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Abstract: Landslides, debris flows, and tsunamis are major geophysical mass transfer dynamics that fre-
quently occur in mountainous regions, valleys, and lower plains. This causes severe destruction of human
lives, infrastructures and the environment. Understanding and predicting their behavior requires reliable
modeling techniques capable of capturing the full dynamics of flow evolution, run-out distance, deposition
characteristics, and impact forces from initiation to final deposition. Here, we employ the mixture mass
flow model developed by Pokhrel et al. [29], to derive the characteristic equations and computing the cor-
responding Eigenvalues. These Eigenvalues are then used to determine the Froude number and analyze
its implications in flow regimes. The resulting analysis highlights the relationship between characteristic
speeds, numerical stability, and the physical behaviour of mixture mass flows. The findings enhance our
theoretical understanding of mixture mass flow dynamics and contribute to practical approaches for natural
hazard mitigation.
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1 Introduction

A debris flow is a gravity driven mass movement that typically consists of a mixture of loose sand, soil,
rock fragments, and water, flowing down-slope predominantly gravitational forces[13, 14, 27, 34, 36]. Debris
flows which generally occur in mountainous regions worldwide, are extremely destructive and hazardous
geophysical mass movement events. They may also be triggered by sudden surges of water generated by
dam failures, rockfalls, or landslides into lakes, oceans, or rivers, causing rapid overflow and subsequent
mobilization of loose material[7, 23, 24, 25, 35]. As a flood wave travels down a dry or weakly saturated
channel, it may evolve into a debris flow by eroding the bed and entertaining additional solid material
along on its path [12, 21]. During the motion, the mixture material undergoes with rapid deformations,
strong nonlinear interactions, and continuously evolving flow boundaries. In steep terrain, some debris
flows can reach extreme velocities, often exceeding 160 km/h, making them particularly dangerous [18].
From a modeling perspective, debris flows are described as gravity-driven movements of material consist-
ing of multi-phase flows[13, 14, 27, 30, 33, 34, 36]. For modeling avalanches and debris flows, Pitman
and Le [27] introduced a two-fluid model, whereas Fernandez-Nieto et al. [10] formulated a two-layered
model. Pudasaini [33] developed a generalized two-phase model that captures all major physics of mixture
flows, including buoyancy and strong phase interactions. This model incorporates three key mechanisms:
enhanced non-Newtonian viscous stress due to solid volume fraction gradients, virtual mass forces and
generalized drag forces. Kattel and Tuladhar [17] examined the flow dynamics, wall-flow interactions and
phase-wise run out morphology by using the two-phase model developed by Pudasaini [33]. Pokhrel et al.
[29] developed a mixture mass flow model that captures all essential physics, incorporates with mixture
viscosity effects in terms of drift dynamics, and enables fast and efficient numerical solution.

Liu and Ortiz [20] investigated the Eigenvalue problem for partial differential equations with constant co-
efficients, while Leipnik [19] determined the Eigenvalues of partial differential equations by formulating the
corresponding characteristic equations and analyzing their sensitivity and perturbation behavior. Boumenir
[3] proved a conjecture concerning certain Eigenvalues of the periodic Sturm-Liouville problem (a second
order differential equation). Wang and Shen [38] established the existence of the Eigenvalues for second
order differential equations with impulses. Pudasaini [33] analyzed the dynamics of two-phase mass flows
by performing a detailed Eigenvalue analysis of his generalized model. Based on the generalized model, [33],
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Figure 1: Initial setup showing the mixture’s inlet velocity umin
, flow height hin, and chute inclination

angle ζ [29].

Pokhrel and Tuladhar [28] derived the phase-wise Eigenvalues of the governing partial differential equa-
tions, and demonstrated that these Eigenvalues significantly improve the understanding of flow dynamics,
including the estimation of wave speeds and Froude numbers. In this paper, based on the mixture mass
flow model developed by Pokhrel et al. 2018 [29], we aim to establish a comprehensive understanding of the
Eigenvalues, Froude number, and Courant Friedrichs Lewy (CFL) condition through numerical simulations
of scenarios with varying sizes and volumes of initial debris mass.

2 Physical Mathematical Model and Numerical Methods

The mixture mass flow model developed by Pokhrel et al. [29] is expressed as
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where um and wm are the down-slope and perpendicular mixture velocities (Fig. 1), t is time, and pm is
the mixture pressure. The mixture velocities and pressure are defined as [29]:

um = (αs + λuαf )us, wm = (αs + λwαf )ws, pm = (αs + λpαf )ps,
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with λu, λw as velocity drift factors, and λp as pressure drift factor. The coefficients Λu and Λw are
determined by

Λu =
1

αs + λuαf
, Λw =

1

αs + λwαf
.

αs, αf (= 1 − αs), are the solid and fluid volume fractions, with ps and pf respective phase pressures.
f = (fx, fz) represents the gravitational acceleration, and the mixture viscosities are Ληu = νesαs+λuνfαf ,
Ληw = νesαs+λwνfαf , where νes and νf are the solid and fluid kinematic viscosities. The inertial coefficients
are
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.

Our newly derived Eigenvalues, together with resulting CFL condition, and the Froude number obtained
from them, play a central role in the numerical computation of the mixture mass flow model. The CFL
condition is employed in the numerical simulations to ensure stability. The simulations of the model
are performed using the extended Nast2D method [8, 9, 11]. This numerical method is an advanced
computational code based on finite volume for simulating the complex mixtures of incompressible non-
Newtonian fluids and granular particles. The computational domain is discretized using a staggered grid to
prevent pressure oscillations. Numerical instabilities are minimized by employing a combination of central
difference and donor-cell discretization schemes. The flow domain along x- and z- axes is divided into a
large number of equally sized cells for accurate computation. In this domain, pm is at the cell centers, um
along x- axis at vertical edge midpoints, and wm along z- axis at horizontal edge midpoints.

3 Results and Discussion

3.1 Characteristic Equation

For an n × n matrix A, if AX = λX for some vector X and scalar λ, then λ is an Eigenvalue of A, and
the corresponding (right) X is its Eigenvector. The equation det(A − λI) = 0 is said to be characteristic
equation, which provides the Eigenvalues of the matrix A, where I is the identity matrix of order n. For
our mixture mass flow model as a set of non-linear partial differential equations (1) - (3), the corresponding
Eigenvalues of the system are obtained as the roots of the characteristic equation. The matrix A arises
from the spatial derivative of the flux vector F with respect to the conservative variables. The resulting
Eigenvalues are significant because they determine the characteristic wave speeds needed to satisfy the
CFL (Courant-Friedichs-Lewy) stability criterion[6]. The CFL condition ensures numerical stability of the
simulations. From the Eigenvalues, we also compute Froude number that characterizes the critical flow
states. The Froude number is essential for designing civil and protective structures exposed to geophysical
mass flows. In particular, for hazards such as landslides, avalanches and debris flows, these numbers play a
key role in determining the design and effectiveness of defense structures [8, 9, 28]. Let um = (um, wm)T

denote the velocity field, with um and wm as the x- and z- directions components. The flux tensor is given
by

F(um) =
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The matrix A is obtained by the partial derivative of F :
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.

Let λ be the Eigenvalue, then the characteristic equation is given by det(A− λI) = 0 gives∣∣∣∣2Λuuum − λ Λuwum
Λwuum 0− λ

∣∣∣∣ = 0,

or λ2 − 2Λuuumλ− ΛwuΛwuw
2
m = 0.

4 Eigenvalues and Applications

4.1 Applications of Eigenvalues

For the non-linear partial differential equations (1) - (3), Eigenvalues provide important insights into the
system, and are obtained from the characteristic equations, giving
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Thus, the coupled Eigenvalues are
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In this discussion, two practical aspects are highlighted where Eigenvalues play a fundamental role in
describing the physics of mixture flows and their analysis. These aspects are associated with numerical
stability and critical flows. Both of these aspects are crucial in designing of defense structures.

4.2 Numerical Stability Analysis

The CFL (Courant-Friedrichs-Lewy) condition is essential for preventing un-physical oscillations and main-
taining the stability of numerical schemes, thereby ensuring accurate and reliable simulations of mixture
flows. The CFL condition is determined using the Eigenvalues derived from the equations (1) - (3). These
Eigenvalues help to establish the relationship between the maximum wave speed and the numerical stability
condition, as described in [28, 33]:

4t
4x
|Cmax| < 1

2
, where Cmax = max{λ1, λ2}.

In these expressions, 4t and 4x denote the temporal and spatial spacing of the numerical grid, and λ1
and λ2 be the Eigenvalues of the mixture flow model equations, defined as:
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√

Λ2
uu + ΛuwΛwuw2

m,
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√

Λ2
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m.

These Eigenvalues are novel and play a crucial role in determining the CFL condition to simulate the
mixture flows down an inclined channel.

4.3 Flow Characteristics

Eigenvalues influence the classification of flow regimes, particularly through the Froude number, which is
crucial for understanding flow transitions and designing effective defense structures against natural haz-
ards. By analyzing Eigenvalues, we gain deeper insights into the stability and behavior of mixture flows,
contributing to both theoretical advancements and practical engineering applications. The Froude number
(Fr) is a key dimensionless parameter that characterizes the dynamics of free surface gravity flows [8]. It
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Figure 2: Flow regimes classified based on the determination of the Froude number using Eigenvalues.

distinguishes sub-critical (Fr < 1), critical (Fr = 1), and supercritical (Fr < 1) flow regimes [28]. In clas-
sical free-surface or granular flows on inclined slopes, Fr is defined as the ratio of inertial to gravity forces
or equivalently, of kinetic to potential energy. It is widely used to establish dynamic similarity between
laboratory-scale and full-scale flows, for example in the design of avalanche protection dams and weirs[8].
The advancement of this formulation is achieved by constructing coupled mixture Froude numbers for the
solid and fluid components. The classical Froude numbers compare inertial forces to gravitational forces
and is usually in the form:

Fr =
velocity√

g L
,

where g is the gravitational acceleration and L is a typical length scale. In the context of mixture mass
flows, gravitational effects are implicitly incorporated through the phase-interaction parameters Λuu, Λuw,
and Λwu, the interaction coefficients λu and λw, and the volume fractions of the solid and fluid phases, αs
and αf . As a result, the generalized Froude number for the mixture mass flow, associated with Eigenvalues
of the system is

Fr =
Λuu um√

Λ2
uu + ΛuwΛwuw2

m

.

This Froude number represents a novel result for the mixture model equations, providing a key parameter
for characterizing the dynamics and behavior of mixture flows.

4.4 Froude Number and Flow Regimes

The derived Eigenvalues λ1 and λ2 provide essential information on the characteristic speeds of wave
propagation in the mixture flow system. These Eigenvalues not only define the propagation direction and
magnitude of information through the flow field but also play a pivotal role in setting up the CFL condition
for stable numerical simulations of the mixture flow model, particularly over inclined channels.

The generalized Froude number introduces a novel approach for classifying flow regimes in mixture mass
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flow systems. Analogous to its classical counterpart, it measures the relative dominance of inertial forces
over gravitational influences. However, it does so in a way that accounts for the internal coupling between
solid and fluid phases-embedded through the parameters Λuu, Λuw and Λwu. Subcritical flow corresponds
to Fr < 1 gravitational effects dominate. Supercritical flow corresponds to Fr > 1 inertial effects dominate,
and the critical flow occurs at Fr = 1, a transition regime where wave speeds and flow speeds coincide.

Figure 2 illustrates the variation of the Froude number, Fr with the normal velocity wm when the velocity

Figure 3: Flow regimes classified based on the determination of the Froude number using Eigenvalues.

Figure 4: Froude number derived from the Eigenvalues as a function of mixture velocities um and wm.
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along the mixture mass flow direction is fixed at um = 1.5 m /s, and the parameters Λuu = 0.350 m2/s2 and
Λuw = 0.250 m/s are held constant. The plot compares the effect of varying Λwu values (0.475 m/s, 0.675
m/s, and 0.875 m/s) on the critical state of the flow. Specifically, the flow reaches the critical condition
( Fr = 1 ) at approximately: wm = 1.2 m/s for Λwu = 0.875 m / s, wm = 1.4 m/s for Λwu = 0.675 m /
s, and wm = 1.6 m/s for Λwu = 0.475 m / s. As the normal velocity wm increases- while um, Λuu, and
Λuw remain fixed, the Froude number Fr decreases below 1, indicating a transition from supercritical to
subcritical flow. This behavior highlights that although the streamwise velocity um and the parameters Λuu
and Λuw are constant, an increase in the normal velocity wm leads to subcritical flow condition(Fr < 1).

Figure 3 shows how the Froude number (Fr ) varies with the normal velocity wm under different values of
the parameter Λwu with fixed parameters Λuw = 0.250 m/s and Λuu = 0.350 m2/s2, and um = 1.5 m /s.
The plot contains three curves (red, blue, magenta), each representing one of the values Λwu ( 0.475 m/s,
0.675 m/s, and 0.875 m/s). As wm decreases for all cases, meaning the flow transitions toward a subcritical
regime (Fr < 1). Higher Λwu values result in a faster drop in Fr < 1, reaching the critical state (Fr = 1 )
at lower wm values. Specifically, for Λwu = 0.875 m / s, critical state is reached at lower wm than for 0.675
m / s, or 0.475 m / s. Figure 3 demonstrates how the Froude number behavior depends on both normal
velocity and coupling parameters ( Λwu, Λuw, and Λuu), highlighting the transition between supercritical
and subcritical flow regimes in the mixture mass flow system.

Figure 4 represents a smooth surface with interpolated shading, giving a continuous three dimensional view.
A colorbar is added to show the scale of Fr values. Let um, wm represent horizontal and vertical velocities
along x-, and z- axes respectively, and the Froude number Fr represents along the z- axis. As um increases,
the Froude number Fr increases linearly (because it appears directly in the numerator). As wm increases,
the Froude number Fr decreases (because it increases the denominator under the square root, reducing the
overall value). The combined surface shape highlights how the flow transitions from supercritical (Fr > 1)
to subcritical (Fr < 1) regimes depending on the balance between um and wm.

Therefore, Figure 4 provides a three dimensional visualization of how horizontal and vertical velocity
components jointly control the Froude number, which is important for understanding flow regimes, stability,
and the transition between critical states in mixture mass flows. This formulation enables the study of
wave interactions, shock formation, and interface dynamics within multi-phase mixtures, offering a more
complete understanding of debris flows, landslides, or sediment transport phenomena.

5 Conclusions

In this paper, a novel formulation of the generalized Froude number has been developed for mixture mass
flow systems, incorporating the complex interactions between solid and fluid phases through the coupling
parameters Λuu, Λuw, and Λwu, as well as the interaction coefficients λu, λw, and volume fractions αs,
αf . The resulting Eigenvalues of the governing equations capture the characteristic wave speeds in the
mixture and form the basis for determining stable numerical simulation condition through the CFL criterion.
The generalized Froude number serves as a key diagnostic tool for identifying flow regimes - subcritical,
supercritical, and critical, in two-phase flow environments. This framework not only generalizes the classical
Froude number but also enhances the theoretical foundation for simulating and understanding real-world
geophysical mixture mass flows, and other complex granular-fluid interactions on inclined terrains.
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