Journal of Bhuwanishankar (JoBS)

A Peer Reviewed Research Journal
ISSN: 2961-1938 (Print), 2961-1946 (Online)

q-Analogue of Hermite-Hadamard Type Inequalities for s-Convex Functions in the Breckner Sense

Suresh Bhatta ${ }^{1 *}$
Chet Raj Bhatta ${ }^{2 *}$
chetbhatta110@gmail.com

Received: March 20, 2022 Accepted: July 25, 2022

Abstract

: Hermite and Hadamard independently introduced the Herimite-Hadamard inequality for convex functions for the first time. In recent years, a variety of extensions have been made with the use of convex functions by several researchers. In this paper, we have given a variant of the Hermite-Hadamard integral inequality for the s-convex function in the Breckner sense.

Key Words: Hermite-Hadamard Inequality, s-convex functions, q-derivative, Jackson q- in- tegration.

1. Introduction and preliminaries

In mathematics, quantum calculus is the study of classical calculus without the notation of limit, and it is also known as q-calculus, where q is a parameter $0<q<1$. In q calculus, we obtain mathematical expression in terms of q and whenever $q \rightarrow 0$, it again reduces to the original form. The history of the q-calculus can be traced back to Euler (1707-1983), who first introduced theq-calculus to deal with Newton's work of infinite series. In the twentieth century, Jackson [2] was the first mathematician, who started the systematic study of q-calculus and introduced the q-definite integral [8]. In 1893, Hermite-Hadamard investigated one of the fundamental inequalities in analysis, that is

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{(b-a)} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1}
\end{equation*}
$$

which is known as the Hermite-Hadamard inequality. For the first time, in 2014, Tariboon and Ntouyas [4] investigated the q-analogue of several of classical integral inequalities, from which they obtained the q-analogue of the Hermite - Hadamard inequality. But their finding was not compatible for $q \in(0,1)$ for the left-hand side, which was proved in 2016 Alp. et al.[5] by giving a counter example and proving the correct q- Hermite Hadamard inequality. Recently, many extensions have been given with the use of convex functions by several researchers. The investigation into the $q-$ Hermite -Hadamard inequality for general convex functions can be found in 2020 [6].

[^0]The variant of the Hermite- Hadamard result for s-convex functions in the second sense or Breckner sense is

$$
\begin{equation*}
2^{s-1} f\left(\frac{a+b}{2}\right) \leq \frac{1}{(b-a)} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{s+1} \tag{2}
\end{equation*}
$$

As $s=1$ it reduces to (1). The purpose of this paper is to present the q - calculus of HermiteHadamard inequalities for s-convex function in the Breckner's sense
We now present some notations and definitions from the q-calculus, which are necessary for understanding this paper. Let $J:=[a, b] \subset \mathbb{R}$ be an interval and q be a constant with $0<q<1$.

Definition 1. [3] The q-derivative of a continuous function $f: J \rightarrow \mathbb{R}$ at x is defined as:

$$
\begin{equation*}
{ }_{a} D_{q} f(x)=\frac{f(x)-f(q x+(1-q) a)}{(1-q)(x-a)} \text { for } x \neq a \tag{3}
\end{equation*}
$$

For $x=a$ it is defined as

$$
{ }_{a} D_{q} f(a)=\lim _{x \rightarrow a}{ }_{a} D_{q} f(x)
$$

If ${ }_{a} D_{q} f(x)$ exists for all $x \in J$, then f is q - differentiable on J . Moreover, if $a=0$, then (5) reduces to

$$
{ }_{0} D_{q} f(x)=D_{q} f(x)=\frac{f(x)-f(q x)}{(1-q) x} ; x \neq 0
$$

For more details, see [8]
The higher -order q-derivatives of functions on J are also defined.
Definition 2. [3] For a continuous function $f: J \rightarrow \mathbb{R}$, the second- order derivative of f on J, if ${ }_{a} D_{q} f$ is q-differentiable on J, denoted by ${ }_{a} D_{q}^{2} f$ and defined by

$$
{ }_{a} D_{q}^{2} f={ }_{a} D_{q}\left({ }_{a} D_{q}\right) f
$$

Similarly, $n^{\text {th }}$ order q-derivative ${ }_{a} D_{q}^{n} f$ can be defined on J, provided that ${ }_{a} D_{q}^{n-1} f$ is defined on J.

Definition 3. [3] Let $f: J \rightarrow \mathbb{R}$ be a continuous function. Then the q-definite integral on J is represented as

$$
\begin{equation*}
\int_{a}^{x} f(t){ }_{a} d_{q} t=(1-q)(x-a) \sum_{n=0}^{\infty} q^{n} f\left(q^{n} x+(1-q) a\right) ; \text { for } x \in J \tag{4}
\end{equation*}
$$

If $a=0$ in (6), it reduces to the classical q-integral called Jackson's q-integral on $[0, x]$ delineated [8] as

$$
\begin{equation*}
\int_{0}^{x} f(t){ }_{0} d_{q} t=\int_{0}^{x} f(t) d_{q} t=(1-q) x \sum_{n=0}^{\infty} q^{n} f\left(q^{n}\right) ; \text { for } x \in[0, \infty) \tag{5}
\end{equation*}
$$

Theorem 1. Assume that function $f: j \rightarrow \mathbb{R}$ is continuous. Then, we have the following
(i) ${ }_{a} D_{q} \int_{a}^{x} f(t){ }_{a} d_{q} t=f(x)-f(a)$;
(ii) $\int_{c}^{x}{ }_{a} D_{q} f(t){ }_{a} d_{q} t=f(x)-f(c)$ for $c \in(a, x)$

Theorem 2. Assume that function $f, g: j \rightarrow \mathbb{R}$ is continuous be a continuous function and $k \in \mathbb{R}$. Then we have the following
(i) $\int_{a}^{x}[f(t)+g(t)]{ }_{a} d_{q} t=\int_{a}^{x} f(t){ }_{a} d_{q} t+\int_{a}^{x} g(t){ }_{a} d_{q} t$;
(ii) $\int_{a}^{x}(k f)(t){ }_{a} d_{q} t=k \int_{a}^{x} f(t){ }_{a} d_{q} t$;
(iii) $\int_{a}^{x} f(t){ }_{a} D_{q} g(t){ }_{a} d_{q} t=\left.(f g)\right|_{c} ^{x}-\int_{c}^{x} g(q t+(1-q) a){ }_{a} D_{q} f(t){ }_{a} d_{q} t$ for $c \in(a, x)$

The proof of fundamental theorem on integral calculus, linear property and integration parts in Theorems (1) and (2), see [3]

Using lemma 2

Definition 4. [4] For $\alpha \in \mathbb{R}-\{-1\}$, the definite q-integral is given by

$$
\begin{equation*}
\int_{a}^{x}(t-a)^{\alpha}{ }_{a} d_{q} t=\left(\frac{1-q}{1-q^{\alpha+1}}\right)(x-a)^{\alpha+1} \tag{6}
\end{equation*}
$$

From this one can write

$$
\begin{equation*}
\int_{0}^{x} t^{\alpha}{ }_{0} d_{q} t=\left(\frac{1-q}{1-q^{\alpha+1}}\right) x^{\alpha+1} \tag{7}
\end{equation*}
$$

Definition 5. A function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is said to be s- convex function in the second sense or convex in the Breckner sense if

$$
\begin{equation*}
f(\alpha u+\beta v) \leq \alpha^{s} f(u)+\beta^{s} f(v) \tag{8}
\end{equation*}
$$

for all $u, v \geq 0$ and $\alpha, \beta \geq 0$ with $\alpha+\beta=1$ and s fixed in $(0,1]$
The set of all s-convex functions in the second sense is denoted by K_{s}^{2}.

2. q-analogue of Hermite-Hadamard inequality for s-convex functions in Breckner sense

Theorem 3. Let $0 \leq a<b<\infty$ and $J:=[a, b]$ and $0<q<1$ be a constant. Let f be s-convex function in the second sense or s-convex in the Breckner sense, then q-Hermite -Hadamard inequality variant is given by

$$
\begin{equation*}
2^{s-1} f\left(\frac{a+b}{2}\right) \leq \frac{1}{(b-a)} \int_{a}^{b} f(x)_{a} d_{q} x \leq(f(a)+f(b)) \frac{1-q}{1-q^{s+1}} \tag{9}
\end{equation*}
$$

Proof. As f is s-convex function in the second sense, for all $f \in[0,1]$ we have

$$
\begin{equation*}
f(t a+(1-t) b) \leq t^{s} f(a)+(1-t)^{s} f(b) \tag{10}
\end{equation*}
$$

q-Integrating over [0, 1], we get

$$
\begin{equation*}
\int_{0}^{1} f(t a+(1-t) b)_{0} d_{q} t \leq f(a) \int_{0}^{1} t^{s}{ }_{0} d_{q} t+f(b) \int_{0}^{1}(1-t)^{s}{ }_{0} d_{q} t \tag{11}
\end{equation*}
$$

Now,

$$
\begin{align*}
& \int_{0}^{1} f(t a+(1-t) b)_{0} d_{q} t=(1-q)(1-0) \sum_{n=0}^{\infty} q^{n} f\left(q^{n} a+\left(1-q^{n}\right) b+\left(1-q^{n}\right) \cdot 0\right) \\
&=(1-q) \sum_{n=0}^{\infty} q^{n} f\left(q^{n} a+\left(1-q^{n}\right) b\right) \\
&=\frac{(1-q)(b-a)}{(b-a)} \sum_{n=0}^{\infty} q^{n} f\left(q^{n} a+\left(1-q^{n}\right) b\right) \\
&=\frac{1}{b-a} \int_{a}^{b} f(x)_{a} d_{q} x \\
& \therefore \int_{0}^{1} f(t a+(1-t) b)_{0} d_{q} t=\frac{1}{b-a} \int_{a}^{b} f(x)_{a} d_{q} x \tag{12}
\end{align*}
$$

We have

$$
\int_{0}^{1} f(x){ }_{0} d_{q} x=(1-q) \sum_{n=0}^{\infty} q^{n} f\left(q^{n}\right)
$$

So,

$$
\begin{align*}
\int_{0}^{1} t^{s}{ }_{0} d_{q} x & =(1-q) \sum_{n=0}^{\infty} q^{n}\left(q^{n}\right)^{s} \tag{13}\\
& =(1-q) \sum_{n=0}^{\infty} q^{n(s+1)} \tag{14}\\
& =\frac{1-q}{1-q^{(s+1)}} \tag{15}
\end{align*}
$$

Again,

$$
\int_{0}^{1}(1-t)^{s}{ }_{0} d_{q} t
$$

Let, $1-\mathrm{t}=\mathrm{y}$

$$
\begin{aligned}
D_{q}(1-t) & =D_{q} y \\
d_{q} t & =-d_{q} y
\end{aligned}
$$

As , $\mathrm{t}=0$, then $\mathrm{y}=1$ and as $\mathrm{t}=1$, then $\mathrm{y}=0$.
So,

$$
\begin{align*}
\int_{0}^{1}(1-t)^{s}{ }_{0} d_{q} t & =-\int_{1}^{0} y^{s}{ }_{0} d_{q} y \\
& =\int_{0}^{1} y^{s}{ }_{0} d_{q} y \\
& =\frac{1-q}{1-q^{s+1}} \tag{16}
\end{align*}
$$

From (11),(12), (15) and (16) we get,

$$
\begin{align*}
& \int_{0}^{1} f(t a+(1-t) b){ }_{0} d_{q} t \leq f(a) \int_{0}^{1} t^{s}{ }_{0} d_{q} t+f(b) \int_{0}^{1}(1-t)^{s}{ }_{0} d_{q} t \\
& \frac{1}{b-a} \int_{a}^{b} f(x){ }_{a} d_{q} x \leq f(a) \frac{1-q}{1-q^{s+1}}+f(b) \frac{1-q}{1-q^{s+1}} \\
& \therefore \frac{1}{b-a} \int_{a}^{b} f(x){ }_{a} d_{q} x \leq(f(a)+f(b)) \frac{1-q}{1-q^{s+1}} \tag{17}
\end{align*}
$$

Again for the second part. Let $x, y \in I$. Since $f \in K_{s}^{2}$, for $\alpha=\frac{1}{2}$ and $\beta=\frac{1}{2}$ we have

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2^{s}} \tag{18}
\end{equation*}
$$

Without loss of generality we may assume that

$$
\begin{aligned}
& x=(1-t) a+t b \\
& y=t a+(1-t) b
\end{aligned}
$$

From (18)

$$
\begin{aligned}
f\left(\frac{(1-t) a+t b+t a+(1-t) b}{2}\right) & \leq \frac{1}{2^{s}}[f((1-t) a+t b)+f(t a+(1-t) b)] \\
f\left(\frac{a+b}{2}\right) & \leq \frac{1}{2^{s}}[f((1-t) a+t b)+f(t a+(1-t) b)]
\end{aligned}
$$

q -integrating over $[0,1]$

$$
\begin{align*}
\int_{0}^{1} f\left(\frac{a+b}{2}\right){ }_{o} d_{q} t & \leq \frac{1}{2^{s}}\left[\int_{0}^{1} f((1-t) a+t b)_{o} d_{q} t+\int_{0}^{1} f(t a+(1-t) b)_{o} d_{q} t\right] \\
f\left(\frac{a+b}{2}\right) & \leq \frac{1}{2^{s}}\left[\frac{1}{(b-a)} \int_{a}^{b} f(x)_{a} d_{q} x+\frac{1}{(b-a)} \int_{a}^{b} f(x)_{a} d_{q} t\right] \\
f\left(\frac{a+b}{2}\right) & \leq \frac{1}{2^{s}} \frac{2}{(b-a)} \int_{a}^{b} f(x)_{a} d_{q} x \\
2^{s-1} f\left(\frac{a+b}{2}\right) & \leq \frac{1}{(b-a)} \int_{a}^{b} f(x){ }_{a} d_{q} x \tag{19}
\end{align*}
$$

Using (17) and (19)

$$
\begin{equation*}
2^{s-1} f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x)_{a} d_{q} x \leq(f(a)+f(b)) \frac{1-q}{1-q^{s+1}} \tag{20}
\end{equation*}
$$

Remarks: As $q \rightarrow 1$ and $s \rightarrow 1$, then (20) reduces to (1).

3. Conclusion

In this paper, we have given the quantum calculus version of the S . Bermudo et. al. (2020), our inequality (20) reduces to the inequality (2) as $q \rightarrow 1$ and further if $s \rightarrow 1$ it reduces to the classical Hermite-Hadamard type inequality.

References

[1] Bashir Ahamad, Sotiris Ntouyas, Jessada Tariboon (2016) Quantum calculus :new concepts, impulsive IVPs and BVPs, inequalities Trends in Abstract and Applied Analysis Vol(4), World Scientific Publishing Co. Pte. Ltd., ISSN: 2424-8746
[2] F.H. Jackson (1910) On a q-definite integrals, Quarterly Journal of Pure and Applied Mathematics, P.P 193-203.
[3] Jessada Tariboon and Sotiris K Ntouyas (2013) Quantum calculus on finite intervals and applications to impulsive difference equations Advances in Difference Equations 2013:282
[4] Jessada Tariboon and Sotiris K Ntouyas (2014) Quantum integral inequalities on finite intervals, Journal of Inequalities and Application 2014:121
[5] Necmettin Alp and et al. (2016), q-Hermite -Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, Journal of King Saud Univerity, (30),193-203
[6] S.Bermudo et al. (2020) On q-Hermite -Hadamard inequalities for general convex functions, Acta Math. Hunger.
[7] Kwara Nantomah (2017) Generalized Holder's and Minkowski’s Inequalities for Jackson's q- Integral and Some Applications to the Incomplete q- Gamma Function, Abstract and Applied Analysis, Volume 2017, Article ID 9796873, 6 pages.
[8] Victor Kac, Pokman Cheung (2001) Quantum Calculus, Springer, North America.

[^0]: ${ }^{*}$ ' Suresh Bhatta is an assistant lecturer of Mathematics at New Capital College, Chitwan.
 ${ }^{* 2}$ Chet Raj Bhatta, PhD is a professor of Mathematics at Central Department of Mathematics, TU, Kritipur.

