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1 Introduction

Nonlinear differential equations play very important role to model real world problems in various fields of
physics, engineering, chemistry, dynamics, fluid mechanics, etc, see for detail [1, 4]. Most of the nonlinear
phenomena of our real-life problems can be modelled by using partial differential equations. To find the
exact solutions to the nonlinear problems is not an easy task and in some situations it is quiet difficult.
In this regard, researchers have developed various iterative techniques to find numerical and analytical
solutions of nonlinear and linear partial differential equations. Thanks to these tools, we find the approxi-
mated solutions and obtain useful information about the solutions of the problems. A variety of powerful
methods to find numerical solutions of nonlinear PDEs has been presented, such as the homotopy analy-
sis method (HAM) [7, 14], Adomain decomposition method (ADM) [12], homotopy perturbation method
(HPM), Fourier transform method(FTM)[21], Laplace and natural transform methods [17, 18], variational
iteration method (VIM) [14], etc. In last few decades, it has been proved that Laplace transform coupled
with Adomian decomposition and perturbation method provides excellent tool to find numerical solutions
of large number of PDEs and ODEs. To find the numerically approximated solutions of nonlinear PDEs,
we use Laplace Adomian decomposition techniques in this paper. The Laplace Adomian decomposition
method (LADM) is modified form of Adomian decomposition method which is used for solving linear and
nonlinear PDEs, see [13, 19, 5, 11]. The adapted numerical procedure basically illustrates how the Laplace
transform may be implemented to approximate the solutions of the nonlinear partial differential equations
by manipulating the decomposition method. The proposed techniques provide a useful way to establish an
analytic treatment for linear and nonlinear PDEs. The proposed method is a semi-analytical method to
obtain the approximated solutions of linear and nonlinear types of differential equations. Here, we notice
that the proposed method provides an excellent approximation solutions for a large numbers of algebraic,
integral, functional, and partial differential equations, see [2, 3, 4, 19]. The Laplace Adomian decomposition
method (LADM) has significant applications to handle the analytical solutions of real world problems of
physics, biology, chemistry, and engineering, fluid mechanics, see [4], etc.

2 Preliminaries

In this section, we consider basic definition of the Laplace transform needed throughout this paper.
For the function Φ(x, t) defined for x ∈ [a, b] and t > 0, the Laplace transform of Φ(x, t) is defined as

L[Φ(x, t)] =

∫ ∞
0

exp(−st)Φ(x, t)dt, s > 0.
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3 Procedure of Laplace Adomian Decomposition Method

To explain the Laplace Adomian decomposition method, we consider a general partial differential equation
of the type

Lφ(x, t) + Rφ(x, t) + Nφ(x, t) = γ(x, t),

with initial conditions

φ(x, 0) = α(x), φt(x, 0) = β(x).

(1)

Where L is considered here as the second order partial differential operator in x, R is the remaining linear
operator, N represent a general nonlinear differential operator, and γ(x, t) is the source term.
By applying Laplace transform to both side of equation (1), and using given initial conditions, we obtain

L[φ(x, t)] =
1

s
α(x) +

1

s2
β(x)− 1

s2

[
L
(
Rφ(x, t)

)
− L

(
Nφ(x, t)

)
+ L

(
γ(x, t)

)]
. (2)

Applying inverse Laplace transform to (2), it gives

φ(x, t) = α(x) + tβ(x)− L−1
[

1

s2
L
(
Rφ(x, t)

)]
− L−1

[
1

s2
L
(
Nφ(x, t)

)]
+ L−1

[
1

s2
L
(
γ(x, t)

)]
. (3)

The Laplace Adomian decomposition method decomposes the unknown functions φ(x, t) by an infinite
series of components as

φ(x, t) =

∞∑
n=0

φn(x, t) (4)

and the nonlinear term by Adomian polynomial as

Nφ(x, t) =

∞∑
n=0

Pn(x, t), (5)

where

Pn(x, t) =
1

n!

[
dn

dλn

(
N

∞∑
i=0

λiφi

)]∣∣∣∣
λ=0

. (6)

Putting equation (4) and equation (5) in equation (3), it gives

∞∑
n=0

φn(x, t) = α(x) + tβ(x)− L−1
[

1

s2
L
(
R

∞∑
n=0

φn(x, t)

)]

−L−1
[
L
(

1

s2

∞∑
n=0

Pn(x, t)

)]
+ L−1

[
1

s2
L
(
γ(x, t)

)]
.

(7)

Putting values for n = 0, 1, 2, ... , then comparing both sides, we have from (7)

φ0(x, t) = α(x) + tβ(x) + L−1
[

1

s2
L[γ(x, t)]

]
,

φ1(x, t) = −L−1
[

1

s2
L[Rφ0(x, t)]

]
− L−1

[
1

s2
L[P0(x, t)]

]
,

φ2(x, t) = −L−1
[

1

s2
L[Rφ1(x, t)]

]
− L−1

[
1

s2
L[P1(x, t)]

]
,

φ3(x, t) = −L−1
[

1

s2
L[Rφ2(x, t)]

]
− L−1

[
1

s2
L[P2(x, t)]

]
(8)

and so on. Generalizing this result

∞∑
n=0

φn+1(x, t) = −L−1
[

1

s2
L
[
R

∞∑
n=0

φn(x, t)

]]
− L−1

[
1

s2
L
[ ∞∑
n=0

Pn(x, t)

]]
, for n ≥ 0. (9)
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4 Applications of Laplace Adomian Decomposition Method to
Different Types PDEs

Example 4.1. Consider the nonlinear PDE [20]

φtt + φ2x − φ2 + φ = t exp(−x),

with initial conditions

φ(x, 0) = 0, φt(x, 0) = exp(−x).

(10)

Taking Laplace transform on both sides of equation (10) and using initial conditions (10), it gives

L[φ(x, t)] =
1

s2
exp(−x)− 1

s2
L[φ2x] +

1

s2
L[φ2]− 1

s2
L[φ] +

1

s2
L[t exp(−x)]. (11)

Applying inverse Laplace transform to (11), we get

φ(x, t) = t exp(−x)− L−1
[

1

s2
L[φ2x]

]
+ L−1

[
1

s2
L[φ2]

]
− L−1

[
1

s2
L[φ]

]
+ L−1

[
1

s2
L[t exp(−x)]

]
. (12)

We write φ(x, t) in the form of an infinite series as

φ(x, t) =

∞∑
n=0

φn(x, t) (13)

and the nonlinear terms φ2 and φ2x be defined by Adomian polynomials as

φ2 =

∞∑
n=0

An(x, t),

φ2x =

∞∑
n=0

Bn(x, t),

where

An(x, t) =
1

n!

dn

dλn

[ ∞∑
i=0

(λiφi)
2

]∣∣∣∣
λ=0

. (14)

Bn(x, t) =
1

n!

dn

dλn

[ ∞∑
i=0

(λiφi,x)2
]∣∣∣∣
λ=0

. (15)

Putting equations (13), (14) and (15) in (12), we get

∞∑
n=0

φn(x, t) = t exp(−x)− L−1
[

1

s2
L
[ ∞∑
n=0

Bn(x, t)

]]
+ L−1

[
1

s2
L
[ ∞∑
n=0

An(x, t)

]]

− L−1
[

1

s2
L
[ ∞∑
n=0

φn(x, t)

]]
+ L−1

[
1

s2
L
[
t exp(−x)

]]
.

(16)

Inserting values for n = 0, 1, 2, . . . , we obtain

φ0(x, t) = t exp(−x),

φ1(x, t) = 0.

All the other terms are vanishing for n ≥ 2.
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Figure 1: Plot of the approximated solution of the example 4.1.

5 Evolution Equations

In this section, we consider three examples of the evolution equations with initial condition by using the
mentioned method, Ganji et al [10], and E. Babolian et al [6] have solved these three examples.

Example 5.1. Consider the nonlinear evolution equation [6]

φt − φxxt + (
φ2

2
)x = 0,

with initial condition

φ(x, 0) = x.

(17)

Taking Laplace transform on both sides of equation (17) and using initial condition (17), it gives

L[φ(x, t)] =
1

s
x+

1

s
L
[
φxxt − (

φ2

2
)x

]
. (18)

Applying inverse Laplace transform to (18), it gives

φ(x, t) = x+ L−1
[

1

s
L(φxxt)

]
− L−1

[
1

s
L
[
(
φ2

2
)x

]]
. (19)

We write φ(x, t) in the form of an infinite series as

φ(x, t) =

∞∑
n=0

φn(x, t) (20)

and the nonlinear term φ2 is decomposed by Adomian polynomials as

φ2 =

∞∑
n=0

Cn(x, t),

12
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where

Cn(x, t) =
1

n!

dn

dλn

[ ∞∑
i=0

(λiφi)
2

]∣∣∣∣
λ=0

. (21)

Insert (20) and (21) in (19), we have

∞∑
n=0

φn(x, t) = x+ L−1
[

1

s
L
[ ∞∑
n=0

φn,xxt

]]
− L−1

[
1

s
L
[ ∞∑
n=0

Cn(x, t)

]]
. (22)

Putting values for n = 0, 1, 2, 3, . . . , we get

φ0(x, t) = x,

φ1(x, t) = −xt,
φ2(x, t) = xt2,

φ3(x, t) = −xt3,
φ4(x, t) = xt4.

Therefore, the solution in the form of series is
φ(x, t) = x[1− t+ t2 − t3 + t4 − ...].
Which is the same approximation obtained in [6] by HPM and [10] by VIM.

Figure 2: Plot of the approximated solution of the example 5.1.

Example 5.2. Consider the evolution equation [6]

φt + φx = 2φxxt,

with initial condition

φ(x, 0) = exp(−x).

(23)

Taking Laplace transform on both sides of equation (23) and using initial condition (23), it gives

L[φ(x, t)] =
1

s
exp(−x)− 1

s
L[φx] +

2

s
L[φxxt]. (24)

13



Solving Some Linear and Nonlinear PDEs Using Laplace Adomian Decomposition Method

Applying inverse Laplace transform to (24), it gives

φ(x, t) = exp(−x)− L−1
[

1

s
L[φx]

]
+ 2L−1

[
1

s
L[φxxt]

]
. (25)

We may write series solution φ(x, t) as

φ(x, t) =

∞∑
n=0

φn(x, t). (26)

Putting equation (26) in (25), we have

∞∑
n=0

φn(x, t) = exp(−x)− L−1
[

1

s
L[

∞∑
n=0

φn,x]

]
+ 2L−1

[
1

s
L[

∞∑
n=0

φn,xxt]

]
. (27)

Putting values for n = 0, 1, 2, 3, . . . , we get

φ0(x, t) = exp(−x),

φ1(x, t) = exp(−x)t,

φ2(x, t) = exp(−x)

[
t2

2
+ 2t

]
,

φ3(x, t) = exp(−x)

[
t3

3!
+ 2t2 + 4t

]
,

φ4(x, t) = exp(−x)

[
t4

4!
+ t3 + 6t2 + 8t

]
.

We obtained the approximated solution as the infinite series of the form

φ(x, t) = exp(−x)

[
1 + 15t+

17

2
t2 +

7

6
t3 +

1

24
t4
]
,

which is the same approximation obtained in [6] by HPM.

Figure 3: Plot of the approximated solution of the example 5.2.
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Example 5.3. Consider the evolution equation [6]

φt − φxxxx = 0,

with initial condition

φ(x, 0) = sin(x).

(28)

Taking Laplace transform on both sides of equation (28) and using initial condition (28), it gives

L[φ(x, t)] =
1

s
sin(x) +

1

s
L[φxxxx]. (29)

Applying inverse Laplace transform to (29), we get

φ(x, t) = sin(x) + L−1
[

1

s
L[φxxxx]

]
. (30)

We may write series solution of φ(x, t) as

φ(x, t) =

∞∑
n=0

φn(x, t). (31)

Putting equation (31) in (30) and inserting values for n = 0, 1, 2, . . . , we obtain

φ0(x, t) = sin(x),

φ1(x, t) = t sin(x),

φ2(x, t) =
t2

2!
sin(x),

φ3(x, t) =
t3

3!
sin(x),

φ4(x, t) =
t4

4!
sin(x).

Our approximated solution is

φ(x, t) = sin(x)

[
1 + t+

t2

2!
+
t3

3!
+
t4

4!

]
.

Which is the same approximation obtained in [6] by HPM.
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Figure 4: Plot of the approximated solution of the example 5.3.

6 Cauchy Reaction-Diffusion Equations

In this section, we consider four examples of the Cauchy reaction-diffusion equations with initial condition
by using the mentioned method, Babolian et.al [6], have solved these three examples by HPM.

Example 6.1. Consider the Cauchy reaction-diffusion equation [6]

φt = φxx + 2tφ,

with initial condition

φ(x, 0) = exp(x).

(32)

Applying Laplace transform on left and right sides of equation (32) and using initial condition (32), it gives

L[φ(x, t)] =
1

s
exp(x) +

1

s
L[φxx + 2tφ]. (33)

Applying inverse Laplace transform to (33), we get

φn(x, t) = exp(x) + L−1
[

1

s
L[φxx + 2tφ]

]
. (34)

We may write series solution of φ(x, t) as

φ(x, t) =

∞∑
n=0

φn(x, t). (35)

Putting equation (34) in (33), and inserting values for n = 0, 1, 2, . . . , we obtain

φ0(x, t) = exp(x),

φ1(x, t) =

(
t+ t2

)
exp(x),

φ2(x, t) =

(
t4

2
+ t3 +

t2

2

)
exp(x),

φ3(x, t) =

(
t5

2
+
t4

2
+
t6

6
+
t3

6

)
exp(x)
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and so on. Our approximated solution is

φ(x, t) = exp(x)

[
1 + t+ t2 +

t4

2
+ t3 +

t2

2
+
t5

2
+
t4

2
+
t6

6
+
t3

6

]
.

We see that the approximated solution obtained up to four terms is close agreement with the exact solution
φ(x, t) = exp(x+ t+ t2) .

Figure 5: Plot of approximated solution of the example 6.1.
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Example 6.2. Consider the Cauchy reaction-diffusion equation [6]

φt = φxx − (1 + 4x2)φ,

corresponding to initial condition

φ(x, 0) = exp(x2).

(36)

Applying Laplace transform on left and right sides of the sides of equation (36) and using initial condition
(36), it gives

L[φ(x, t)] =
1

s
exp(x2) +

1

s
L[φxx − (1 + 4x2)φ]. (37)

Applying inverse Laplace transform to (37), we get

φn(x, t) = exp(x2) + L−1
[

1

s
L[φxx − (1 + 4x2)φ]

]
. (38)

We may write series solution of φ(x, t) as

φ(x, t) =

∞∑
n=0

φn(x, t). (39)

Putting equation (39) in (38) and inserting values for n = 0, 1, 2, . . . , we obtain

φ0(x, t) = exp(x2),

φ1(x, t) = −t exp(x2),

φ2(x, t) =
1

2!
t2 exp(x2),

φ3(x, t) = − 1

3!
t3 exp(x2),

φ4(x, t) =
1

4!
t4 exp(x2),

φ5(x, t) = − 1

5!
t5 exp(x2)

and so on. Our approximated solution is

φ(x, t) = exp(x2)

[
1− t+

1

2!
t2 − 1

3!
t3 +

1

4!
t4 − 1

5!
t5
]
.

We see that approximated terms are close to the exact solution

φ(x, t) = exp(x2 + t).
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Figure 6: Plot of the approximated solution of the example 6.2.

Example 6.3. Consider the Cauchy reaction-diffusion equation [6]

φt = φxx − (4x2 − 2t+ 2)φ,

corresponding to initial condition

φ(x, 0) = exp(x2).

(40)

Applying Laplace transform on left and right sides of equation (40) and using initial condition (40), it gives

L[φ(x, t)] =
1

s
exp(x2) +

1

s
L[φxx − (4x2 − 2t+ 2)φ]. (41)

Applying inverse Laplace transform to (40), we get

φn(x, t) = exp(x2) + L−1
[

1

s
L[φxx − (4x2 − 2t+ 2)]φ

]
. (42)

We can write solution φ(x, t) in an infinite series as

φ(x, t) =

∞∑
n=0

φn(x, t). (43)

Putting equation (43) in (42), and inserting values for n = 0, 1, 2, . . . , we obtain

φ0(x, t) = exp(x2),

φ1(x, t) = t2 exp(x2),

φ2(x, t) =
1

2!
t4 exp(x2),

φ3(x, t) =
1

3!
t6 exp(x2),

φ4(x, t) =
1

4!
t8 exp(x2)
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and so on. Our approximated solution is

φ(x, t) = exp(x2)

[
1 + t2 +

1

2!
t4 +

1

3!
t6 +

1

4!
t8
]
.

We see that the approximated solution obtained using LADM up to first five terms is close agreement with
the exact solution

φ(x, t) = exp(x2 + t2).

Figure 7: Plot of the approximated solution of the example 6.3.

Example 6.4. Consider the Cauchy reaction-diffusion equation [6]

φt = φxx − φ,
with initial condition

φ(x, 0) = exp(−x) + x.

(44)

Applying Laplace transform on left and right sides of the sides of equation (44) and using initial condition,
it gives

L[φ(x, t)] =
1

s
[exp(−x) + x] +

1

s
L[φxx − φ]. (45)

Applying inverse Laplace transform to (45), we get

φn(x, t) = exp(−x) + x+ L−1
[

1

s
L[φxx − φ]

]
. (46)

We write φ(x, t) in the form of an infinite series as

φ(x, t) =

∞∑
n=0

φn(x, t). (47)
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Putting equation (47) in (46) and inserting values for n = 0, 1, 2, . . . , we obtain

φ0(x, t) = exp(−x) + x,

φ1(x, t) = −xt,

φ2(x, t) =
xt2

2!
,

φ3(x, t) =
−xt3

3!
,

φ4(x, t) =
xt4

4!

and so on. Our approximated solution is

φ(x, t) = exp(−x) + x− xt+
xt2

2!
− xt3

3!
+
xt4

4!
.

We see that the approximated solution obtained up to five terms is close to the exact solution

φ(x, t) = exp(−x) + x exp(−t).

Figure 8: Plot of the approximated solution of the example 6.4.

7 Klien-Gordon Equations

In this section, we consider five examples of the Klien-Gordon equations with initial condition by using the
mentioned method, Babolian et.al [6], have solved these three examples by HPM.

Example 7.1. Consider the linear Klien-Gordon equation [6]

φtt − φxx = φ,

with initial conditions

φ(x, 0) = 1 + sin(x), φt(x, 0) = 0.

(48)
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Applying Laplace transform to left and right sides of the equation (48) and using initial condition (48), it
gives

L[φ(x, t)] =
1

s
[1 + sin(x)] +

1

s2
L[φxx + φ]. (49)

Upon using inverse Laplace transform to (49), we get

φn(x, t) = 1 + sin(x) + L−1
[

1

s2
L[φxx + φ]

]
. (50)

We write φ(x, t) in the form of an infinite series as

φ(x, t) =

∞∑
n=0

φn(x, t). (51)

Putting equation (51) in (50) and inserting values for n = 0, 1, 2, . . . , we obtain

φ0(x, t) = 1 + sin(x),

φ1(x, t) =
t2

2!
,

φ2(x, t) =
t4

4!
,

φ3(x, t) =
t6

6!
,

φ4(x, t) =
t8

8!

and so on. Our approximated solution is

φ(x, t) = sin(x) + 1 +
t2

2!
+
t4

4!
+
t6

6!
+
t8

8!
.

We see that the approximated solution received by LADM has close agreement to the exact solution

φ(x, t) = sin(x) + cosh(t).
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Figure 9: Plot of the approximated solution of the example 7.1.

Example 7.2. Consider the nonlinear Klien-Gordon equation [8]

φtt − φxx − φ2 = 2x2 − 2t2 + x4t4,

with initial conditions

φ(x, 0) = 0, φt(x, 0) = 0.

(52)

Taking Laplace transform on both sides of equation (52) and using initial condition (52), it gives

L[φ(x, t)] =
1

s2
L[2x2 − 2t2 + x4t4] +

1

s2
L[φxx] +

1

s2
L[φ2]. (53)

Applying inverse Laplace transform to (53), we get

φ(x, t) = x2t2 − 2L−1
[

1

s2
L[t2]

]
+ x4L−1

[
1

s2
L[t4]

]
+ L−1

[
1

s2
L[φxx]

]
+ L−1

[
1

s2
L[φ2]

]
. (54)

We write φ(x, t) in the form of an infinite series as

φ(x, t) =

∞∑
n=0

φn(x, t) (55)

and the nonlinear term φ2 is defined by Adomian polynomials as

φ2 =

∞∑
n=0

Dn(x, t),

where

Dn(x, t) =
1

n!

dn

dλn

[ ∞∑
i=0

(λiφi)
2

]∣∣∣∣
λ=0

. (56)
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Insert (55) and (56) in (54), we have

∞∑
n=0

φn(x, t) = x2t2 − L−1
[

1

s2
L[2t2 + x4t4]

]
+ L−1

[
1

s2
L
[ ∞∑
n=0

[φn,xx(x, t) +Dn(x, t)]

]
. (57)

Putting values for n = 0, 1, 2, . . . , we obtain

φ0(x, t) = x2t2,

φ1(x, t) = 0,

φ2(x, t) = 0.

All the next terms are vanish for n ≥ 3, therefore the approximated solution is close to the exact solution
[8], given as below

φ(x, t) = x2t2.

Figure 10: Plot of the approximated solution of the example 7.2.
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Example 7.3. Consider the linear Klien-Gordon equation [6]

φtt − φxx − 2φ = 2 sin(x) sin(t),

with initial conditions

φ(x, 0) = 0, φt(x, 0) = sin(x).

(58)

Taking Laplace transform on both sides of equation (58) and using initial condition (58), it gives

L[φ(x, t)] =
1

s2
sin(x) +

1

s2
L
[
φxx + 2φ+ 2 sin(x) sin(t)

]
. (59)

Using inverse Laplace transform to (59), we get

φn(x, t) = t sin(x) + L−1
[

1

s2
L[φxx]

]
+ L−1

[
1

s2
L[2φ]

]
+ 2 sin(x)L−1

[
1

s2
L[sin(t)]

]
. (60)

We write φ(x, t) in the form of an infinite series as

φ(x, t) =

∞∑
n=0

φn(x, t). (61)

Putting equation (61) in (60) and inserting values for n = 0, 1, 2, . . . , we obtain

φ0(x, t) = t sin(x),

φ1(x, t) =

[
t3

3!
− 2t+ 2 sin(t)

]
sin(x),

φ2(x, t) =

[
t5

5!
− 2t3

3!
+ 2t− 2 sin(t)

]
sin(x),

φ3(x, t) =

[
t7

7!
− 2t5

5!
+

2t3

3!
− 2t+ 2 sin(t)

]
sin(x),

φ4(x, t) =

[
t9

9!
+

2t7

7!
+

2t5

5!
− 2t3

3!
+ 2t− 2 sin(t)

]
sin(x)

and so on. We see that the approximated solution obtained by LADM up to five terms is close to the exact
solution given by

φ(x, t) = sin(x) sin(t).
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Figure 11: Plot of the approximated solution of the example 7.3.

Example 7.4. Consider the nonlinear Klien-Gorden equation [16]

φtt − φxx + φ2 = 0,

corresponding to the initial conditions

φ(x, 0) = 1 + sin(x), φt(x, 0) = 0.

(62)

Taking Laplace transform on both sides of equation (62) and using initial condition (62), it gives

L[φ(x, t)] =
1

s

[
1 + sin(x)

]
+

1

s2

[
L[φxx − φ2]

]
. (63)

Applying inverse Laplace transform to (63), we get

φ(x, t) = 1 + sin(x) + L−1
[

1

s2
L[φxx]

]
− L−1

[
1

s2
L[φ2]

]
. (64)

We write φ(x, t) in the form of an infinite series as

φ(x, t) =

∞∑
n=0

φn(x, t) (65)

and the nonlinear term φ2 be defined by Adomian polynomials as

φ2 =

∞∑
n=0

Pn(x, t),

where

Pn(x, t) =
1

n!

[
dn

dλn

( ∞∑
i=0

(λiφi)

)( ∞∑
i=0

(λiφi,x)

)]∣∣∣∣
λ=0

. (66)
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Insert (65) and (66) in (64), we have

∞∑
n=0

φn(x, t) = 1 + sin(x) + L−1
[

1

s2
L
[ ∞∑
n=0

φn,xx(x, t)

]]
− L−1

[
1

s2
L
[ ∞∑
n=0

Pn(x, t)

]]
. (67)

Putting values for n = 0, 1, 2, . . . , we obtain

φ0(x, t) = 1 + sin(x),

φ1(x, t) =
t2

2!

[
1− 3 sin(x)− sin2(x)

]
,

φ2(x, t) =
t4

4!

[
− 2− 5 sin(x)− 8 sin2(x)− 2 sin3(x) + 2 cos(2x)

]

and so on. Thus, the approximated solution is expressed as

φ(x, t) = 1 + sin(x) +
t2

2!

(
1− 3 sin(x)− sin2(x)

)
+
t4

4!

(
− 2− 5 sin(x)− 8 sin2(x)− 2 sin3(x) + 2 cos(2x)

)
+ . . .

(68)

Which is the exactly same approximated solution obtained in [16] by DTM.

Figure 12: Plot of the approximated solution of the example 7.4.
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Example 7.5. Consider the nonlinear Klien-Gorden equation [16]

φtt − φxx + φ2 = 6x3t− 6xt3 + x6t6,

with the given conditions

φ(x, 0) = 0, φt(x, 0) = 0.

(69)

Using Laplace transform to (69) and using initial condition (69), it gives

L[φ(x, t)] =
1

s2
L[6x3t]− 1

s2
L[6xt3] +

1

s2
L[x6t6] +

1

s2
L[φxx]− 1

s2
L[φ2]. (70)

Applying inverse Laplace transform to (70), we get

φ(x, t) = x3t3 − 6xL−1
[

1

s2
L[t3]

]
+ x6L−1

[
1

s2
L[t6]

]
+ L−1

[
1

s2
L[φxx]

]
− L−1

[
1

s2
L[φ2]

]
. (71)

We write φ(x, t) in the form of an infinite series as

φ(x, t) =

∞∑
n=0

φn(x, t) (72)

and the nonlinear term φ2 be defined by Adomian polynomials as

φ2 =

∞∑
n=0

Pn(x, t),

where

Pn(x, t) =
1

n!

[
dn

dλn

( ∞∑
i=0

(λiφi)

)( ∞∑
i=0

(λiφi,x)

)]∣∣∣∣
λ=0

. (73)

Putting equations (72) and (73) in (71).

φn(x, t) = x3t3 − 6xL−1
[

1

s2
L[t3

]
] + x6L−1

[
1

s2
L[t6]

]
+ L−1

[
1

s2
L[

∞∑
n=0

φn,xx]

]

− L−1
[

1

s2
L[

∞∑
n=0

Pn(x, t)]

]
.

(74)

Putting values for n = 0, 1, 2, . . . , it gives

φ0(x, t) = x3t3,

φ1(x, t) = 0,

φ2(x, t) = 0.

All the next terms are vanishing for n ≥ 3, therefore the approximated solution is close to the exact the
solution [16] given by

φ(x, t) = x3t3.

We see that the approximated solution obtained up to five terms has close agreement with the exact solution

φ(x, t) = x3t3.

Which is the same solution obtained in [16] by HPM.
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Figure 13: Plot of the approximated solution of the example 7.5.

Example 7.6. Consider the nonlinear Fisher’s equation [15]

φt − φxx − φ+ φ2 = 0,

with initial condition

φ(x, 0) = β.

(75)

Taking Laplace transform on both sides of equation (75) and using initial condition (75), it gives

L[φ(x, t)] =
1

s
β +

1

s
L[φxx] +

1

s
L[φ]− 1

s
L[φ2]. (76)

Applying inverse Laplace transform to (76), we get

φ(x, t) = β + L−1
[

1

s
L[φxx]

]
+ L−1

[
1

s
L[φ]

]
− L−1

[
1

s
L[φ2]

]
. (77)

We write φ(x, t) in the form of an infinite series as

φ(x, t) =

∞∑
n=0

φn(x, t) (78)

and the nonlinear term φ2 be defined by Adomian polynomials as

φ2 =

∞∑
n=0

Hn(x, t),

where

Hn(x, t) =
1

n!

[
dn

dλn

( ∞∑
i=0

(λiφi)

)( ∞∑
i=0

(λiφi,x)

)]
λ=0

. (79)

Putting equations (78) and (79) in (77), it gives

∞∑
i=0

φn(x, t) = β + L−1
[

1

s
L[

∞∑
i=0

φn,xx]

]
+ L−1

[
1

s
L[

∞∑
i=0

φn]

]
− L−1

[
1

s
L[

∞∑
i=0

Hn(x, t)]

]
. (80)
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Inserting the values for n = 0, 1, 2, ..., we obtain

φ0(x, t) = β,

φ1(x, t) =

(
β − β2

)
t,

φ2(x, t) =

(
β − 3β2 + 2β3

)
t2

2!
,

φ3(x, t) =

(
β − 7β2 + 12β3 − 6β4

)
t3

3!
,

φ4(x, t) =

(
β − 25β2 + 114β3 − 23β4 − 84β5

)
t4

4!

and so on. We see that the approximated solutions obtained up to five terms has close agreement with the
exact solution given by [15]

φ(x, t) =
β exp(t)

1− β + β exp(t)
.

Figure 14: Plot of the approximated solution of the example 7.6.

8 Conclusion

In this study, we have successfully applied the Laplace Adomian decomposition method (LADM) to linear
and nonlinear PDEs with initial conditions to find the approximated solutions. As a conclusion, we see that
the approximate solutions obtained by adopted method LADM has close agreement to the exact solutions.
Maple 2016 has been used for graphical visualization in this paper.

Acknowledgments: I am really thankful to the reviewers for their constructive comments which improved
this paper very well.
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