynamics for a
single variable function on time scales as follows;

Definition 1.2. [7] Let h : JT ⊂ T → R be a real valued function, with the property that h(t) > 0 for all
t ≥ 0. The diamond-φh dynamic derivative of a function f : T → R in t ∈ T is defined to be the number
denoted by f�φh−s,T (t)(when it exists), with the property that for any ε > 0, there is a neighbourhood U
of m such that, for all n ∈ U, 0 ≤ s ≤ 1 and 0 ≤ λ ≤ 1, with µmn = σ(m)− n and νmn = ρ(m)− n, where
m,n ∈ Tkk, then,∣∣∣∣( λ

h(λ)

)s
[f(σ(m))− f(n)]νmn +

(
1− λ

h(1− λ)

)s
[f(ρ(m))− f(n)]µmn

−f�φh (φ(t))µmnνmn

∣∣∣∣∣ < ε|µmnνmn|. (1.3)

Definition 1.3. [7] The diamond-φh integral of a function f : T→ R from a to b, where a, b ∈ T is given
by; ∫ b

a

f(φ(t)) �φh t =

(
λ

h(λ)

)s ∫ b

a

f(φ(t))∆t+

(
1− λ

h(1− λ)

)s ∫ b

a

f(φ(t))∇t, (1.4)

for all s ∈ [0, 1], λ ∈ [0, 1] and h(t) > 0 ∀t ≥ 0 provided that f has a delta and nabla integral on [a, b]T or
IT.

Remark 1.2.

(i) The inequality (1.4) reduces to the diamond-α integral defined by Sheng et al. [12], if φ(x) = x, s = 1,
h(λ) = 1 and λ = α. Thus, every diamond-α integrable function on T is diamond-φh integrable but
the converse is not true (see [7]).

(ii) If f is diamond-φh integrable for 0 ≤ s ≤ 1, and 0 ≤ λ ≤ 1, then f is both ∆ and ∇ integrable.

The inequality (1.1) was equally extended to time scales by the authors [7], using the new class of univariate
φh-convex function of [6] to obtain several generalizations of the Hermite-Hadamard inequality on time
scales. We present one of such results

Theorem 1.1. [7] Suppose that
(i) f : IT → R is a continuous φh-convex function on IT;

(ii) p, q ∈ (0, 1), such that p+ q = 1;

g ∈ C(IT,R) is symmetric with respect to pa+ qb = γ on
[a, b], for all a, b ∈ IT, that is,

g(γ − qt) = g(γ + pt), for all t ∈ [0, b− a].
Then

f(pφ(x) + qφ(y)) ≤ p
∫ γ
a
f(φ(t))g(φ(t)) �φh t∫ γ
a
g(φ(t)) �φh t

+ q

∫ b
γ
f(φ(t))g(φ(t)) �φh t∫ b
γ
g(φ(t)) �φh t

≤ pf(φ(x)) + qf(φ(y)). (1.5)

The two-variable time scales delta, nabla and diamond-α calculi were introduced by Albrandth and Morian[1],
Bohner and Guseinov [3, 4], Guseinov[9] and Ozkan and Kaymakçalan [11] respectively.

Ozkan and Kaymakçalan [11] gave the following definition of a partial �α1 derivative;

Definition 1.4. [11] Let f be a real-valued function on T1×T2. We say that f has a partial �α1
derivative

∂f(t1,t2)
�α1 t1

(with respect to t1) if for each ε > 0, there exists a neighbourhood Ut1 (open in the relative topology

of T1) of t1 such that
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∣∣∣∣∣ < ε|µt1sνt1s| (1.6)

for all s ∈ Ut1, where Ut1ms = σ1(t1)− s, νt1s = ρ1(t1)− s.

The �α2
partial derivative was respectively defined (see [11]).

Motivated by the recent results of these authors; Fagbemigun and Mogbademu [6], Fagbemigun et al. [7] and
Ozkan and Kaymakçalan [11], we discuss the following new concepts of Fagbemigun and Mogbademu [8].

2 Preliminaries

In the sequel, we shall need the following new definitions recently introduced in [8].

Let T1 and T2 be two time scales with T1×T2 = {(x, y) : x ∈ T1, y ∈ T2} which is a complete metric space
with the metric d defined by

d((x, y), (x
′
, y
′
)) = ((x− x

′
)2 + (y − y

′
)2)

1
2 , ∀ (x, y), (x

′
, y
′
) ∈ T1 × T2.

Let σi, ρi, (i = 1, 2) denote respectively the forward jump operator, backward jump operator, and the
diamond-φh dynamic differentiation operator on Ti.

Definition 2.1.[8] Let f be a real-valued function on T1 × T2, h : JT ⊂ T → R a nonzero non negative
function with the property that h(t) > 0 for all t ≥ 0 and φ be a given real valued function. f is said to

have a partial �(φh)1 derivative ∂f(φ(t1,t2))
�(φh)1

t1
(wrt t1), at (t1, t2) ∈ T1 × T2, if for each ε > 0, there exists a

neighbourhood Ut1 of t1 such that∣∣∣( λ
h(λ)

)s
1
[f(σ1(t1), t2)− f(m, t2, )]µt1m

+

(
1− λ

h(1− λ)

)s
1

[f(ρ1(t1), t2)− f(m, t2)]νt1m− f�(φh)1 (φ(t1, t2))µt1mνt1m

∣∣∣∣∣
< ε|µt1mνt1m|, (2.1)

for s ∈ [0, 1], 0 ≤ λ ≤ 1 and for all m ∈ Ut1, where Ut1m = σ1(t1)−m, νt1m = ρ1(t1)−m.

Definition 2.2.[8] Let f be a real-valued function on T1 × T2 and h : JT ⊂ T→ R an increasing function

with the property that h(t) > 0 for all t ≥ 0. f is said to have a ”partial �(φh)2 derivative” ∂f(φ(t1,t2))
�(φh)2

t2
(wrt

t2), at (t1, t2) ∈ T1 × T2, if for each ε > 0, there exists a neighbourhood Ut2 of t2 such that∣∣∣( λ
h(λ)

)s
2
[f(t1, σ2(t2)− f(t1, m)]µt2m

+

(
1− λ

h(1− λ)

)s
2

[f(t1, ρ2(t2)− f(t1, m)]νt2m− f�(φh)2 (φ(t1, t2))µt2mνt2m

∣∣∣∣∣
< ε|µt2mνt2m|, (2.2)

for s ∈ [0, 1], 0 ≤ λ ≤ 1 and for all n ∈ Ut2, where Ut2m = σ2(t2)−m,
νt2m = ρ2(t2)−m.

These derivatives are also denoted by f�(φh)1 (φ(t1, t2)) and f�(φh)2 (φ(t1, t2)) respectively.

Before we define the double diamond-φh dynamic integral, we shall employ the following remark of [3].

Remark 2.1. Let f be a real-valued function on T1 × T2. If the delta (∆) and nabla (∇) integrals of f
exist on T1 × T2, then the following types of integrals can be defined:

(i) ∆∆-integral over R0 = [a, b)×[c, d), which is introduced by using partitions consisting of subrectangles
of the form [α, β)× [γ, ∂);
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(ii) ∇∇-integral over R1 = (a, b]×(c, d], which is introduced by using partitions consisting of subrectangles
of the form (α, β]× (γ, ∂];

(iii) ∆∇-integral over R2 = [a, b)×(c, d], which is introduced by using partitions consisting of subrectangles
of the form [α, β)× (γ, ∂];

(iv) ∇∆-integral over R3 = (a, b]×[c, d), which is introduced by using partitions consisting of subrectangles
of the form (α, β]× [γ, ∂).

Now let Ū(f) and L̄(f) denote the upper and lower Darboux ∆-integral of f from a to b ; U(f) and L(f)
denote the upper and lower Darboux ∇-integral of f from a to b respectively. Given the construction
of U(f) and L(f), which follows from the properties of supremum and infimum, we give the following
definition.

Definition 2.3. Let f be a real-valued function on T1 × T2, h : JT ⊂ T → R a nonzero non negative
function with the property that h(t) > 0 for all t ≥ 0 and φ be a given real valued function. If f is
∆-integrable on R0 = [a, b) × [c, d) and ∇-integrable on R1 = (a, b] × (c, d], then it is �φh -integrable on
R = [a, b]× [c, d] and∫

R

f(φ(t, k)) �(φh)1 φ(t) �(φh)2 φ(k) =

(
λ

h(λ)

)s ∫ ∫
R0

f(φ(t, k))∆1φ(t)∆2φ(k)

+

(
1− λ

h(1− λ)

)s ∫ ∫
R1

f(φ(t, k))∇1φ(t)∇2φ(k), (2.3)

for all s ∈ [0, 1], 0 ≤ λ ≤ 1 and t, k ∈ JT.

Since Ū(f) ≥ L̄(f) and U(f) ≥ L(f), we obtain the following result.

Theorem 2.1. Let f be a real-valued function on T1×T2, h : JT ⊂ T→ R a nonzero non negative function
with the property that h(t) > 0 for all t ≥ 0 and φ be a given real valued function. If f be �φh -integrable
on R = [a, b]× [c, d], provided its delta (∆) and nabla (∇) integrals exist, then

(i) If φh = 1, f is ∆∆-integrable on R0 = [a, b)× [c, d);

(ii) If φh = 0, f is ∇∇-integrable on R1 = (a, b]× (c, d];

(iii) If φh = 1
2 , f is ∆∆-integrable and ∇∇-integrable on R0 and R1

(iv) If φh = α, f is double �α-integrable on R = [a, b]× [c, d].

3 Double integral inequalities of Hermite-Hadamard type for φh-
convex functions

Here, we obtain double integral inequalities of Hermite-Hadamard type in which upper and lower bounds
for the quantity

1

(b− a)(d− c)

∫ b

a

∫ d

c

f

(
pφ1(t) + qφ2(t)

p+ q

)
�(φh)1 q �(φh)2 p,

are provided for the generalized class of φh-convex functions (1.2), defined on linear spaces of time scales.

Let XT be a vector space over the time-scaled field K and let φ(x), φ(y) be monotonically increasing
functions in XT, φ(x) 6= φ(y). Let the segment generated by φ(x), φ(y) be defined by

[a, b] : {(1− λ)φ(x) + λφ(y), λ ∈ [0, 1]}.

We consider the function f : [x, y]IT ⊂ T → R and the attached function g(φ(x), φ(y)) : [0, 1] ⊂ T → R
defined by

g(φ(x), φ(y))(φ(λ)) := f [(1− λ)φ(x) + λφ(y)], λ ∈ [0, 1].

14



Journal of Nepal Mathematical Society (JNMS), Vol. 2, Issue 2 (2019); B. O. Fagbemigun, A. A.
Mogbademu, J. O. Olalern

Note that f is φh-convex on [x, y] if and only if g(φ(x), φ(y)) is φh-convex on [0, 1].

The concept of φh-convexity in Definition 1.1 can be extended for functions defined on closed φh-convex
subsets of the linear spaces in the same way as on classical intervals by replacing the interval IT by the
corresponding closed φh-convex subset E of the linear space XT.

It is well-known that if (X, || · ||) is a normed linear space, then the function f(x) = ||x||p, p ≥ 1 is convex
on X.

Using the elementary inequality (a + b)s ≤ as + bs that holds for any a, b ≥ 0 and s ∈ [0, 1], we have for
the function g(φ(x)) = ||φ(x)|| that

g(λφ(x) + (1− λ)φ(y)) =

(
|| λ

h(λ)
φ(x) +

(1− λ)

h(1− λ)
φ(y)||

)s
≤

(
λ

h(λ)
||φ(x)||+ (1− λ)

h(1− λ)
||φ(y)||

)s
≤

(
λ

h(λ)
||φ(x)||

)s
+

(
(1− λ)

h(1− λ)
||φ(y)||

)s
≤

(
λ

h(λ)

)s
(||φ(x)||)s +

(
(1− λ)

h(1− λ)

)s
(||φ(y)||)s

=

(
λ

h(λ)

)s
g(φ(x)) +

(
(1− λ)

h(1− λ)

)s
g(φ(y)),

for any x, y ∈ XT, λ ∈ [0, 1] and h a non zero non negative function with the property that h(t) > 0 for all
t ≥ 0 and φ(t) be a monotonically increasing function on IT, which shows that g is φh-convex on IT. With
this concept, an equivalent definition to definition 1.1 is given as follows.

Definition 3.1. Let h be a non zero non negative function with the property that h(t) > 0 for all t ≥ 0
and let φ be a monotonically increasing function. Then inequality (1.2) can be re-written as

f

(
pφ(x) + qφ(y)

p+ q

)
≤

( p
h(p) )

sfφ(x) + ( q
h(q) )

sfφ(y)

p+ q
, (3.1)

for all p, q ≥ 0 with p+ q > 0, s ∈ [0, 1] and x, y ∈ IT.

We can now establish double Hermite-Hadamard-type integral inequalities for the class of φh-convex func-
tions on time scales linear spaces.

Theorem 3.1. Let h be a non zero non negative function with the property that h(t) > 0 for all t ≥ 0 and
let φ be a monotonically increasing function. Let E φh-convex set in a linear space of a time scale interval
XT ⊂ T and f : E ⊆ XT → R be an integrable φh-convex function with respect to the function φh defined
on the set E with φh Lebesgue integrable on [a, b]IT × [c, d]IT . Then, for any a, b, c, d ≥ 0, with b > a, d > c
and for any a, b, c, d ∈ E, s ∈ [0, 1], we have:

f

(
I(a, b; c, d)

(b− a)(d− c)
φ(x) +

I(c, d; a, b)

(b− a)(d− c)
φ(y)

)

≤ 1

(b− a)(d− c)

∫ b

a

∫ d

c

f

(
pφ(x) + qφ(y)

p+ q

)
�(φh)1 q �(φh)2 p

≤
Ih(p)(a, b; c, d)

(b− a)(d− c)
f(φ(x)) +

Ih(q)(c, d; a, b)

(b− a)(d− c)
f(φ(y)), (3.2)

where

I(a, b; c, d) =

∫ b

a

(∫ d

c

(
p

p+ q

)
�(φh)1 q

)
�(φh)2 p,

I(c, d; a, b) =

∫ b

a

(∫ d

c

(
q

p+ q

)
�(φh)1 q

)
�(φh)2 p,
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Ih(p)(a, b; c, d) =

∫ b

a

∫ d

c

(
p

h(p)

)s
p+ q

�(φh)1 φ(q) �(φh)2 φ(p)

and

Ih(q)(c, d; a, b) =

∫ b

a

∫ d

c

(
q

h(q)

)s
p+ q

�(φh)1 φ(q) �(φh)2 φ(p),

for all p, q ≥ 0 with p+ q > 0 and x, y ∈ XT.

Proof. Consider the function gφ(x),φ(y) : [0, 1] ⊂ T→ R defined by gφ(x),φ(y)(λ) = f(λφ(x) + (1− λ)φ(y)).
This function is φh-convex on [0, 1] ⊂ T and by Jensen’s double integral inequality of real functions on time
scales, we have

gφ(x),φ(y)

(∫ b

a

∫ d

c

(
p

p+ q

)
�(φh)1 q �(φh)2 p

)

≤ 1

(b− a)(d− c)

∫ b

a

∫ d

c

gφ(x),φ(y)

(
p

p+ q

)
�(φh)1 q �(φh)2 p, (3.3)

which is equivalent to

f

∫ ba ∫ dc
(

p
p+q

)
�(φh)1 q �(φh)2 p

(b− a)(d− c)
φ(x) +

1−

∫ b
a

∫ d
c

(
p
p+q

)
�(φh)1 q �(φh)2 p

(b− a)(d− c)

φ(y)



≤ f

∫ ba ∫ dc
(

p
p+q

)
�(φh)1 q �(φh)2 p

(b− a)(d− c)
φ(x) +

∫ b
a

∫ d
c

(
q
p+q

)
�(φh)1 q �(φh)2 p

(b− a)(d− c)
φ(y)

 .

By definition 3.1 and using a simple calculation, we have

f

∫ ba ∫ dc
(

p
p+q

)
�(φh)1 q �(φh)2 p

(b− a)(d− c)
φ(x) +

∫ b
a

∫ d
c

(
q
p+q

)
�(φh)1 q �(φh)2 p

(b− a)(d− c)
φ(y)


≤ 1

(b− a)(d− c)

∫ b

a

∫ d

c

f

(
p

p+ q
φ(x) +

q

p+ q
φ(y)

)
�(φh)1 q �(φh)2 p

≤ 1

(b− a)(d− c)

∫ b

a

∫ d

c

f


(

p
h(p)

)s
p+ q

φ(x) +

(
q

h(q)

)s
p+ q

φ(y)

 �(φh)1 q �(φh)2 p,
which proves the first part of Theorem 3.1.

Under the same assumption of definition 3.1, f is φh-convex. Thus, integrating inequality (3.1) on the
rectangle [a, b]IT × [c, d]IT over �(φh)1q �(φh)2 p gives∫ b

a

∫ d

c

f

(
pφ(x) + qφ(y)

p+ q

)
�(φh)1 q �(φh)2 p

≤ f(φ(x))

∫ b

a

∫ d

c

(
p

h(p)

)s
p+ q

�(φh)1 q �(φh)2 p

+f(φ(y))

∫ b

a

∫ d

c

(
q

h(q)

)s
p+ q

�(φh)1 q �(φh)2 p,

and the second part of inequality (3.2) is satisfied.

Theorem 3.2. Let h be a non zero non negative function with the property that h(t) > 0 for all t ≥ 0
and φ a monotonically increasing function. Let E be a φh-convex set in a linear space of a time scale
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interval XT ⊂ T and f : E ⊆ XT → R be an integrable φh-convex function with respect to the function
φh defined on the set E with the mapping [0, 1] : φ(λ) → f((1 − λ)φ(x) + λφ(y)) Lebesgue integrable on
[a, b]IT × [c, d]IT . Then for all p, q ≥ 0, φ(x), φ(y) ∈ E with p+ q > 0, s ∈ [0, 1] and x, y ∈ XT,

2h(
1

2
)f

(
φ(x) + φ(y)

2

)

≤ 1

(b− a)(d− c)

∫ b

a

∫ d

c

(
f

(
pφ(x) + qφ(y)

p+ q

)
+ f

(
pφ(x) + qφ(y)

p+ q

))
�(φh)1 q �(φh)2 p

≤ f(φ(x) + f(φ(y))

(b− a)(d− c)

∫ b

a

∫ d

c

�(φh)1q �(φh)2 p.

Proof. By φh-convexity of f ,

f(λφ(x) + (1− λ)φ(y)) ≤
(

λ

h(λ)

)s
f(φ(x)) +

(
1− λ

h(1− λ)

)s
f(φ(y)) (3.4)

and

f((1− λ)φ(x) + λφ(y)) ≤
(

1− λ
h(1− λ)

)s
f(φ(x)) +

(
λ

h(λ)

)s
f(φ(y)) (3.5)

for any 0 ≤ λ ≤ 1, and s ∈ [0, 1].

Adding (3.4) and (3.5) gives

f(λφ(x) + (1− λ)φ(y)) + f((1− λ)φ(x) + λφ(y))

≤
((

λ

h(λ)

)s
+

(
1− λ

h(1− λ)

)s)
[f(φ(x)) + f(φ(y))]. (3.6)

By choosing λ = p
p+q and 1− λ = q

p+q in (3.6), we obtain

f

(
pφ(x) + qφ(y)

p+ q

)
+ f

(
qφ(x) + pφ(y)

p+ q

)

≤

 p
p+q

h
(

p
p+q

)
s

+

 q
p+q

h
(

q
p+q

)
s

[f(φ(x)) + f(φ(y))] (3.7)

for any p, q > 0 with p+ q > 0. Then the double integrals∫ b

a

∫ d

c

f

(
pφ(x) + qφ(y)

p+ q

)
�(φh)1 q �(φh)2 p

and ∫ b

a

∫ d

c

f

(
qφ(x) + pφ(y)

p+ q

)
�(φh)1 q �(φh)2 p

exists since the mapping [0, 1] : φ(λ)→ f((1−λ)φ(x)+λφ(y)) is φh Lebesgue integrable on [a, b]IT× [c, d]IT .
Hence, integrating inequality (3.7) on the rectangle [a, b]IT × [c, d]IT over �(φh)1q �(φh)2 p gives

1

(b− a)(d− c)

∫ b

a

∫ d

c

(
f

(
pφ(x) + qφ(y)

p+ q

)
+ f

(
pφ(x) + qφ(y)

p+ q

))
�(φh)1 q �(φh)2 p

≤ f(φ(x) + f(φ(y))

(b− a)(d− c)

∫ b

a

∫ d

c

 p
p+q

h
(

p
p+q

)
s

+

 q
p+q

h
(

q
p+q

)
s

�(φh)1 q �(φh)2 p,
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which is the second inequality of Theorem 3.2.
For the first part, we have, from the φh-convexity of f that for any φ(z1), φ(z2) ∈ E, λ = 1

2 , s = 1, h( 1
2 ) ≤ 1.

Thus,

f

(
φ(z1) + φ(z2)

2

)
≤ 1

2h( 1
2 )

(f(φ(z1)) + f(φ(z2))). (3.8)

Choosing φ(z1) = pφ(x)+ qφ(y)
p+q and φ(z2) = qφ(x)+ pφ(y)

p+q in (3.8), then for any p, q ≥ 0, p+ q > 0, we get

f

(
φ(x) + φ(y)

2

)
≤ 1

2h( 1
2 )

(
f

(
pφ(x) + qφ(y)

p+ q

)
+ f

(
qφ(x) + pφ(y)

p+ q

))
. (3.9)

Integrating (3.9) on the rectangle [a, b]IT × [c, d]IT over �(φh)1q �(φh)2 p gives the first part of Theorem 3.2.
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