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Abstract: Three different mathematical approaches for the evolution of diffusion equation are presented.
The evolution process of the diffusion equation is explained by principle of conservation law, probability dis-
tribution procedure, and finally though stochastic differential equation (SDE) driven by Brownian motion.
The Monte Carlo method is discussed to solve the diffusion equation by generating the normally distributed
random numbers and the root mean square error is derived for the Monte Carlo method. The numerical
solutions are computed for 1-dimensional diffusion equation and results are compared with exact solution.
Finally, theoretical root mean square error is compared with the maximum error and the L2-error by in-
creasing the number of simulated points.
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1 Introduction

Diffusion is the process by which matter is transported from one part of a system to another as a result of
random molecular motion [2]. Due to the random molecular motion, the matter is always transported from
higher to the low concentration. Many well-known phenomena in various fields in science, engineering,
finance and many other problems are expressed by using the well-known evolution equations known as
diffusion equation. Diffusion can be understood as Brownian motion of the particles in a medium where
particles diffuse in a medium due to random collision by medium molecules. It is widely accepted that the
Brownian motion is a general term of investigating subjects in various science fields relevant to the Markov
process, such as material science, information science, life science, and social science [8].

In physics, the diffusion equation can be understood in accordance with the Gauss divergence theorem.
The divergence theorem is applied to the diffusion problem for a material under the consideration of no
sink and source of the material, it is found that the material conservation law is valid for the diffusion of
particles, regardless of a thermodynamic state of material. The diffusion equation is also called the contin-
uous equation and is extremely fundamental one in physics. In the history, the heat conduction equation,
which is mathematically equivalent to the diffusion equation, was proposed by Fourier, regardless of the
Markov process and the divergence theorem [8].

In this paper, three different mathematical procedures are discussed to develop the diffusion equation.
Firstly, the conservation principle is used in which the rate of change of substance from a elementary region
is equated to the substance in flow or out flow through the boundary of the region. Then, the diffusion
equation is derived by applying the Fick’s law [1]. Einstein also studied and derived the 1-dimensional
diffusion equation from the concept of Brownian phenomenon of pollen grains suspended in a clean water
[5]. The generalized version of the Einstein’s work in higher dimensional space is presented and diffusion
equation is derived. The random motion of the particles suspended in a medium (liquid or gas) can be
explained by stochastic differential equation where the random motion of the particles is due to molecular
collision of the medium, so the random motion of the particles is driven by Brownian motion [3, 9, 11].
Finally, the diffusion equation is derived from the stochastic differential equation using the Fokker-Plank
equation [3, 9]. The Monte Carlo simulation is discussed to approximate the solution of the diffusion
equation and the error due to the Monte Carlo method is derived. Finally, the Monte Carlo method is
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implemented and 1-dimensional diffusion equation is solved numerically. The numerical solutions of the
diffusion equation are presented graphically and compared with the exact solutions at different values of t.
Finally, root mean square error is compared with the maximum error ‖ε‖∞ and L2-error ‖ε‖2 for different
number of particles that diffuse in the medium and presented graphically .

2 Derivation of Diffusion Equation

There different approaches are discussed to derive the diffusion equation.

2.1 Using conservation principle

Let ρ = ρ(t,x) denotes the concentration of a substance in a domain Ω ⊂ Rd, d = 1, 2, 3. Let Ωt ⊂ Ω be an
infinitesimal element of Ω at a time instant t. By the principle of conservation law, the time rate of change
of the amount the substance in the element Ωt is equal to the flow of the substance in or out through the
boundary ∂Ωt of Ωt. Mathematically [1],

d

dt

∫
Ωt

ρ(t,x)dx = −
∫
∂Ωt

q · n dA, (1)

where n denotes the unit normal to the boundary Ωt pointing outward and q denotes the flux through the
boundary Ωt. By Fick’s law [1], the flux q is given by

q = −D ∇ρ, (2)

where D denotes the diffusion coefficient. Using equation (2) in the equation (1) to get

d

dt

∫
Ωt

ρ(t,x)dx =

∫
∂Ωt

(
D ∇ρ

)
· n dA, (3)

Applying Renold’s transport theorem and Gauss divergence theorem in the equation (3) to get∫
Ωt

[∂ρ
∂t

+∇ · (uρ)
]
dx =

∫
∂Ωt

∇ ·
(
D ∇ρ

)
dx

=⇒
∫

Ωt

[∂ρ
∂t

+∇ · (uρ)−∇ ·
(
D ∇ρ

)]
dx = 0. (4)

The relation (4) is true for every choice of Ωt ⊂ Ω. Hence, by applying variational lemma to get

∂ρ

∂t
+∇ · (uρ) = ∇ ·

(
D ∇ρ

)
(5)

Equation (5) is known as advection-diffusion equation. If there is no flow in the fluid, that means, u = 0,
then the pure diffusion equation is obtained

∂ρ

∂t
= ∇ ·

(
D ∇ρ

)
(6)

2.2 Using statistical description

R. Brown in 1827 observed the irregular motion of pollen particles suspended in water [3]. It has been
observed that

• the path of a given particle is very irregular, having a tangent at no point, and

• the motion of two particles appear to be independent.
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Einstein in 1905 studied the one dimensional Brownian phenomenon [3, 5] and that is generalized in the
higher dimensions in the following way :
Consider a cuboid box filled with clear water, into which a unit amount of ink at time t = 0 is injected at
the position x = 0. Let ρ(t,x) denotes the density of the ink particles at the position x ∈ Rd, d = 1, 2, 3 at
time t ≥ 0.
At small time interval τ , the ink particles move from x to x + y location and its probability density be
f(τ,y). Then, the density at x in the time t+ τ is given by

ρ(t+ τ,x) =

∫
Rd

ρ(t,x + y)f(τ,y)dy (7)

Applying Taylor’s series expansion of the expression in LHS of the equation (7) to get

ρ(t+ τ,x) = ρ(t,x) + τ
∂

∂t
ρ(t,x) +O(τ2), (8)

and applying Taylor’s series expansion in the RHS of (7) to get∫
Rd

ρ(t,x + y)f(τ,y)dy =

∫
Rd

[
ρ(t,x) +

d∑
i=1

∂

∂xi
ρ(t,x)yi +

1

2

d∑
i=1

d∑
j=1

∂2

∂xixj
ρ(t,x)yiyj +O(‖y‖3)

]
f(τ,y)dy

(9)
Now, assuming the symmetry of density function f , i.e., f(τ,y) = f(τ,−y) and assuming the indepen-
dent motion of ink particle with identical distribution, the function f(τ,y) can be written as f(τ,y) =∏d
i=1 fy(τ, yi). Now, applying these assumptions and using the facts

∫
Rd f(τ,y)dy = 1,

∫
R yif(τ,y)dy =

0,
∫
R yiyjf(τ,y)dy = 0, for i 6= j in the equation (9) to get∫

Rd

ρ(t,x + y)f(τ,y)dy = ρ(t,x) +
1

2

d∑
i=1

∂2

∂x2
i

ρ(t,x)

∫
Rd

y2
i f(τ,y)dy +O(‖y‖3) (10)

Neglecting the higher orders terms from the equations (8) and (10), then substituting in the equation (7)
to get the diffusion equation

∂ρ

∂t
= ∇ · (D∇ρ), (11)

where
∫
Rd y

2
i f(τ,y)dy = 2τD.

2.3 Using Fokker-Plank description of Brownian motion

The motion of a small particles suspended in a moving liquid is subjected to random molecular bombard-
ments. If u(t,x) denotes the velocity of fluid at the position x at time t, then the reasonable mathematical
model for the position Xt of the particle at time t would be described by the stochastic differential equation
in the form [3, 9]

dXt = u(t,Xt)dt+ σ(t,Xt)dWt, (12)

where Wt ∈ R3 denotes the Brownian motion [6] (or also known as Wiener Process) and σ(t,x) is the
strength of Brownian motion and some times called diffusion coefficient. The solution of the stochastic
differential equation (12) may be thought of as a mathematical description of the motion of the small
particles in a moving fluid.
Let f(t,x) denotes the probability density of the position Xt of the particle in a moving fluid, then the
Fokker-Plank equation [3, 10] of the SDE (12) is given by

∂

∂t
f(t,x) +∇ · (uf(t,x)) = ∇ · (D∇f(t,x)), (13)

where D = σ2

2 is the diffusion coefficient. Assuming the fluid is stationary, that means, u = 0. if the
amount of particles in the fluid is m0 units, then the density of the particle ρ(t,x) = m0f(t,x) the equation
(13) is reduces to the diffusion equation

∂ρ

∂t
= ∇ · (D∇ρ). (14)
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3 Monte Carlo Method and Estimation of Root Mean Square
Error

In this section, the Monte Carlo method [7, 12] is presented to solve the diffusion equation with constant
diffusion coefficient D

∂ρ

∂t
= D∇2ρ, where ρ = ρ(t,x) (15)

For that, the stochastic differential equation (SDE) (12) is taken with u = 0 and constant coefficient σ,
that means,

dXt = σdWt, (16)

Then, the diffusion equation (15) is the corresponding Fokker-Plank equation of SDE (16).

The domain Ω is partitioned by non-overlapping finite number m of partitioning sets A such that Ω = ∪A.
The n number of independent and identically distributed random vectors Xi are generated that follow
the normal distribution with mean 0 and co-variance matrix 2DtI, that means, Xi ∼ N(0, 2DtI), where I
denotes the identity matrix. Then, the approximated solution of the equation (15) ρ̂ at the center x of A
is calculated from

ρ̂(x) =
(m0

n

∑
Xi∈Ω

IA(Xi)
)/
|A| , (17)

where IA denotes the indicator function and |A| denotes the volume of set A.
The estimator ρ̂ given in (17) is an unbiased estimator because

E(ρ̂(x)) =
(m0

n

∑
Xi∈Ω

E(IA(Xi))
)/
|A|

=
(m0

n

∑
Xi∈Ω

P (A)
)/
|A|

=
(m0

n
nP (A)

)/
|A|

=
m0P (A)

|A|
=⇒ E(ρ̂(x)) = ρ(x) (18)

The indicator function are IA(Xi), i = 1, 2 · · · , n are independent random variable, so the variance of the
estimator ρ̂ given in (17) is

V (ρ̂) =
(m2

0

n
V (IA(X1))

)/
|A|2

=
m2

0

n |A|2
V (IA(X1))

)
=

m2
0

n |A|2
(
E(I2

A)− E(IA)2
))

=
m2

0

n |A|2
(
P (A)− P 2(A)

)
=⇒ V (ρ̂) =

m2
0

n |A|2
P (A)

(
1− P (A)

)
(19)
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The root mean square error ε of the Monte Carlo estimator is defined by

ε =
√
E
(
[ρ− ρ̂]2

)
=

√
E
(
[ρ2 − 2ρρ̂+ ρ̂2]

)
=

√
ρ2 − 2ρE(ρ̂) + E(ρ̂2)

=
√
ρ2 − 2ρ2 + E(ρ̂2), using equation (18)

=
√
E(ρ̂2)− ρ2

=
√
E(ρ̂2)− E(ρ̂)2, using equation (18)

=
√
V (ρ̂)

=

√
m2

0P (A)
(
1− P (A)

)
|A|2

1√
n
, using equation (19)

≤

√
m2

0Pmax(A)
(
1− Pmax(A)

)
|A|2

1√
n

=⇒ ε ≤ C
1√
n
, where C =

√
m2

0Pmax(A)
(
1− Pmax(A)

)
|A|2

. (20)

Equation (20) tells that the root mean square error is inversely proportional to the square root of number
n of randomly generated sample points Xi. It can be concluded that the estimated solution ρ̂ converges to
the exact solution when n is large enough.

3.1 Numerical Results and Discussions

The numerical experiment is performed in 1-dimensional open domain (−a, a), a > 0 by dividing it into
m number of sub-intervals. Initially, m0 units of particles are placed at the location x0 ∈ (−a, a), i.e.,
ρ(0, x0) = δ(x0) or

∫ a
−a δ(x0)dx = m0. The motion of particles follow the SDE (16) and position of the

particle at any time t is given by
X(t) = x0 + σWt, (21)

where Wt is the Brownian motion or Wiener process that follows the normal distribution with mean 0
and variance t, i.e., Wt ∼ N(0, t), so it can be generated by Wt =

√
tz, z ∼ N(0, 1). Then, approximated

solution ρ̂(t, x) of 1-dimensional diffusion equation by using the equation (17) at each point x and time t.

Figure 1: Solution at time t=0.25 Figure 2: Solution at time t=0.50

Figures 1,2,3 and 4 show the solutions of the 1-dimensional diffusion equation (15) at the times t =
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Figure 3: Solution at time t=0.75 Figure 4: Solution at time t=1.0

0.25, t = 0.50, t = 0.75 and t = 1.0 seconds respectively. In each figure, the red solid curve represents the
exact solution given in [4] and blue dots represent the approximated solutions computed by using Monte
Carlo method. It can be seen from these results that the approximated solutions match perfectly with the
exact solutions.

3.2 Error Analysis

The diffusion equation (15) is solved numerically by using the Monte Carlo method (17) at the end of the
time point t = 1 second by increasing the number n of simulated points. Then, the maximum error ‖ε‖∞
and L2-error ‖ε‖2 are calculated using

‖ε‖∞ = maxx∈(−a,a) |ρ(x)− ρ̂(x)| (22)

‖ε‖2 =

√∫ a

−a
|ρ(x)− ρ̂(x)|2 dx (23)

Figure 5: Various errors at time t=1 second
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The figure 5 shows the plot of the various errors calculated from the equations (20), (22) and (23) at time
point t = 1 when number of simulated points are increased from the range of small values to large values.
The black solid curve is the theoretical root mean square error ε given by the equation (20), the solid
blue curve is the maximum error ‖ε‖∞ calculated from (22) and the solid green curve is the L2-error ‖ε‖2
calculated using (23). It is clear from the above results that these errors are decreasing with increasing the
number of simulated points. It can be seen that the when number of simulated points are higher than 105,
the errors in all cases approach to zero.

4 Conclusions

Three different approaches, namely, the principle of conservation law, probability distribution procedure,
and through the stochastic differential equation (SDE) driven by Brownian motion are discussed to de-
rive the diffusion equation. This paper is mostly focused on the stochastic approach where Monte Carlo
method is implemented to approximate the solution of the diffusion equation. The solutions obtained by
the Monte Carlo method correctly approximated the exact solutions which are shown graphically at four
different values time t. The root mean square error, maximum error and L2-error are computed and pre-
sented graphically. It can be concluded that larger the number of simulated points better the approximated
solutions computed using Monte Carlo method. The Monte Carlo method can be extended to higher di-
mensional space with irregular spatial domain.
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