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Abstract: In this research article, we aim to provide a new proof of the extended Watson summation
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integrals involving generalised hypergeometric function.
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1 Introduction

The classical summation theorems for the generalized hypergeometric series such as those of Gauss, Gauss
second, Kummer and Bailey for the series 5 F}; Watson, Dixon and Whipple for the series 3F5 play a key role
in theory and application. Bailey pointed out several interesting applications by using the above mentioned
summation theorems [IJ.

In 2010, these summation theorems were extended by Kim et al. [5]. Here we would like to mention some
of the results that will be required in our present investigation.

Extension of Gauss second summation theorem [
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For § = 2(a+ B+ 1), (1.1) reduces to the well-known Gauss second summation theorem [2, B] viz.
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Extension of Watson summation theorem [5]
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provided Re(2y —a — ) > —1.
Also the constants v; and 7, are given by

of
=2y —a)+ B2y~ F) 2y +1- Lty —a— 1)
and
4
72:5(a+ﬁ+1)—8.
For § = 2(av+ B+ 1), (1.3) reduces to the classical Watson summation theorem [2] viz.
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provided Re(2y —a — ) > —1.

Gauss summation theorem [2, [§

provided Re(y —a — ) > 0.
A special case of (1.7) [§]
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It is interesting to mention here that Kim et al. [5] established the result (1.3) by using contiguous functions
relations together with Watson summation theorem (1.6) and its contiguous result which was obtained by

Lavoie et al. [5].

In 2017, Choi et al. [3] established the result (1.3) by using the results (1.7) and (1.8). In this work, we

aim to provide a new proof of the extended Watson summation theorem(1.3).

2 Derivation of (1.3)

In order to derive the result (1.3), we proceed as follows :
Consider the integral

1
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for Re(y) >0

Expressing 3F» as a series and changing the order of integration and series which is permitted due to the

uniform convergence of the series, we have
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Evaluating the well-known gamma integral and making use of the relation of following Pochhammer symbol

with the gamma function
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and we have after some simplification
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Summing up the series, we have
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On the other hand, writing (2.1) in the form
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Now, writing o F} as a series, we have after some calculations
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Now substituting n by n + 2m and making use of the result [7]
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Using the identity
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Summing up the inner series, we have
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We now observe that 3Fy appearing here can be computed with the help of (1.1) and after much simplifi-
cation, separating into two terms and finally applying (1.7), we get
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Finally, equating the results (2.2) and (2.3), we obtain the required result (1.3). The new proof of (1.3) is
completed.
3 Application

In this section, by employing extended Watson summation theorem (1.3), we shall evaluate the following
two integrals involving generalized hypergeometric function 3F,. These are
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provided Re(y) > 0 and Re(2y — a — ) > 1. Where (2 is the same as given in (1.3).
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provided Re(y) > 0 and Re(2y — a — ) > 1. Where (2 is the same as given in (1.3).

Proof. To prove result (3.1), we proceed as follows.
Let us denote the left hand side of (3.1) by I, we have
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Next, expressing generalized hypergeometric function 3F5 involved in the process as a series, changing the
order of integration and summation, which is easily seen to be justified due to the uniform convergence of
the series involved in the process, we have
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Now, evaluating the integral with the help of the known integral due to MacRobert [7], viz

™
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provided Re(a) > 0 and Re(8) > 0. We have after some algebra
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Summing up the series, we get

_ m () a,B,7,0+1
I=e oy %(a—l—ﬂ—i—iﬁ) 2%6’1

We now observe that the term appearing on right hand side can be evaluated with the help of the result
(1.3), and we easily arrive at the right hand side of result (3.1). This completes the proof of result (3.1). O

In exactly the similar way, result (3.2) can be established. So we left this as an exercise to the interested
readers.

Remark: For another proof of extended Watson theorem (1.3), we refer to a paper [4].

4 Special Case

It is seen that in both cases, by letting 8 = —2n and replacing « by a + 2n, or by letting 5 = —2n — 1 and
replacing a by a+ 2n + 1, where n is zero or a positive integer, one of the two terms appearing on the left
hand side of integrals (3.1) and (3.2) will vanish and we can easily obtain four new and interesting results.
But we shall not record here due to the lack of space.

5 Concluding Remark
In this work, we have given a new proof of extended Watson summation theorem. As an application, we
have evaluated two new and interesting integrals involving a generalized hypergeometric function.
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