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Abstract: In this study, new sequence spaces (Ay,d) & (Ag,7;9) have been introduced to establish two
theorems on minimal set of the sufficient conditions for a n-tupled triangle T to be a bounded operator on
sequence spaces (Ay, ) & (AR, ~;9). Generalized summability method |A, 0|, & |A,~; 0|k have been applied
for determining the sufficient conditions, where k > 1,6 > 0 and v is real number. Further, a set of new
and well-known applications has been deduced from the main result under suitable conditions, which shows
the importance of the main result.
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1 Introduction

Let > a, be a given infinite series such that
k
S, =ag+ay+ax+---+ap= Zal,
1=0

where s;, denotes the k" partial sum of the series 3" a, and {sn} defines the sequence of partial sums.
The nt" term of sequence-to-sequence transformation of {sn} is defined by

oo oo
iy = Z tpkSkr = Z tn,n—ksn—k~
=0 =0

The sequence {t, } of the matrix means of sequence {s, } is generated by the sequence of coefficients {t,x }.
The series Y a,, is said to be summable to the sum S by matrix mean if lim,,_,~t, exists and equal to S
[12], then we can write,

t, — S(T), as n — 0.

A sequence of the partial sums {sn} is said to be of bounded variation if the series |s1 — sg| + |s2 — s1| +

-+ |8, — Sp—1| converges, i.e.,
D 1o s, < oo
n

The sequence {sn} is absolute summable by the method A (A-summable) to the limit s if lim, o0 t, = s
and the sequence {tn} is of bounded variation:

(oo}
Dty = taa] < o0
n=1

o0 &)

For the infinite series Y a,,, if Y n*71|t, —t,_1|¥ converges, then Y a,, € |Al, i.e., the series is absolutely
n=1 n=0

|A|g-summable of degree k > 1. Liu [§] studied the absolute Cesaro summability of the Fourier series. He

worked on unsolved problem given by Pati [9]. Das [5] defined the concept of absolute conservation by
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transforming the sequence {sn} into {tn} Let T be such sequence to sequence transformation, whenever
{sn} converges absolutely, {tn} converges absolutely, then T is called absolutely conservative and if the
absolute convergence of {sn} implies absolute convergence of {tn} to the same limit, T is called absolutely

regular. For some given k > 1, if T € B(A); i.e., if {so,51, -+, s, } satisfying
o0
X:nkfl|sn—sn_1|’C < 00, (1)
n=1
o0
implies Skt =t |F < .
n=1

Then, T is said to be absolutely k' power conservative. Note that when k > 1, (1) does not necessarily
imply the convergence of {sn} Hirokawa [7] also worked on conservative property of summability method.
He found the relation between two summability methods and presented the condition for a summability
method to be absolutely conservative. There exists a sequence space A which is given by

oo
Ak - {{Sn} : an_1|a7’b|k < 00, ap = Sp — 57171}-

n=1

Flett [6] considered a further extension of absolute summability in which he introduced a parameter 6. The
series Y a,, is said to be |A, §|p-summable, k > 1, § > 0, if

oo
Zn‘””k*lhfn — tn_1|k < 0.
n=1

A series Y a, is |4, 7; |, summable [I1], where k > 1,0 > 0 and + is real number, if
e}
E n'y(ék+k—1)|tn _ tn_1|k < 0.
n=1

Bor [11 2 Bl 4] developed some theorems on absolute summability factor. In [I], he established a theorem
for infinite series with the help of absolute Cesdro summability. In [3], he obtained the result for infinite
series by using the absolute summability of index k which is generalization of result [2]. After this, he
used more generalized summability method |C, a,7; 8|1 for infinite series [4]. Based on the concept of Das
[5] for absolute conservation, we can say that for some given k > 1 and 6 > 0, if T € B(Ag,9), ie., if
{so, S, 7sn} satisfy

o0
Do s, — s [F < oo, (2)
n=1
o0
implies > R — 1, ]F < 0.
n=1

Then, T is said to be absolutely (k, §) conservative. The sequence space (A, d) is given by
(Ag,6) = {{sn} : Zn6k+k—1|an|k < 0o,y = s, — 5n—1}~
n=1
A matrix is called a bounded linear operator on (Ag,d), i.e., T € B(Ag,9), if
T:(Ag, ) = (Ag,9).
If T € B(Ag,;0); ie., if {50751, e ,sn} satisfy

5 AT, s < o, ®

n=1
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o0
implies SOkt |k < ool

Then, T is said to be absolutely (k,7;d) conservative. The sequence space (Ag,~;0) is given by

k,Vi0) = nyt: v “lay 00, Ay = Sy, — Sp—1 ¢
(Ar,7: ) {{S} Zn(ék—i-k DjanlF < }

n=1

A matrix is called a bounded linear operator on (A, ~v;d), i.e., T € B(Ag,7;0), if
T : (Ak,7;6) = (Ax,7;6).

o0 o0 o0
Notation: Let T be the infinite matrix for the series Y, > --- > any Ny, N, and there exists two
Ni=1N;=1  N,=1

infinite matrices T and T with T as follows:

N1 N»
Fitsi2, ~~,’ R --,un
N1 N2 Nl N2
H1=11 p2=ti2 Hn=in

5117127 ©yin = A . .Fl ,12,7 yln
Ni— 1N2 1,--,N,—1 — —1l--ntimes®* N, -1, No—1,--- ,N,, —1

N17N2a"' 7Nn7i17i27"' 7in:031727"'

2 Known results

A triangle C' = [¢;;] is defined as a lower triangle matrix such that,

C:{ cij 70, 12

Cij = 0, 1<y
Savag and Sevli [I0] obtained the following result for boundness of the double triangle on Ay.

Theorem 2.1. Let T = (tmmj) be a double triangle satisfying

m n
(1) > > |tijis ‘ﬁm—lm—lj,j‘ = O(’tmnmn) and
1= 0] O
A y k—1
(i) Z Z (mn‘tmnmn ) tmfl,nfl,i,j‘ = O(U’tijij’) .
m=in=j

Then, T € B(A%),k > 1.

3 Main results

The following result has been presented for the boundness of the operator using summability | A, §|x, k > 1
and 6 > 0.

Theorem 3.1. Let T = (tz\lhl%% ) be n-tupled triangle satisfying

k—1
N; No dk+k—1
: 11712, - 77er 201,92, in _ N1,Na,-- ,Np
(i) ( DI z we i || =o(eN ) and

11 =012=0 In=

(ii) Z Z i NyNp - Ny [t Nee N Okt 1t~z1,zz,~,zn
u 14V2 n|UNy N2, N “1,No—1,-,Ny—1
Ni=iy Na=iy Np=in
Sk+k—1 i i k—1
— Y o 1,52,
=0 (2122.”2”) ti11i21"'7i: :

Then, TEB( 2,5),/62 1 and § > 0.

29



Absolute Summability for n-tupled Triangle Matrices

The following Theorem 3.2 has been developed for the boundness of the operator using the more general
summability |A,~;0|k, k> 1, 6 > 0 and ~ is a real number.

Theorem 3.2. Let T = (tﬁ\l,IZQNZ sin ) be n-tupled triangle satisfying

k—1
N1 N» . . o . v(0k+k—1)
. R | X I _ N1,Na,- ,Np,
@) 32 33 [l o) = o) and
11 =01i2=0 =0
00 Y(6k+k—1)| . . .
: : Ni,Ng,+ \Np fi1,82,00 in
(ii) 5 3 o S (NiNpeo NN RN e N
Ni=i1 Na=i2 Np=in
Y(Oktk=1)) k1
— 1,82, stn
=0 (’122 ) i1z, in

Then, T € B( Z,’y;é) fork>1,6 >0 and v is a real number.

4 Proof of the Theorems

If An, Ny, ., denotes the Ny Ny - -« Ny-term of the T-transform of a sequence {le,N%.. N, }, then

N1 N» Nnp,
— M1, 2, U
AN17N27"'N71 - E E tNl,Ng,---NnS#17#2,“'#n
#1=0 p2=0 =0
N1 N» Ny, M1 p2 Hn
— #17#2,“7#n L .
= E E ke E E E iy iy i
#1=0 p2=0 n=0 11=012=0 in=0
N1 N2 Nn Nl N2 Nn
_ L. . K102, s n
DD IEED DEIEAEND DED DL DI A A
11=0142=0 in=0 H1=11 p2=i2 Hn=ln
N1 N2 Ny,
_ . L Fi,i2,0 i
= E E E ahﬂaw‘ﬂlntNl,Ng,m,Nn'
7,1—022— inZO
Then follows
AN13N25'“»N71, = Al1.n times Alel,N271’... Nn—1

= AN—1,Ny—1, No—1 — (ANl,Nz—l,--<,Nn—1 +o+ ANl—LNz—L---,Nn_l—l,Nn)

+(AN1,N2,N3—1,~~ Np—1+ ANy —1,Np N, Ny—1, N1 + *- )

+oet (*1)"AN1,N2,--- N,
Ny N

= Z Z Z {ter No—1,++ ,Np—1 — (t_Nl,N271,~--,Nn71 + +t_N171,~~- ,Nn_lfl,Nn)

11 =012=0 1, =0
+ (tNl,NQ,NS—l,m Np—1 - F N N1, Ng—1,Ny—1,--- ,anl—l,Nn>

4+ (—]_)n{Nl’N%..A 7Nn]a¢17i2,..4 Jin

N1 N Nn

_ . Ti1,82,7 " 4in o .
= E : E : § : (AH“-H times tlel N271,~--,anlall,lzy“'ﬂn)

11=01i2=0 in=0

Nl N2 Nn
_ “11,12,"-,' o .
= ENY LNy 1 Ny —1 @i in,e i -
11 =012=0 1, =0
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Proof of the Theorem 3.1: For |4, §|; summable,

Z Z Z (Ny Ny - N)‘”“*’“‘l‘ZNl,Nw,NH = 0(1).

N1=1Nz=1 N,=1

Using Holder’s inequality and condition (i) of Theorem 3.1, we get

o0
k
Sk+k—1| ~+
E E <Y (NiNy - N ‘ANl,Na,m,Nn
Ni=1 Ny= n=1

I
NE
]2
m

Ni=1 No=1 Np=1 i1=01i2=0 i =0
S = §k gL
+k-1 201,12, ,in
<> D ) (NMiNaN > Z Z AT
Ni=1 No=1 Np=1 11 =012=0 1, =0
o 1—k N o . ot
11,12, 4ln 11,12’“',171 1,92, 40n
X bi i, i Binia, - i Z Z Z inligie i | [ENI21, N2—1,~~,Nn—1’
11—012—
o X N Sk+k—1
p— 25", ¢
=0(1) >, > - Z (MM NafeNNE N )
Ni=1 N3=1 n=1
o & Al 201,40 i1, in |1 k
1,82, 0 15225 50n o .
X E E , E Uy 20 Np 1, Nn—1’ i1.ia, e in Qi jig, o yin
11=015=0 T =
oo oo oo Z ’L l k‘
_ 2:}: 2: 172,"”L o )
- 1) : 11,42, yin iy i, yin
Ni=1 Ny=1 N,=1
oo o0 oo
Sk+k—1) . . )
% . NiNs---N. Ni,Na,-,Np + firtz, e in
14V2 n N, Ny Ni—1,No—1,+ ,N,—1
Ny1=1i1 Ny=iq Np=ip
Using condition (ii) of Theorem 3.1
O X o i Lk k Sktk—1) . LS
— 15025777 5ln .. . Y N e un 152577 ytn
- O<1) Z Z Z 11,92, 4in Qi iz, yin (2122 Z") t11ﬂ2, < in
i1=lip=1  ip=1
e i Sk+k—1 k
= O(].) § E § (2112"'171) iy ig, - in
i1=1lis=1  ip,=1
=0(1)

Since (SNl,N%.H’Nn) S (AZ,é)
This completes the proof.

Proof of the theorem 3.2: For |A, v;d|; summable,

o = Sktk—1)| ~

Z Z Z NiNy -+ N,) OFF ))ANth...,Nn - 0(1).
Using Holder’s inequality and condition (i) of Theorem 3.2, we get

55 S e i

k

Nr

oo oo oo 1
=2 > >, (NN N, ok 1)’ > Z A VT

N1:1 N2:1 Nnil 71—072— 7n—0
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oo oo oo (S k1) N
+k-1 1,02, in
< E E E (N1N2 E E E:tN1—1N21 Np,—1
Ni=1N,=1  N,=1 i1=04y=0  i,,=0
—k N1 N2 k—1
11,82, ,in 21,i2,"~,in 211,02, in
X \bistinotin | |G, Z > Z i1z, i tNl—l,Nz—l,m,Nn—l‘
11 =012=0 1, =0

oo o0 oo
v (Sk+k—1)
— N1,Na,-- Ny
=o) Y. E:“‘E:(NlN?"'N Nay- N )
Ni=1N,=1 N,=1
Qlga finyin, e i, inigyeein |V R k
1,02, ,in 1,225 ln L .
X Z Z Z UNY =1, Ny =1 N, 71‘ i1,92, 0 in iy yig, in
i1:0 i2:0 7,,L—0
= s - i1, in |1 k
— 1,82, »ln
- (1) Z Z Z 11,92, ,in Qiyig, i
N1—1 No=1 N,ﬁl
X N1 N Na, N 7(Gktk=1) fiiz, e sin
14v2- N17N27"'1Nn Nl—l NQ 1,--,N,—1

N1=i1 Na=i2 Np=in

Using condition (ii) of theorem 3.2

O X 0 ) 11—k k ~(8k+k—1) . k=1

E E E 11,127“',171 L. X S a g tll Y2, in
2177:27"'7in a1177’27”' ytn (le2 Zn) 11,82, "7in

11=1142=1 =1

O X o ~y(8k+k—1) k

E , E E : (2122 : "Zn) Qi ig,e- yin

i1=lix=1  i,=1

= o(1)

Since (leyNQf..,Nn) € (AZ,’y;é).
This completes the proof.

5 Corollary

Corollary 5.1. If T € (tn,) be a triangle satisfying
n k—1

(i) ( 20 |tw||tn1’v|) = O|tnn )P HF1,

o0
(1) 3 (altun )i, = O (07451, 1)),

n=uv

Then, T € B(Ag;0),k > 1 and § > 0.

Proof: We can obtain the above corollary from Theorem 3.2 of the main result. For the one-dimensional
problem and |A|; summability, take n =1 and v = 1.

Let T € B(Ayg),k > 1, then we will get the sufficient conditions with the help of conditions (i) and (ii) of
both the Theorems of main results,

N1 k-1 Shtk—1
(S l)  =o(i)

i1:0
and
o0
N- %) — 1 -
D7 (Nl DR, | = O (@ ),
N1:i1

where t%i =tn, N, Hence this completes the proof.
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Corollary 5.2. If T € (t,,) be a triangle satisfying
(i) Z:o |tva£n—1,v| = O(|tnn|)’

() > (nfanl)*Hin 10

n=v

Then, T € B(Ag), k > 1.

= O(v|typ])*L.

Proof: We can obtain the above corollary from both Theorems of the main result. For the one-dimensional
problem and | A|; summability, take n = 1; § = 0 in the theorem 3.1 and n = 1; v = 1; § = 0 in the Theorem
3.2 of main result.

Let T € B(Ag),k > 1, then we will get the sufficient conditions with the help of conditions (i) and (ii) of
both the theorems of main results,

Ni
o N
>, ) = O(tN'])

i11=0
and
o0
N 12 .y _
D (N D R, | = Ot )R,
Ni=11

where t%i = tn,n,. Hence this completes the proof.

6 Conclusion

The main result of this study is an attempt to formulate the problem of absolute summability factor of
infinite series to develop a much efficient filter. Through the investigation, we concluded that under certain
sufficient conditions, a n-tupled triangle T" is a bounded operator on sequence spaces (A}, 6) & (A}, v;9)
by applying |A,d|x & |A, ;0| summability method. This study has a number of direct applications in
rectification of signals in FIR filter (Finite impulse response filter) and IIR filter (Infinite impulse response
filter). In a nut shell, the absolute summability methods are a motivation for the engineers and researchers
working in the area of filters for signal processing.
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