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Abstract: COVID-19 (Corona Virus Disease) is continuously spreading all over the world from January
2020. It has been the major public health concern worldwide. In Nepal, the confirmed cases of the dis-
ease are increasing day by day. Mathematical modeling is one of the best tool to study the transmission
dynamics of COVID - 19. In the present work, the transmission dynamics of COVID - 19 in Nepal with
isolation is studied by using epidemic compartmental model. The global stability of the equilibrium points
of the model are discussed with Lyapunov function. The stability of the disease is dependent on both trans-
mission rate of the disease and the progression rate of the infectious state to isolated or hospitalized state.
Simulations are made to observe situation of the disease in Nepal using the mathematical results graphically.
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1 Introduction

The first outbreak of COVID-19 occurred in Wuhan City of China in December 2019. After few months it
spread worldwide rapidly. On 11 March 2020, World Health Organization (WHO) declared COVID-19 as
a pandemic [24]. More than 8 million active positive cases and more than 39 million total positive cases
are reported in the world on October 18, 2020. More than 29 million people have recovered and more than
1 million deaths are reported [25]. Due date, more than 39 thousand active positive cases and more than
132 thousand total positive cases of COVID-19 in Nepal [11].

On 23 January 2020, the first case of COVID-19 was reported in Nepal [1, 11]. The Government of Nepal
announced first lockdown on 24 march 2020 to control the disease transmission and ended on 21 July
2020 and from 3rd June, partial lock down was continued. But transmission of the disease of COVID-
19 was continued in Nepal because of the lack of awareness about the disease. The local transmission
started from 4 April 2020 and more than 100 people were infected each day from 25 April 2020 [11]. The
transmission continued to increase and on 18 August 2020, more than 1000 people were infected. To control
the transmission of the disease, government of Nepal again implemented the lockdown from 19 August to 9
September 2020, only in the most infected cities. However, lockdown is not the permanent solution of this
outbreak and it cannot be implemented for long period of time. It has negative impact on the economic
condition of Nepal. Also, it will initiate the huge economic problem for daily wage earners, large migrated
population and others. Except lockdown, every individual has to take his/her own responsibility, they have
to use face mask on gathering, maintain social distance, wash hand regularly, keep themselves away from
social gathering and unnecessary movement. We should continue these works in the future until vaccine of
the disease is discovered.

Corona viruses are transmitted from person to person through respiratory droplets of an infected person
coughs, sneezes, exhales, and close contact with one another [23]. The best way to reduce the spread of the
disease is use of face mask, regular hand wash, social distancing, mass testing, isolation for confirmed cases,
lockdown and quarantine of suspected cases by contact-tracing. Since the researchers have not identified the
exact behavior of this new virus, it is one of the best way to study the disease transmission mathematically.
Consequently, it is needful to study the transmission dynamics of the disease with different mathematical
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models and to simulate using the available data. All over the world, researchers have used the several
mathematical models to study the COVID-19 dynamics [5, 15, 16, 17, 18, 21].

Mathematical models are useful to study the transmission dynamics of infectious disease and to conduct
control strategies against the disease [3, 4, 8, 9, 12, 13, 14]. J. Singh et al. used the successive approximation
method for short term forecast of infected population in India [18]. Y. Li et al. established the time series
models based on different mathematical formulas according to the variation law of the original data of
Wuhan city [9]. Y. Souleiman et al. studied the local and global stability and bifurcation analysis of
equilibrium to examine its epidemiological relevance [19]. Some researchers have studied transmission
dynamics of COVID-19 in different cities of the world mathematically and statistically.

One of the potential cause of outbreak of COVID-19 is human to human contact, and isolation of infected
person is a best way to reduce the risk of COVID-19 spread. So, in the present work, we have used
a mathematical epidemiological model SIHR (Susceptible-Infected-Hospitalized-Recovered) of COVID-19
including isolation to investigate the dynamics of the disease. We have compared this model with the current
situation of COVID-19 cases of Nepal. We have discussed local and global stability of the equilibrium points
and validated the model by using the COVID-19 cases of Nepal.

2 Model Formulation and Description

In the model, total population N(t) is divided into four classes: Susceptible: CS(t), Infected (Infectious):
CI(t), Hospitalized: CH(t) and Recovered: CR(t). So, N(t) = CS(t) +CI(t) +CH(t) +CR(t). We have not
considered human mobility and it is assumed that the recovery from the disease gives total immunity. Also,
for all compartments per day infection rate, recovery time are fixed, and natural death rate are considered
same for all the compartments. All the hospitalized individuals are isolated and do not come in contact with
susceptible individual. We do not consider the quarantine and the whole population of Nepal is considered
to be susceptible.

The mathematical model of the transmission of COVID-19 is described as follows:

dCS
dt

= π − β

N
CSCI − µCS

dCI
dt

=
β

N
CSCI − (k + η + µ)CI

dCH
dt

= kCI − (δ + γ + µ)CH

dCR
dt

= ηCI + γCH − µCR (1)

N = CS + CI + CH + CR and
dN

dt
= π − δCH − µN
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State variables and model parameters are described below.

N : total human population size

CS : susceptible population size

CI : infected (infectious) population size

CH : hospitalized(isolated) population size

CR : immunes (recovered) population size

π : recruitment rate

µ : death rate

β : transmission coefficient

η : recovery rate in infected population

γ : recovery rate in isolated population

δ : disease induced death rate

k : progression rate from infected to isolated population

2.1 Non-negativity and boundedness

Suppose, M =
{

(CS , CI , CH , CR) ∈ R4 : 0 ≤ CS , CI , CH , CR
}

. Then, M should be positively invariant.
The solution of the system; the state variables CS , CI , CH , CR cannot exit M by crossing the boundaries
CS = 0, CI = 0, CH = 0, CR = 0.

From the system (1), we have,

N = CS + CI + CH + CR .

Thus,

dN

dt
= π − µN − δCH ≤ π − µN,

N ≤ π

µ

(
1− e−µt

)
+N(0)e−µt

Hence,

lim sup
t→∞

N ≤ π

µ

Therefore, CS(t), CI(t), CH(t) and CR(t) are bounded above by
π

µ
on [0, d) for some d > 0. Hence, for

some d > 0 the solution of the system (1) are bounded on [0, d) [20].

2.2 Existence and uniqueness

Assume that, the initial conditions of the system are as follows

CS(0) > 0, CI(0) > 0, CH(0) ≥ 0, CR(0) ≥ 0 (2)

Let x(t) = (CS(t), CI(t), CH(t), CR(t)) ∈ R4. The system (1) is written in the form x′ = w(x) with wi,
i = 1, 2, 3, 4 are the components of the vector field w, which consists of the algebraic polynomials of state

variables. Thus wi are continuous autonomous functions on R4 and partial derivatives
∂wi
∂CS

,
∂wi
∂CI

,
∂wi
∂CH

,

∂wi
∂CR

exist and are continuous. Hence by Existence and Uniqueness Theorem, for any initial condition

x(0) ∈ R4 a unique solution of the system x′ = w(x) exists [22].
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3 Equilibrium Points and Basic Reproduction Number

There are two equilibrium points in the system of equations (1); the disease free equilibrium point E0 =(
π
µ , 0, 0, 0

)
and endemic equilibrium point E1 = (C∗S , C

∗
I , C

∗
H , C

∗
R).

Moreover, basic reproduction number R0 is defined as the average number of secondary infections caused
by single infectious individual during his/her entire infectious life time [6, 7]. F and V respectively denote
the matrix of transmission terms and the matrix of transition terms of the system (1) at E0. R0 is defined
as the spectral radius of the matrix FV −1 i.e., ρ(FV −1) and is obtained by using the Next Generation
Matrix Method [6, 7, 13]. Thus, the basic reproduction number at E0 is

R0 =
πβ

Nµ(k + η + µ)

The disease free equilibrium point always exists when R0 < 1 and endemic equilibrium point always exists
when R0 > 1.

The endemic equilibrium point E1 = (C∗S , C
∗
I , C

∗
H , C

∗
R), where

C∗S =
N(k + η + µ)

β
, C∗I =

Nµ

β
(R0 − 1)

C∗H =
Nµk(R0 − 1)

β(δ + γ + µ)
, C∗R =

γN(R0 − 1)(πβ + µ2NR0)

β(δ + γ + µ)

4 Local stability

Theorem 4.1. (Local Stability of DFE) Disease free equilibrium point of the system of equations (1) is
locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. About E0, the Jacobian matrix for the system of equations (1) is in the block matrix,

M =

[
U1 U2

0 F − V

]
If all the eigenvalues of M have negative real parts, then E0 is asymptotically stable [7]. Since M is
upper triangular matrix, eigenvalues of M are those of U1 and F − V . Two eigenvalues of matrix U1 are
−µ,−µ < 0 . Now, stability of the disease free equilibrium depends on the eigenvalues of F − V where F
is non-negative and V is non-singular M -matrix [2].

The eigenvalues of F −V are −(k+ η+µ) < 0 and (k+ η+µ)(R0− 1). Thus, the eigenvalues of F −V are
negative if R0 < 1 and positive if R0 > 1 [2]. It shows that, E0 is locally asymptotically stable if R0 < 1
and unstable if R0 > 1

Theorem 4.2. The endemic equilibrium point E1 = (C∗S , C
∗
I , C

∗
H , C

∗
R) is stable if R0 > 1.

Proof. Two eigenvalues of the Jacobian matrix J for the system of equations (1) about E1 are λ1 = −µ < 0
and λ2 = −q < 0. Other two eigenvalues are roots of the quadratic equation

λ2 − cλ+ d = 0

where, c = −πβ
p
< 0 and d = µp(R0 − 1).

Here, c < 0; and d > 0 if R0 > 1. Thus, two roots of the equation have negative real parts if R0 > 1.
Therefore, all the eigenvalues of J have negative real parts if R0 > 1. Hence, the equilibrium point E1 is
stable if R0 > 1.
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5 Global stability

Let x′ = w(x) where w : Rn → R, be an autonomous system of ordinary differential equation with an
equilibrium x∗.

Definition 5.1 ([10]). . Let V : Rn → R,

1. A scalar function V (x) is called radially unbounded if V (x)→∞ and ||x|| → ∞.

2. Let V be a continuous scalar function. It is called positive definite on the entire space if

(a) V (x∗) = 0

(b) V (x) > 0 for x 6= x∗

Theorem 5.1 ([10]). (Lyapunov’s Stability Theorem) If a function V (x) is globally positively definite and
radially unbounded and its time derivative is globally negative,

V ′(x) < 0 ∀x 6= x∗

Then the equilibrium x∗ is globally stable.

Definition 5.2 ([10]). . If a function V (x) exists that satisfies the condition of Lyapunov’s stability theorem
then the function is called a Lyapunov function.

Theorem 5.2 ([10]). (Krasovkil- LaSalle Theorem (Extension of Lyapunov’s Theorem )) Consider the
autonomous system x′ = w(x), where x∗ is an equilibrium, that is w(x∗) = 0. Suppose, there exists a
continuously differentiable function V : Rn → R and that this function is positive definite on the entire
space and radially unbounded and that is satisfies

V ′(x) ≤ o ∀t and ∀x ∈ Rn

Define the invariant set P = {x ∈ Rn | V ′(x) = 0}. If P contains only the equilibrium x∗ is globally stable.

Theorem 5.3. (Global Stability of DFE) Assume R0 < 1. Then the disease free equilibrium is globally
asymptotically stable.

Proof. We have CR = N − CS − CI − CH , the system (1) as follows;

dCS
dt

= π − β

N
CSCI − µCS

dCI
dt

=
β

N
CSCI − pCI

dCH
dt

= kCI − qCH (3)

where p = k + µ+ η and q = δ + γ + µ.

We know that if disease free equilibrium E∗0 = (πµ , 0, 0) is globally stable, then R(t) → 0 and E0 for the

system (1) is globally stable.

Consider a Lyapunov function [10]

V = α

(
CS − C∗S − C∗S ln

CS
C∗S

)
+

1

p
CI +

1

k
CH

where α > 0 to be determined and, C∗S =
π

µ
.

At E∗0 , V = 0.
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At first we have to show that V > 0 for all (CS , CI , CH) 6= (πµ , 0, 0).

Since
1

p
CI > 0 and

1

k
CH > 0, it is sufficient to show that

αC∗S

(
CS
C∗S
− 1− ln

CS
C∗S

)
> 0.

We have, the function h(x) = x− 1− lnx has global minimum at x = 1 and h(1) = 0.

Hence, h(x) > 0, ∀x > 0 and x 6= 1.

So, the first term of V is positive. Thus, V is positively definite at E∗0 . Again, since as t→∞, V →∞, V
is radially unbounded.

Now differentiating V with respect to t and using (3), we get

dV

dt
= α

(
1− C∗S

CS

)
dCS
dt

+
1

p

dCI
dt

+
1

k

dCH
dt

= α

(
1− C∗S

CS

)(
π − β

N
CSCI − µCS

)
+

1

p

(
β

N
CSCI − pCI

)
+

1

k
(kCI − qCH)

= 2απ − β

N
CSαCI − αµCS −

απ2

µCS
+
απβ

µN
CI +

β

Np
CSCI −

q

k
CH

If we choose α =
1

p
, then

dV

dt
= −απ

(
µCS
π

+
π

µCS
− 2

)
+

βπ

µNp
CI −

q

k
CH

Since from equilibrium equation, we have
kCI = qCH .

Therefore

dV

dt
= −απ

(
µCS
π

+
π

µCS
− 2

)
+ (R0 − 1)CI .

The last term is negative, since R0 < 1. Let
π

µCS
= a, then we have the first term is

a+
1

a
− 2 =

(a− 1)2

a
> 0 if a 6= 1

So, a+
1

a
− 2 > 0 for all a > 0 and a 6= 1.

Hence, we have
V ′ < 0 (CS , CI , CH) 6= E∗0

Therefore, by Lyapunov’s theorem, the disease free equilibrium point E∗0 is globally asymptotically stable.

Theorem 5.4. Assume R0 > 1. Then, the endemic equilibrium is globally asymptotically stable.

Proof. Consider the system of equation (3). Consider a Lyapunov function [10]

V =

(
CS − C∗S − C∗S ln

CS
C∗S

)
+

(
CI − C∗I − C∗I ln

CI
C∗I

)
+
k + η + µ

k

(
CH − C∗H − C∗H ln

CH
C∗H

)
Here, V = 0 when (CS , CI , CH) = (C∗S , C

∗
I , C

∗
H), otherwise V > 0. V is also radially unbounded. Now it is

remained to show that dV
dt < 0.
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Differentiating V with respect to t and using (1), we get

dV

dt
=

(
1− C∗S

CS

)
dCS
dt

+

(
1− C∗I

CI

)
dCI
dt

+
p

k

(
1− C∗H

CH

)
dCH
dt

=

(
1− C∗S

CS

)(
π − β

N
CSCI − µCS

)
+

(
1− C∗I

CI

)(
β

N
CSCI − pCI

)
+
p

k

(
1− C∗H

CH

)
(kCI − qCH)

From equilibrium equation we have

π =
β

N
C∗SC

∗
I + µC∗S .

We get,

dV

dt
= − µ

N
(C∗S − CS)2 +

β

N
C∗SC

∗
I −

β

N

C∗
2

S

CS
C∗I +

β

N
C∗SCI −

β

N
CSC

∗
I + pC∗I −

1

k
pqCH

−pC∗I
(
CIC

∗
H

C∗ICH

)
+

1

k
pqC∗H .

Again, we have from equilibrium equation,

kC∗I = qC∗H and
β

N
C∗SC

∗
I = pC∗I

=⇒ 1

k
pqC∗H = pC∗I

We get,

dV

dt
= − µ

N
(C∗S − CS)2 +

β

N
C∗SC

∗
I

(
3− C∗S

CS
− CS
C∗S
− CIC

∗
H

C∗ICH

)
(4)

Clearly, the first term of right hand side of (4) is negative unless CS = C∗S . In the second term, we have to

show that
(

3− C∗
S

CS
− CS

C∗
S
− CIC

∗
H

C∗
ICH

)
is non-positive. For this, suppose

a1 =
C∗S
CS

, a2 =
CS
C∗S

, a3 =
CIC

∗
H

C∗ICH

The Geometric Mean of the sequence is

3
√
a1a2a3 = 3

√(
CIC∗H
C∗ICH

)
> 0 if R0 > 1

The Arithmetic Mean of the sequence is
a1 + a2 + a3

3
.

Since,

A.M. ≥ G.M.

=⇒ a1 + a2 + a3 ≥ 3 3

√(
CIC∗H
C∗ICH

)
> 3 whenever, 3

√(
CIC∗H
C∗ICH

)
> 1

Thus, the second term is also non-positive, whenever 3

√(
CIC

∗
H

C∗ICH

)
> 1. Hence,

dV

dt
≤ 0
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Now, we apply the Krasovkii-LaSalle Theorem. Consider a set

U = {x ∈ Rn|V ′(x) = 0}

dV

dt
= 0 if and only if CS = C∗S and (

C∗S
CS

+
CS
C∗S

+
CIC

∗
H

C∗ICH

)
= 3 (5)

Since CS = C∗S , then
dCS
dt

= 0. From the system (1) we get CI = C∗I .

Finally, we get from (5), C∗H = CH . Therefore, the set U consists only one element (C∗S , C
∗
I , C

∗
H). Hence,

the theorem is proved.

6 Model Validation and Discussion

Figure 1 illustrates the daily reported data of COVID-19 cases of Nepal [11]. It contains total confirmed
cases, active infectious cases, recovered cases and death cases due to COVID-19 infection from March 23 to
October 16, 2020. With some rational assumptions and parameter estimation, we have fitted the reported
data of active infectious cases and recovered cases from August 1 to October 16, 2020 in Nepal to our model
in figures 2 and 3.

Figure 4 shows that active infectious population of Nepal are increased with increasing values of β. So,
the basic reproduction number is increasing with increasing the transmission rate of the disease (figure 5).
But it is decreasing with the increase in the progression rate of number of population from infectious to
isolation or hospitalization and recovery rate of disease (figures 6 and 7). Thus, for the global stability of
the disease free equilibrium, we need to reduce the transmission rate of the disease. Together with this, we
need to progress the recovery rate and increase the isolation for the infected.

Figure 1: Reported cumulated data of COVID-19 in Nepal from March 23 to October 16, 2020.

7 Conclusions

Based on the transmission dynamics of COVID-19 in Nepal, we constructed a time dependent simple SIHR
mathematical model. We computed the disease free equilibrium point, endemic equilibrium point and basic
reproduction number of the model. Also, we discussed about the local and global stability of the disease
at the equilibrium points. The disease free equilibrium point is locally and globally stable when R0 < 1
and unstable when R0 > 1. Further, the endemic equilibrium point is locally and globally stable when
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Figure 2: Reported and Predicted Recovered Cases of COVID-19 in Nepal from August 1 to October 16 ,
2020.

Figure 3: Reported and Predicted Recovered Cases of COVID-19 in Nepal from August 1 to October 16 ,
2020.

Figure 4: Active infectious population with different values of β.

R0 > 1. Thus, for the stability of disease COVID-19, we need to get R0 < 1 using different types of control
measures such as social distancing, self-isolation, testing facilities, face mask wearing etc.

We used the model to fit the active infectious cases and recovered cases of COVID-19 in Nepal from
August to October 2020. We estimated and predicted the values of the parameters of the model and to
get reasonable match between the reported cases and predicted cases of infected and recovered population
of COVID-19 from August 1 to October 16, 2020 in Nepal. Also, we compared the basic reproduction
number R0 with the transmission rate β, progression rate from infected to isolation k and recovery rate η

9
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Figure 5: Basic reproduction number with transmission rate of disease.

Figure 6: Basic reproduction number with progression rate of disease from infection to isolation.

Figure 7: Basic reproduction number with recovery rate of the disease.

in the cases of Nepal. R0 increases with β and decreases with increase the values of k and η. Thus, for the
global stability of the COVID-19 in Nepal, we need to decrease the transmission rate using the different
control measures. Also, we have to improve the recovery rate, and progression rate of infected to isolation
or hospital. Thus, to manage the pandemic of COVID-19 the government of Nepal need to promote the
public health measures with improving the isolation wards together with using different control measures
for preventing the transmission of the disease.
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