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Abstract: In this paper, we consider β−change of Finsler metric L given by L = f(L, β), where f is any
positively homogeneous function of degree one in L and β. The objectives of the paper are to obtain the
β−change of a Riemannian space, projective change of Finsler metric and to discuss the special cases of
one-form β.
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1 Introduction

Let Fn = (Mn, L) be an n−dimensional Finsler space on a differentiable manifold Mn, equipped with the
fundamental function L(x, y). In 2012, Shukla et al. [8] introduced the transformation of Finsler metric
called Matsumoto change of metric given by

L(x, y) =
L2

L− β

where β(x, y) = bi(x)yi is a one-form on Mn. They obtained the necessary and sufficient condition for this
change of Finsler metric to be projective change.

Prasad et al. [7] introduced an exponential change of Finsler metric given by

L(x, y) = Leβ/L

and they dealt with the imbedding class numbers of the tangent Riemannian space of corresponding spaces.

Recently, Prasad and Kumari [6] introduced the β−change of Finsler space given by

L(x, y) = f(L, β), (1.1)

where f is positively homogeneous function of yi of degree one in L and β. They also dealt with the
imbedding classes of the tangent Riemannian spaces. We have considered the same β−change given by
the equation (1.1) and obtained the necessary and sufficient condition under which this change becomes a
projective change. The particular cases when the vector field bi in β is special one have been discussed.
The Berwald’s connection coefficients for the β−changed space have been calculated.

2 Preliminaries

Let Fn = (Mn, L) be a Finsler space equipped with the fundamental function L(x, y) on the smooth mani-
fold Mn. Let β = bi(x)yi be a one-form on the manifold Mn, then L→ f(L, β) is the β−change of Finsler
metric. If we write L = f(L, β), where f is any positively homogeneous function of degree one in L and β
and F

n
= (Mn, L), then the Finsler space F

n
is said to be obtained from Fn by β−change. The quantities

corresponding to F
n

are denoted by putting bar on those quantities.

The fundamental metric tensor gij , the normalized element of support li and angular metric tensor hij of
Fn are given by

gij =
1

2

∂2L2

∂yi∂yj
, li =

∂L

∂yi
and hij = L

∂2L

∂yi∂yj
= gij − lilj .
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We shall denote the partial derivative with respect to xi and yi by ∂i and ∂̇i respectively and write

Li = ∂̇iL, Lij = ∂̇i∂̇jL, Lijk = ∂̇i∂̇j ∂̇kL.

Then,
Li = li, L−1 hij = Lij .

The geodesic of Fn are given by the system of differential equations

d2xi

ds2
+ 2Gi

(
x,
dx

ds

)
= 0,

where Gi(x, y) are positively homogeneous of degree two in yi and are given by

2Gi = gij(yr∂̇j∂rF − ∂jF ), F =
L2

2
(2.1)

where gij are the inverse of gij . The well known Berwald connection BΓ = (Gijk, G
i
j) of a Finsler space is

constructed from the quantity Gi appearing in the equation of geodesic and is given by [8]

Gij = ∂̇jG
i, Gijk = ∂̇kG

i
j .

The Cartan’s connection CΓ = (F ijk, G
i
j , C

i
jk) is constructed from the metric function L by the following

five axioms [8]:

(i) gij|k = 0 (ii) gij |k = 0 (iii) F ijk = F ikj (iv) F i0k = Gik (v) Cijk = Cikj ,

where |k and |k denote h− and v−covariant derivatives with respect to CΓ. It is clear that the h−covariant
derivative of L with respect to BΓ and CΓ is the same and vanishes identically. Furthermore, the
h−covariant derivatives of Li, Lij with respect to CΓ are also zero.

We shall write

2rij = bi|j + bj|i, 2sij = bi|j − bj|i. (2.2)

3 The β−change of Finsler Metric

The β−change of Finsler metric is given by

L(x, y) = f(L, β), (3.1)

where f is positively homogeneous function of degree one in L and β. Homogeneity of f gives

Lf1 + βf2 = f, (3.2)

where subscripts ‘1’ and ‘2’ denote the partial derivatives with respect to L and β respectively.

Differentiating (3.2) with respect to L and β respectively, we get

Lf11 + βf12 = 0 and Lf12 + βf22 = 0.

Hence, we have
f11
β2

= −f12
βL

=
f22
L2

,

which gives

f11 = β2ω, f22 = L2ω, f12 = −βLω, (3.3)
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where Weierstrass function ω is positively homogeneous function of degree −3 in L and β. Therefore,

Lω1 + βω2 + 3ω = 0. (3.4)

Again, ω2 is positively homogeneous of degree - 4 in L and β, so

Lω21 + βω22 + 4ω2 = 0.

Throughout the paper we frequently use the equations (3.2), (3.3) and (3.4) without quoting them. Also,
we have assumed that f is not linear function of L and β so that ω 6= 0.

We may put

G
i

= Gi +Di. (3.5)

Then, G
i

j = Gij + Di
j and G

i

jk = Gijk + Di
jk, where Di

j = ∂̇jD
i and Di

jk = ∂̇kD
i
j . The tensors Di, Di

j and

Di
jk are positively homogeneous in yi of degree two, one and zero respectively. Therefore, we have

Di
jky

k = Di
j , Di

j y
j = 2Di.

To find difference tensor Di, we deal with equation [8] Lij|k = 0, that means,

∂kLij − LijrGrk − LrjF rik − LirF rjk = 0. (3.6)

Since ∂̇iβ = bi, from (3.1), we have

(a) Li = f1Li + f2bi,

(b) Lij = f1Lij + β2ωLiLj − βLω(Libj + Ljbi) + L2ωbibj ,

(c) ∂jLi = f1∂jLi + (β2ωLi − βLωbi)∂jL+ (L2ωbi − βLωLi)∂jβ + f2∂jbi,

(d) ∂kLij = f1∂kLij + {β2ωLij + β2ω1LiLj − (βLω1 + βω)(Libj + Ljbi) +

(2Lω + L2ω1)bibj}∂kL+ {−βLωLij + (2βω + β2ω2)LiLj − (3.7)

(Lω1 + βLω2)(Libj + Ljbi) + L2ω2bibj}∂kβ +

(β2ωLj − βLωbj)∂kLi + (β2ωLi − βLωbi)∂kLj −
(βLωLj − L2ωbj)∂kbi − (βLωLi − L2ωbi)∂kbj ,

(e) Lijk = f1Lijk + β2ω(LiLjk + LjLik + LkLij)− βLω(biLjk + bjLik +

bkLij) + (β2ω2 + 2βω)(LiLjbk + LiLkbj + LjLkbi)−
(βLω2 + Lω)(bibjLk + bjbkLi + bibkLj) + β2ω1LiLjLk + L2ω2bibjbk.

Since Lij|k = 0 in F
n
, after using (3.5), we have

∂kLij − Lijr(Grk +Dr
k)− Lrj(F rik + cDr

ik)− Lir(F rjk + cDr
jk) = 0, (3.8)

where F
i

jk − F ijk = cDi
jk.

Substituting in the equation (3.8) the values of ∂kLij , Lir and Lijr from (3.7)(b),(d),(e) and using (3.6),
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we have

− f1{LijrDr
k + Lrj D

r
ik + LirD

r
jk}+ {β2ωLij + β2ω1LiLj −

(βLω1 + βω)(Libj + Ljbi) + (2Lω + L2ω1)bibj}LrGrk +

{−βLωLij + (2βω + β2ω2)LiLj − (Lω + βLω2)×
(Libj + Ljbi) + L2ω2bibj}(r0k + s0k + brG

r
k) + (β2ωLj − Lβωbj)×

(LirG
r
k + LrF

r
ik) + (β2ωLi − Lβωbi)(LjrGrk + LrF

r
jk)−

(LβωLj − L2ωbj)(rik + sik + brF
r
ik)−

(LβωLi − L2ωbi)(rjk + sjk + brF
r
jk)−

{β2ω(LiLjr + LjLri + LrLij)− Lβω(biLjr + bjLir + brLij) + (3.9)

(β2ω2 + 2βω)(LiLjbr + LiLrbj + LjLrbi)−
(Lβω2 + Lω)(Lrbibj + Libjbr + Ljbibr) +

β2ω1LiLjLr + L2ω2bibjbr}(Grk +Dr
k)−

{β2ωLrLj − Lβω(Lrbj + Ljbr) + L2ωbrbj}(F rik + cDr
ik)−

{β2ωLrLi − Lβω(Lrbi + Libr) + L2ωbrbi}(F rjk + cDr
ik) = 0,

where ∂kL = LrG
r
k, ∂kβ = r0k + s0k + brG

r
k, ∂kLi = LirG

r
k + LrF

r
ik and ∂kbi = rik + sik + brF

r
ik.

Contracting (3.9) with yk, and using the fact that Di
jky

j = cDi
jky

j = Di
k [2], we get

2{f1Lijr + β2ω(LiLjr + LjLri + LrLij} −
Lβω(biLjr + bjLir + brLij) + (β2ω2 + 2βω)(LiLjbr +

LiLrbj + LjLrbi)− (Lβω2 + Lω)(Lrbibj + Libjbr + Ljbibr) +

β2ω1LiLjLr + L2ω2bibjbr}Dr + {f1Lrj + β2ωLrLj − (3.10)

Lβω(Lrbj + Ljbr) + L2ωbrbj}Dr
i + {f1Lir + β2ωLrLi −

Lβω(Lrbi + Libr) + L2ωbrbi}Dr
j + (LβωLj − L2ωbj)×

(ri0 + si0) + (LβωLi − L2ωbi)(rj0 + sj0) + {βLωLij − (2βω + β2ω2)LiLj +

(Lω + Lβω2)(Libj + Ljbi)− L2ω2bibj} r00 = 0,

where ′0′ stands for contraction with respect to yi, viz. r0k = riky
i, r00 = rijy

iyj .

Next, we deal with Li|j = 0, that is ∂jLi − LirG
r

j − LrF
r

ij = 0, then

∂jLi − Lir(Grj +Dr
j )− Lr(F rij + cDr

ij) = 0. (3.11)

Putting the values of ∂jLi, Lir and Lr from (3.7) in (3.11) and using equation

Li|j = ∂jLi − LirGrj − LrF rij = 0,

and rearranging the terms, we get

f2bi|j = {fLir + β2ωLiLr + L2ωbibr − Lβω(Libr + Lrbi)}Dr
j

+(LβωLi − L2ωbi)(r0j + s0j) + (f1Lr + f2br)D
r
ij ,

which after using (2.2) gives

2f2rij = {f1Lir + β2ωLiLr + L2ωbibr − Lβω(Libr + Lrbi)}Dr
j +

{f1Ljr + β2ωLjLr + L2ωbjbr − Lβω(Ljbr + Lrbj)}Dr
i + (3.12)

(LβωLi − L2ωbi)(r0j + s0j) + (LβωLj − L2ωbj)×
(r0i + s0i) + 2(f1Lr + f2br)D

r
ij
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and

2f2sij = {f1Lir + β2ωLiLr + L2ωbibr − Lβω(Libr + Lrbi)}Dr
j −

{f1Ljr + β2ωLjLr + L2ωbjbr − Lβω(Ljbr + Lrbj)}Dr
i + (3.13)

(LβωLi − L2ωbi)(r0j + s0j)− (LβωLj − L2ωbj)(r0i + s0i).

Subtracting (3.12) from (3.10) and contracting the resulting equation with yi, we obtain

{−f1Ljr + LβωLjbr + LβωLrbj − β2ωLjLr − L2ωbjbr}Dr −
1

2
(LβωLj − L2ωbj)r00 + f2r0j = (f1Lr + f2br)D

r
j . (3.14)

Contracting (3.14) with yj , we get

2(f1Lr + f2br)D
r = f2r00. (3.15)

Adding (3.10) and (3.13) and contracting the resulting equation with yj , we get

{f1Lir + β2ωLiLr + L2ωbibr − Lβω(Libr + Lrbi)}Dr =
1

2
(L2ωbi − LβωLi)r00 + f2si0. (3.16)

In view of LLir = gir − LiLr, the equation (3.16) can be written as

f1
L
girD

r + {
(
− f1
L

+ β2ω
)
Li − Lβωbi}LrDr +

(L2ωbi − LβωLi)brDr =
1

2
(L2ωbi − LβωLi)r00 + f2si0. (3.17)

Contracting (3.17) with bi = gijbj , we get

(−f1β
L2

− Lβω4
)
LrD

r +
(f1
L

+ L2ω4
)
brD

r =
L2ω4

2
r00 + f2s0, (3.18)

where 4 = b2 − β2

L2 and s0 = sr0b
r.

The equations (3.15)) and (3.18) constitute the system of algebraic equations in LrD
r and brD

r whose
solution is given by

brD
r =

(f1f2β + fL3ω4)

2f(f1 + L3ω4)
r00 +

f1f2L
2

f(f1 + L3ω4
s0 (3.19)

and

LrD
r =

Lf1f2
2f(f1 + L3ω4)

r00 −
L2f22

f(f1 + L3ω4)
s0. (3.20)

Contracting (3.17) by gij and putting the values of brD
r and LrD

r from (3.19) and (3.20) respectively, we
get

Di =

{
f1f2 − fLβω

2f(f1 + L3ω4)
r00 −

Lf2(f1f2 − fLβω)

ff1(f1 + L3ω4)
s0

}
yi +{

L3ω

2(f1 + L3ω4)
r00 −

f2L
4ω

f1(f1 + L3ω4)
s0

}
bi +

Lf2
f1

si0, (3.21)

where li =
yi

L
.

Proposition 3.1. The difference tensor Di = G
i − Gi of any β−change of Finsler metric is given by

(3.21).
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4 Projective Change of Finsler Metric

The Finsler space F
n

is said to be projective to Finsler space Fn if every geodesic of Fn is transformed
to a geodesic of F

n
. It is well known that the change L → L is projective if Gi = Gi + P (x, y)yi, where

P (x, y) is a homogeneous scalar function of degree one in yi, called projective factor [3]. Thus, from (3.5)
it follows that L→ L is projective iff Di = Pyi.

Now, we consider that the β−change L→ L = f(L, β) is projective. Then, from equation (3.21), we have

Pyi =

{
f1f2 − fLβω

2f(f1 + L3ω4)
r00 −

Lf2(f1f2 − fLβω)

ff1(f1 + L3ω4)
s0

}
yi +{

L3ω

2(f1 + L3ω4)
r00 −

f2L
4ω

f1(f1 + L3ω4)
s0

}
bi +

Lf2
f1

si0, (4.1)

Contracting (4.1) with yi(= gijy
j) and using the fact that si0yi = 0 and yiy

i = L2, we get

P =
f1f2

2f(f1 + L3ω4)
r00 −

f22L

f(f1 + L3ω4)
s0. (4.2)

Putting the value of P from (4.2) in (4.1), we get

βω(f1r00 − 2f2Ls0) yi = L2ω(f1r00 − 2f2Ls0) bi + 2f2(f1 + L3ω4) si0. (4.3)

Transvecting (4.3) by bi, we get

r00 =
−2f2
L2ω

s0
4
, where 4 = b2 − β2

L2
6= 0. (4.4)

Substituting the value of r00 from (4.4) in (4.2), we get

P =
−f22
fL2ω

s0
4
. (4.5)

Eliminating P and r00 from (4.5), (4.4) and (4.1), we get

si0 =
(
bi − β

L2
yi
)s0
4
. (4.6)

The equations (4.4) and (4.6) give the necessary conditions under which the β−change becomes a projective
change. Conversely, if conditions (4.4) and (4.6) are satisfied, then putting these conditions in (3.21), we
get

Di =
−f22
fL3ω

s0
4
yi, i.e. Di = Pyi, where P =

−f22
fL3ω

s0
4
.

Thus F
n

is projective to Fn.

Theorem 4.1. The β−change of Finsler space is projective if and only if (4.4) and (4.6) hold.

Let us assume that L is the metric of a Riemannian space, that is, L = α =
√
aij(x)yiyj . Then L = f(α, β)

which is the metric of any β−changed space. In this case bi|j = bi;j where ; j denotes the covariant derivative
with respect to Christoffel symbols constructed from Riemannian metric α. Thus rij and sij are functions
of coordinates only, and in view of the Theorem 4.1, it follows that the Riemannian space is projective to
Finsler space obtained from β−change (3.1) iff

r00 =
−2f2
α2ω

s0
4

and si0 = −
( β
α2
yi − bi

) s0
4
, where 4 = b2 − β2

α2
6= 0.
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These equations may be written as

(a) r00 (β2 − b2α2) =
2f2
ω
s0, (b) si0 (β2 − b2α2) = (βyi − α2bi)s0. (4.7)

The equation (4.7)(b) can be written as

(sijbhbk + sihbjbk + sikbjbh)− b2(sijahk + sihajk + sikajh)

=
1

2
[(bhsk + bksh)δij + (bjsk + bksj)δ

i
h+

(bjsh + bhsj)δ
i
k]− bi(ahksj + ahjsk + ajksh).

Contracting this equation with i = j, we get

(shbk + skbh) = 0, for n > 2. (4.8)

Transvection of (4.8) by bh, we get b2sk = 0, which implies that sk = 0 provided b2 6= 0. Therefore, we have
si0 = 0, s0 = 0 and (4.7)(a) gives r00 = 0 as β2 − b2α2 6= 0, consequently rij = 0, sij = 0. Hence bi;j = 0,
i.e. the pair (α, β) is parallel pair. Conversely, if bi;j = 0 the equation (4.7)(a) and (b) hold identically.
Thus, we have the following theorem

Theorem 4.2. The Riemannian space with metric α is projective to the Finsler space with (α, β)−metric
iff the (α, β) is a parallel pair.

5 Particular Cases of One-form β

Let bi be components of a parallel vector field in Fn i.e. bi|j = 0. Therefore rij = sij = 0. Hence, the

equation (3.21) gives Di = 0 which implies that G
i

= Gi, G
i

j = Gij and G
i

jk = Gijk. Thus, we have the
following theorem

Theorem 5.1. The Berwald connection BΓ = (Gijk, G
i
j , 0) is invariant under β−change for parallel vector

field bi.

Let bi be a concurrent vector field in Fn [4, 9]. Then, we have (i) bi|j = −gij (ii) biC
i
jk = 0.

Thus, for a concurrent vector field sij = 0, rij = −gij and therefore r00 = −L2 and equation (3.21) reduces
to

Di = − (f1f2 − fLβω)L2

2f(f1 + L3ω4)
yi − L5ω

2(f1 + L3ω4)
bi. (5.1)

If Di = 0, then equation (5.1) shows that bi and yi are linearly related. That is, there exists a scalar λ
such that

bi = λyi. (5.2)

Since for a concurrent vector field the contravariant components bi are also functions of xi only [4, 9],
differentiating (5.2) with respect to yj , we get

(∂̇jλ)yi + λδij = 0.

Contracting it with respect to i and j and using the fact that λ is homogeneous function of degree −1 in
yi, we get

(n− 1)λ = 0 i.e. λ = 0

which is not possible as in that case β vanishes. Hence, we have the following theorem
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Theorem 5.2. If bi are components of a concurrent vector field, then the Berwald connection BΓ is not
invariant under β−change.

Next, suppose that bi is a gradient vector field so that sij =
1

2

( ∂bi
∂xj
− ∂bj
∂xi

)
= 0. Then equation (3.21)

reduces to

Di =
(f1f2 − fLβω)

2f(f1 + L3ω4)
r00y

i +
L3ωr00

2(f1 + L3ω4)
bi. (5.3)

If r00 6= 0 and Di = 0, then we get the same result as given in theorem (5.2) for gradient vector field bi
but if r00 is also zero, then the Berwald connections BΓ is invariant under β−change. Thus, we have the
following theorem

Theorem 5.3. If bi are components of a gradient vector field, then the Berwald connection BΓ is invariant
if r00 = 0.

6 Conclusion

Here, I introduced n-dimension Finsler space differentiable on a manifold along with a fundamental function.
With some preliminaries and historical developments, we mainly focused on the β-change of Finsher metric
and projective change of Finsler metric. The difference tensor of any β-change of Finsher metric is derived.
The necessary and sufficient condition of the β-change of a Finsher space to be projective is presented.
Some particular cases of β-change and Berwald connections are discussed.
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