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Abstract: Here, we consider a newly constructed generalized quasi two-phase bulk model for a rapid flow
of a debris mixture consisting of viscous fluid and solid particles down a channel. The model is a set of
coupled partial differential equations with new mechanical description of generalized bulk and shear viscosi-
ties, pressure, velocities and effective friction. The dynamical variables, physical parameters, inertial and
dynamical coefficients and drift factors involved in the equations contain certain important physics of mix-
ture flow. So, we analyze the behaviour of some inertial and dynamical coefficients involved in the model.
These coefficients strongly depend upon the initial material composition. We also simulate the evolution of
the dynamical variables so as to reveal their strong non-linear behaviours. Through simulations, we also
analyze the front position of the debris material, bottom-slip velocity and maximum velocity, which show
fundamentally different dynamics for varied material compositions, from dilute to dense flows. Generalized
mixture viscosity decreases as the flow moves downslope, and the rate at which it decreases depends upon
the initial solid-volume fraction. We also compare the effective viscosity and the bulk mixture viscosity with
respect to the norm of the strain rate tensors to reveal different non-linear behaviours.
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1 Introduction

Debris flows are rapidly moving mixture of poorly sorted sediment and water triggered by some climatic
factors, erosion, anthropogenic activities, or inertial accelerations induced by earthquakes or volcanic erup-
tions, causing a major threat to human life, property, infrastructures and natural environment in most
mountainous and hilly regions around [11, 29, 33, 35]. In natural debris flows, both solid and fluid phases
velocities may differ substantially from each other, essentially affecting flow mechanics [31, 33, 38, 39].
Their flow characteristics depend on the sediment composition (volume fraction, size, sorting, etc.) and
on the dynamic interaction between the solid and fluid phases [10, 33]. The modeling of the debris flow
and the phase-interaction are still facing difficulties due to the lack of correct rheology and scales, and the
ongoing computational models largely rely on simplifying assumptions [11]. Proper understanding of mass
flow mechanism and the estimation of their devastating effects are required for the effective mitigation.

There are significant research efforts in modeling the mechanical behaviour of debris materials. Previously,
various researchers made different attempts to model debris flows being based on different rheological
models: Newtonian models [17], linear and non-linear viscoplastic models [28], dilatant fluid models [2],
dispersive or turbulent stress models [1], biviscous modified Bingham model [4], and frictional models [27].
Among them, linear (Bingham) or non-linear (Herschel-Bulkey) viscoplastic models are found to be widely
used to describe the rehology of laminar debris/mud flows [16]. In the viscoplastic model of Johnson [16],
debris flow was simplified as a single phase continuum with Bingham or Coulomb yield strength. However,
this model could not describe the interaction between particles and fluid. Dilatant fluid model was proposed
by Takahashi [41] being based on Bagnold’s research. Theoretically, single-phase flow models have been
developed considering either solid or fluid, or a mixture of both during the past decades. Savage and Hutter
[40] proposed the depth averaged avalanche model, a pioneer work in modeling effort with the assumptions:
(i) incompressible flow, (ii) shallow avalanche piles with small topographic curvatures, (iii) Coulomb sliding
with bed friction angle δ, and (iv) Mohr-Coulomb behaviour in the interior with the friction angle φ ≥ δ
along with an ad-hoc assumption reducing the number of Mohr’s circles in three dimensional stress states
to a single. There were other significant fundamental research activities in the past few decades in the field
of debris flow and related gravitational mass flows. To mention a few, single-phase dry granular avalanches
[8, 12, 13, 34, 46], single-phase debris flows [2, 3, 28, 32, 42], mixture flows [14, 15, 36], two-fluid debris
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flow [29] and two layered model [7]. These models had to rely on significant limitations and assumptions
to reproduce the field or the laboratory data not being able to describe extremely complex fluid-particle
interacting flows. Modeling of a debris flow is more challenging than the simple water flow due to its multi-
phase character and the interaction of the phases. In natural debris flows, the flow regime often changes in
space and time; the debris head may behave quite differently than other parts of the debris body, typically,
the tail [33].

Pudasaini [33] proposed a dynamical model that accounts for strong interactions between the solid and the
fluid phases with full details. This model constitutes the most generalized two-phase avalanches and debris
flow model to date that includes important mechanics of two-phase mass flows like, buoyancy, solid-volume-
fraction-gradient enhanced non-Newtonian viscous stress, virtual mass, and generalized drag. Relaxing one
or more of the aforementioned aspects reduces the model into other relatively simpler previous models those
exist in the literature for debris flows and avalanches. Worni et al. [45] also emphasized the need to consider
the two-phase flow models to account for the evolution and interactions between the phases. Using the
model of Pudasaini [33], various numerical experiments in generic topographies related to glacial lake out-
burst floods (GLOFs) [20], landslide induced tsunami [18, 19], two phase debris flow-obstacle-interactions
[21, 22] were performed. The analytical solutions of the convective-diffusive equation as derived from Pu-
dasaini [33] can be found on Pudasaini et al. [37].

Using physically based two-phase mass flow model [33], Pokhrel et al. [30] constructed a bulk model that
consists of two dimensional quasi two-phase mass and momentum equations for generalized mixture veloc-
ities and pressure for the faster simulations than the two-phase models and for more accurate modeling
than the existing effectively single-phase models. The model appears in non-conventional form due to the
inertial coefficients, and the complex mixture viscosities. This structure resulted in the emergence of a new
and dynamically evolving effective mixture friction coefficient, and general mixture viscosity. Recently,
Khattri and Pudasaini [26] presented a novel simulations of generalized quasi two-phase mass flow model
to exhibit new non-linear phenomena and mechanical insights of the model alongwith a full discretization
of the model for the generalized mixture viscosity, velocity, pressure and effective bulk friction with higher
order central differences and donor-cell method. Fundamentally new results for the generalized mixture
viscosity, velocity, pressure and effective bulk friction along with the analysis of the performance of the full
dimensional evolution of mixture velocities, dynamic pressure and effective viscosity are presented in their
work. Khattri and Pudasaini [24] have constructed an extended generalized quasi two-phase mass flow
model so as to include the essential physics of two-phase mass flow such as non-Newtonial viscous stress,
generalized drag and virtual mass in mixture mass flow. This model has been used to simulate dry, and
wet snow avalanches of different water contents and their obstacle interactions in Khattri et al. [25].

In this contribution, we analyze the behaviour of drift factors and inertial coefficients in downslope dis-
tance for dilute to dense flows i.e., for different material composition. Following the simulations of Khattri
and Pudasaini [26], we also analyze the maximum velocities and front positions of velocities in downslope
distance for different solid volume fractions. We also present the time evolution of bottom slip velocities
and mixture velocities. We also compare the evolution of effective viscosity [6] and recently constructed
generalized mixture viscosity [30]. The main theme of this contribution is to analyze how the velocity
drift factors affect in the behaviour of other dynamical variables during the mixture flow along a channel.
Computation of the mixture velocities and pressure is not within the scope of this and will appear in future
contribution.

2 Generalized Bulk Mixture Model

The generalized quasi two-phase mass flow model [30] in vector form can be written as

divuΛ
m = 0,

DuΛ
m

Dt
= divσm + f , (1)

where
DuΛ

m

Dt
is the material derivative of the mixture velocity vector uΛ

m = (Λuum,Λwwm); Λu =
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1

αs + λuαf
, Λw =

1

αs + λwαf
. The drift factors λu, and λw express velocity of one phase to the other

phase so that fluid momentum equations in Pudasaini [33] can be expressed in terms of solid momentum
equations, resulting in a mixture model. In fact, the phase velocities are related to each other by means
of the drift factors as uf = λuus and wf = λwws, whence solid phase velocity is less than fluid phase
velocity if the drift factors are greater than unity, and conversely, the solid phase velocity is greater than
fluid phase velocity if the drift factors are less than unity. This reveals the need of proper modeling of
the drift factors in a bulk mixture mass model. Here, αf (= 1 − αs) is the fluid volume fraction in the
debris mixture, us, ws, uf and wf are the solid-phase velocity and fluid-phase velocity in the down-slope
and normal directions respectively. σm is the Cauchy stress tensor (normalized by density) and f is the
body force (i.e., the gravity force). The Cauchy stress tensor σm can be written as

σm = −pmI + 2ΛηmDm, (2)

where pm is the mixture pressure normalized by density, Ληm is the mixture viscosity [30]

Ληm =
1

2
νesαs (Λu + Λw) +

1

2
νfαf (λuΛu + λwΛw) , (3)

where

νes = νs +
τys
||Dm||

(
1− e−my||Dm||

)
, (4)

is the effective kinematic viscosity for solid [6, 43]. τys = τc+τppm/Λp is the yield stress; τc is cohesion, τp is
pressure dependent parameter and Λp = αs+λpαf , where the drift factor for pressure, λp relates the phase
pressures by pf = λpps, my is a factor responsible for numerical purpose. νf is the kinematic viscosity for
fluid. The effective viscosity that depends on drift factors, controls the dynamics of mass flow. In a simple
situation, where variation of the pressure drift, λp is negligible, the stress tensor for a viscoplastic material
σm can be written as

σm=−pmI+νsαsDm(Λu+Λw) +νfαfDm(λuΛu+λwΛw)+τcνDDmαs(Λu+Λw)+τppmνDαsDm(Λu+Λw)/Λp, (5)

where τc is cohesion, νD =
1− e−my||Dm||

||Dm||
, Dm = 1

2

[
∇uΛ

m + (∇uΛ
m)T

]
is the (deformation) strain-rate

tensor. If λu, λw, λp are close to 1, then us = um, ws = wm and ps = pm as often used in single-phase
granular and debris flows [5, 6] for which Ληm = Λm = νesαs + νfαf . The generalized quasi two-phase
mixture model [30] consists of the following non-linear PDEs:

∂um
∂x

+
∂wm
∂z

= 0, (6)

∂um
∂t

+
∂

∂x
(Λuuu

2
m) +

∂

∂z
(Λuwumwm) = fx −

∂pm
∂x

PPPPPPPPP + 2
∂

∂x

[
Ληu

∂(Λuum)

∂x

]
+

∂

∂z

[
Ληu

∂(Λuum)

∂z
+ Ληw

∂(Λwwm)

∂x

]
, (7)

∂wm
∂t

+
∂

∂x
(Λuwumwm) +

∂

∂z
(Λww w

2
m) = fz −

∂pm
∂z

PPPPPPPPP +
∂

∂x

[
Ληu

∂(Λuum)

∂z
+ Ληw

∂(Λwwm)

∂x

]
+ 2

∂

∂z

[
Ληw

∂(Λwwm)

∂z

]
, (8)

where um = (αs + λuαf )us and wm = (αs + λwαf )ws are the mixture velocities in x- and z-directions
respectively, pm = (αs +λpαf )ps is the mixture pressure and (fx, fz) are the components of the body force
f. The inertial and dynamical coefficients that appear in momentum balance equations (7) and (8) are

Λuu=
αs + λ2

uαf
(αs + λuαf )2

,Λww=
αs + λ2

wαf
(αs + λwαf )2

,Λuw=
αs + λuλwαf

(αs + λuαf )(αs + λwαf )
,Λu=

1

αs + λuαf
,

Λw=
1

αs + λwαf
,Ληu = νsαs + λuνfαf , Ληw = νsαs + λwνfαf , Λp = αs + λpαf . (9)
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The following pressure-Poisson equation (10) results from the use of the momentum equations (7), (8) and
the equation of continuity, (6) [30] and makes the system closed so that the numerical integration possible.

∂2pm
∂x2

+
∂2pm
∂z2

=
∂F

∂x
+
∂G

∂z
, (10)

where

F = − ∂

∂x
(Λuuu

2
m) − ∂

∂z
(Λuwumwm)+2

∂

∂x

[
Ληu

∂(Λuum)

∂x

]
+

∂

∂z

[
Ληu

∂(Λuum)

∂z
+ Ληw

∂(Λwwm)

∂x

]
+fx, (11)

G = − ∂

∂x
(Λuwumwm)− ∂

∂z
(Λwww

2
m)+

∂

∂x

[
Ληu

∂(Λuum)

∂z
+Ληw

∂(Λwwm)

∂x

]
+ 2

∂

∂z

[
Ληw

∂(Λwwm)

∂z

]
+ fz. (12)

The model equations (7)-(10) are in conservative form with three unknowns, namely the mixture velocities,
um, wm, and the pressure pm. For the detailed discussion of the generalized quasi two-phase bulk mixture
model, the reduced forms- (i) pressure drift close to unity, (ii) identical velocity drifts factors, (iii) velocity
drifts factors close to unity, and the essence of the model, one can refer to Pokhrel et al. [30].

3 Results and Discussions

In order to study the behaviour of inertial and dynamical coefficients, slip velocity, front position of the
debris mixture and effective viscosity of a bulk mixture mass released from a silo gate that moves down
a chute, we integrate the model equations (7)-(10) numerically. The initial set-up is as shown in Fig. 1.
The channel inclination angle is ζ = 45◦. The debris material enters into the channel at x = 0 with an
inlet height hin = 0.15 m and an average inlet velocity of umin

= 0.9 ms−1. A full dimensional debris bulk
mixture simulations in complex three-dimensional flow structures has been presented by von Boetticher et
al. [43]. They used the volume-of-fluid (VoF) approach to combine the mixed phase and the air phase into
a single cell-averaged Navier-Stokes equations for incompressible flow with the open source CFD software,

Figure 1: Side view of the inclined channel used for the simulation of flow of debris mixture material out
of the silo inlet with subjected to a free outflow. The silo inlet has the opening hin and the inlet velocity
is umin

. ζ is the channel inclination angle, um and wm denote the mixture velocities in the downslope
(x-directon) and in the slope normal (z-direction) respectively. (Adopted from Domnik and Pudasaini [5]).
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Figure 2: The behaviour of Λu in downslope distance.

Figure 3: Evolution of inertial dynamical coefficient Λuu along the channel for different initial solid-volume
fractions αs0 = 0.25, 0.45, 0.65 and 0.85 (A) for λu, λw < 1 and (B) for λu, λw > 1. The parameter Λuu
depends on solid volume fraction and drift factors.

OpenFOAM. But, our numerical method is based on the extended NaSt2D [5, 6, 9], an extended computer
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Figure 4: Variation of the inertial coefficients Λuu,Λuw (top panel) and Λww (bottom panel) for the same
initial solid volume fraction αs0 = 0.65 with the downslope velocity drift, λu.

code using the finite-volume method for the simulation of incompressible non-Newtonian fluids and complex
granular mixtures. In both the models of Domnik and Pudasaini [5] and von Boetticher et al. [43], pressure-
and rate-dependent Coulomb-viscoplastic slip conditions [6] are implemented as bottom boundary condition
that dynamically evolve during the flow.

Figure 2 plots the variation of the relative downslope velocity for solid with respect to the mixture velocity,
Λu with the downslope distance for different initial solid volume fractions αs0 = 0.25, 0.45, 0.65 and 0.85.
Λu shows non-linear behaviour for each αs. The value for Λu is higher for dilute and is lower for dense
mixture before the flow exits the silo. The values for Λu begin to decrease as the flow moves downslope.
The rate of decrease is higher for more dilute flows such that at the silo gate (x = 0.1 m), Λu for different
αs coincide. This decrease of all Λu continues as the flow moves downslope. But after the silo gate, the
values for Λu become greater for dense flow. At the right end of the channel (x = 1 m), they nearly
coincide. In fact, Λu depends on αs, and αs is a state variable, which in turn, depends on x as given by
advection-diffusion equation presented in Iverson and Denlinger [15], Pudasaini et al. [37], Khattri [23] and
Pokhrel et al. [30]. The analytical solution of αs from the advection-diffusion equation can be found in
Khattri [23]. Figure 3 represents the evolution of the inertial coefficient Λuu along the downslope distance
for different initial solid volume fractions. Figure 3A is with drift factors λu, λw < 1 and Fig. 3B is that
for λu, λw > 1. In Fig. 3A, the inertial coefficient Λuu takes up higher values for more dilute flows. As the
flow is dense, Λuu decreases. For different αs, Λuu evolve such that they decrease as the mixture moves
downslope so as to coincide asymptotically. Thus, Λuu highly depends upon αs for early stage of evolution.
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Figure 5: Time evolution of the front position of the debris for different solid volume fractions, αs =
0.25, 0.45, 0.65 and 0.85.

Figure 6: Bottom slip velocity along the channel for different solid volume fractions αs = 0.25, 0.45, 0.65
and 0.85 at time t = 0.45 s.

But later, as the flow is more dispersed, it is more independent of αs. Fig. 3B shows completely different
behaviour of Λuu for drift factors greater than unity: it increases more for dense flows in downslope. Λuw
and Λww show similar behaviour as the influencing factors are λu, λw, αs. This is the reason why we do
not present them here.

However, Fig. 4 makes a comparison of the different inertial coefficients Λuu,Λuw and Λww for the same
initial material composition, αs0 = 0.65 against the downslope velocity drift, λu (top) and λw (bottom).
They evolve differently and show similar non-linear behaviour. For the drift factor λu less than unity,
Λuw dominates the inertial coefficient Λuu, whereas for λu greater than unity, Λuu dominates the Λuw.
For λu < 1, all the inertial coefficients quickly decrease, acquire their minima in between the transition
1 < λu < 2, and slowly increase thereafter.

Figure 5 plots the evolution of the front position of the debris for different values of the initial solid volume
fractions, αs = 0.25, 0.45, 0.65 and 0.85. For all αs, the front positions shift farther downslope as time
progresses. At each time slice, the front position is at more downslope for more dilute flows, due to the
reduced mixture viscosity. The time evolution of the front position of the mixture is qualitatively similar to
that presented in von Boetticher et al. [44]. The detailed analysis of the front position has been presented
in Khattri and Pudasaini [24].

Fig. 6 provides important information about the slip velocity at the bottom of the channel that is set to
zero in classical Newtonian fluid simulation. In real flow situation, this is not valid. Here, the slip velocity
along the channel is shown for t = 0.45 s for different solid volume fractions. The results show that the slip
velocity increases along the slope and generally it attains higher values for lower values of αs except for
αs = 0.25, which behaves a bit differently than others. The reason for this is the viscous fluid dominance.
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Figure 7: Variation of the generalized mixture viscosity along the channel that depends strongly on the
initial material composition of solid volume fraction and shows a shear thinning behaviour.

Figure 8: Time evolution of the maximum velocity for αs = 0.65.

Figure 9: Comparison of the mixture viscosity (3) and effective viscosity (4) versus norm of strain rate
tensor.
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Figure 7 shows the spatial evolution of the mixture viscosity, Ληm for different values of the solid volume
fractions, αs = 0.25, 0.45, 0.65 and 0.85. Each Ληm shows non-linear behaviour except for αs = 0.85, where
the flow is relatively dense. Each Ληm decreases as flow moves downslope due to the dispersion of the flow
as described by the pressure-rate dependent rheology.

Figure 8 presents the time evolution of the maximum velocity of the debris mixture. The maximum velocity
increases due to the accelerated mixture flow down a slope and reaches a downslope velocity of 2.4 ms−1

at t = 0.55 s.

Figure 9 plots the comparison of the mixture viscosity (3) (Pokhrel et al., 2018) and the effective viscosity
(4) (Domnik et al., 2013) versus norm of strain rate tensor, ||Dm||. The chosen parameters are νs = 5
m2/s, νf = 10−3 m2/s, τp = 0.5446 and αs = 0.65. As ||Dm|| increases, both νes and Ληm both decrease
sharply. Ληm continues decreasing but νes remains almost constant.

4 Conclusions

Here, we analyzed the behaviour of some inertial and dynamical coefficients of the generalized quasi two-
phase bulk mixture model [30] and simulated the evolution of some dynamical variables. The model is a set
of coupled partial differential equations with new mechanical and dynamical aspects of effective friction,
generalized bulk and shear viscosities, mixture velocities and pressure. These variables are functions of
several evolving inertial and dynamical coefficients, parameters and drift factors. The spatial evolutions of
the parameters Λu, Λuu and Λuw show interesting non-linear behaviour. The behaviour of Λu is different
for different solid volume fractions for the mixture flow before and after silo inlet. Λuu, Λuw, and Λww
also show different non-linear behaviours for the same material composition and different values of the drift
factor λu. They show a sharp decrease for 0 < λu < 1 and increase relatively gently for λu > 1. As a
simulation output, we also studied the behaviour of the front position of the debris material. The front
moves more downslope for dilute flows and less downslope for dense flows due to different mixture viscosities.
We also analyzed the bottom slip velocities for varying material compositions and observed that they also
behave differently for the early stage of evolution and later. Generalized mixture viscosity decreases as the
flow moves downslope and shows more non-linear behaviour for increasing initial solid volume fractions.
Simulation result show that the maximum velocity of the debris body increases as the time progresses.
We also compared the effective viscosity as defined in Domnik et al. [6] and the bulk mixture viscosity as
constructed in Pokhrel et al. [30] with respect to the norm of the strain rate tensors. For the increasing
norm of strain-rate tensor, the effective viscosity shows almost linear and constant behaviour where as the
bulk mixture viscosity varies strongly non-linearly. These results may help in the choice of parameters for
the model simulations of mixture mass flows.
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